1
|
Mahato DK, Kamle M, Pandhi S, Pandey S, Gupta A, Paul V, Kalsi R, Agrawal S, Islam D, Khare S, Singh A, Kumar P, Rab SO, Saeed M. Foodomics: A sustainable approach for the specific nutrition and diets for human health. Food Chem X 2024; 24:101872. [PMID: 39483356 PMCID: PMC11525469 DOI: 10.1016/j.fochx.2024.101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Foodomics is an interdisciplinary field that integrates various omics technologies to explore the complex relationship between food and human health in depth. This approach offers valuable insights into the biochemical, molecular, and cellular composition of food by employing advanced omics techniques. Its applications span the food industry and human health, including efforts to combat malnutrition, provide dietary recommendations, and ensure food safety. This paper critically examines the successful applications of foodomics across areas such as food safety, quality, traceability, processing, and bioactivity. It highlights the crucial role of metabolomics, proteomics, and transcriptomics in achieving a comprehensive understanding of food components, their functions, and their interactions with human biology.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North-Eastern Regional Institute of Science and Technology, Nirjuli 791109, Arunachal Pradesh, India
| | - Shikha Pandhi
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Surabhi Pandey
- Department of Food Technology, Harcourt Butler Technical University, Kanpur, 208002, India
| | - Akansha Gupta
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Veena Paul
- Division of Food Processing Technology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Rhythm Kalsi
- School of Agriculture, Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Swati Agrawal
- Department of Bioresource Engineering, Faculty of Agricultural & Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X3V9, Canada
| | - Dawrul Islam
- World Food Programme, Trust for India, New Delhi 110029, India
| | - Shubhra Khare
- Department of Applied Sciences & Humanities, Invertis University, Bareilly, India
| | - Ajey Singh
- Applied Microbiology Lab., Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Pradeep Kumar
- Applied Microbiology Lab., Department of Botany, University of Lucknow, Lucknow, 226007, India
- College of Life Science & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
2
|
Schuster C, Huen J, Weiss T, Scherf KA. Rapid analysis of wheat gluten composition using a triple ELISA. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6893-6901. [PMID: 38591632 DOI: 10.1002/jsfa.13521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/20/2024] [Accepted: 04/09/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Gluten composition is an important quality parameter of wheat flour. Reversed-phase high-performance liquid chromatography (RP-HPLC) is a state-of-the-art method for its analysis. As this is a very labour-intensive and time-consuming procedure, alternative faster methods are desirable. Enzyme-linked immunosorbent assay (ELISA) is a high-throughput method often used for the analysis of gluten traces in gluten-free products. In this proof-of-principle study, we introduce an experimental triple ELISA for the relative quantitation of gliadins, high-molecular-weight glutenin subunits (HMW-GS) and low-molecular-weight glutenin subunits (LMW-GS) of one wheat flour extract. RESULTS The results of 80 common wheat flour samples obtained from the triple ELISA and RP-HPLC were correlated. The results for gliadins (r = 0.69) and HMW-GS (r = 0.81) showed a medium and high correlation, respectively. Only a very weak correlation of ELISA and RP-HPLC results was observed for LMW-GS (r = 0.49). Results for glutenins (r = 0.69) and gluten (r = 0.72) had a medium correlation. The gliadin/glutenin ratio (r = 0.47) and LMW-GS/HMW-GS ratio (r = 0.40) showed a weak or no correlation. The gliadin, LMW-GS and gluten contents were lower and the HMW-GS content was higher in the ELISA measurement compared to RP-HPLC. CONCLUSION The quantitation of gliadins and HMW-GS by the experimental triple ELISA showed comparable results to RP-HPLC, whereas no strong correlation between the results from the two methods was found for LMW-GS. Overall, the experimental triple ELISA is suitable for relative gluten quantitation, especially for the analysis of large sample sets. Further work will focus on improving the experimental procedure of the ELISA. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Clemens Schuster
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | | | | | - Katharina Anne Scherf
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- TUM School of Life Sciences, Professorship of Food Biopolymer Systems, Technical University of Munich, Freising, Germany
| |
Collapse
|
3
|
Xhaferaj M, Scherf KA. Gluten Is Not Gluten. Nutrients 2024; 16:2745. [PMID: 39203881 PMCID: PMC11357231 DOI: 10.3390/nu16162745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Wheat gluten is responsible for the unique baking properties of wheat flour, but it also causes wheat-related disorders in predisposed individuals. Different commercially available gluten materials are commonly used for a variety of assays, but a detailed characterization of their composition is missing in many cases. This is why we aimed to provide an in-depth analysis of three commonly used gliadin and gluten materials from two different batches using gel electrophoretic and chromatographic techniques. The gliadin material did not show the typical qualitative and quantitative protein composition and does not appear to be representative of wheat gliadin. The two gluten materials had the expected protein composition, but both showed large batch-to-batch variability regarding total protein content. Since these variations result in different biochemical, immunological, and functional behaviors, it is important to analyze at least the total protein content of each material and each batch.
Collapse
Affiliation(s)
- Majlinda Xhaferaj
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Katharina Anne Scherf
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
- Professorship of Food Biopolymer Systems, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
4
|
Xhaferaj M, Muskovics G, Schall E, Bugyi Z, Tömösközi S, Scherf KA. Development of a barley reference material for gluten analysis. Food Chem 2023; 424:136414. [PMID: 37236081 PMCID: PMC10282984 DOI: 10.1016/j.foodchem.2023.136414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Celiac disease (CD) can be triggered in susceptible individuals by the consumption of gluten, a complex storage protein mixture present in wheat, rye and barley. There is no specific reference material (RM) available for barley and this leads to inaccurate quantitation of barley gluten in supposedly gluten-free foods. Therefore, the aim was to select representative barley cultivars to establish a new barley RM. The relative protein composition of the 35 barley cultivars averaged 25% albumins and globulins, 11% d-hordeins, 19% C-hordeins, and 45% B/γ-hordeins. The mean gluten and protein content was 7.2 g/100 g and 11.2 g/100 g, respectively. The prolamin/glutelin ratio (1:1) commonly used in ELISAs to calculate the gluten content was found to be inappropriate for barley (1.6 ± 0.6). Eight cultivars suitable as potential RMs were selected to ensure a typical barley protein composition and improve food safety for CD patients.
Collapse
Affiliation(s)
- Majlinda Xhaferaj
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences, Department of Bioactive and Functional Food Chemistry, Karlsruhe, Germany
| | - Gabriella Muskovics
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest, Hungary
| | - Eszter Schall
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest, Hungary
| | - Zsuzsanna Bugyi
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest, Hungary
| | - Sándor Tömösközi
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest, Hungary
| | - Katharina A Scherf
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences, Department of Bioactive and Functional Food Chemistry, Karlsruhe, Germany.
| |
Collapse
|
5
|
Schirmer T, Ludwig C, Scherf KA. Proteomic Characterization of Wheat Protein Fractions Taken at Different Baking Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12899-12909. [PMID: 37582505 PMCID: PMC10473044 DOI: 10.1021/acs.jafc.3c02100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/22/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
Food processing conditions affect the structure, solubility, and therefore accurate detection of gluten proteins. We investigated the influence of dough, bread, and pretzel making on the composition of different wheat protein fractions obtained by Osborne fractionation. The albumin/globulin, gliadin, and glutenin fractions from flour, dough, crispbread, bread, and pretzel were analyzed using RP-HPLC, SDS-PAGE, and untargeted nanoLC-MS/MS. This approach enabled an in-depth profiling of the fractionated proteomes and related compositional changes to processing conditions (mixing, heat, and alkali treatment). Overall, heat treatment demonstrated the most pronounced effect. Label-free quantitation revealed significant changes in the relative abundances of 82 proteins within the fractions of bread crumb and crust in comparison to flour. Certain gluten proteins showed shifts or reductions in particular fractions, indicating their incorporation into the gluten network through SS and non-SS cross-links. Other gluten proteins were enriched, suggesting their limited involvement in the gluten network formation.
Collapse
Affiliation(s)
- Tanja
Miriam Schirmer
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Christina Ludwig
- Bavarian
Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Katharina Anne Scherf
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- Department
of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20 a, 76131 Karlsruhe, Germany
| |
Collapse
|
6
|
Liu M, Huang J, Ma S, Yu G, Liao A, Pan L, Hou Y. Allergenicity of wheat protein in diet: Mechanisms, modifications and challenges. Food Res Int 2023; 169:112913. [PMID: 37254349 DOI: 10.1016/j.foodres.2023.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Wheat is widely available in people's daily diets. However, some people are currently experiencing IgE-mediated allergic reactions to wheat-based foods, which seriously impact their quality of life. Thus, it is imperative to provide comprehensive knowledge and effective methods to reduce the risk of wheat allergy (WA) in food. In the present review, recent advances in WA symptoms, the major allergens, detection methods, opportunities and challenges in establishing animal models of WA are summarized and discussed. Furthermore, an updated overview of the different modification methods that are currently being applied to wheat-based foods is provided. This study concludes that future approaches to food allergen detection will focus on combining multiple tools to rapidly and accurately quantify individual allergens in complex food matrices. Besides, biological modification has many advantages over physical or chemical modification methods in the development of hypoallergenic wheat products, such as enzymatic hydrolysis and fermentation. It is worth noting that using biotechnology to edit wheat allergen genes to produce allergen-free food may be a promising method in the future which could improve the safety of wheat foods and the health of allergy sufferers.
Collapse
Affiliation(s)
- Ming Liu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jihong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, PR China; School of Food and Pharmacy, Xuchang University, Xuchang 461000, PR China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Guanghai Yu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Aimei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, PR China
| |
Collapse
|
7
|
Chen Y, Wang K, Chen H, Yang H, Zheng T, Huang X, Fan G. Simultaneously genetic selection of wheat yield and grain protein quality in rice-wheat and soybean-wheat cropping systems through critical nitrogen efficiency-related traits. FRONTIERS IN PLANT SCIENCE 2022; 13:899387. [PMID: 36247613 PMCID: PMC9558111 DOI: 10.3389/fpls.2022.899387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Analyzing the contribution of nitrogen (N) uptake and its utilization in grain yield and protein quality-related traits in rice-wheat (RW) and soybean-wheat (SW) cropping systems is essential for simultaneous improvements in the two target traits. A field experiment with nine wheat genotypes was conducted in 2018-19 and 2019-20 cropping years to investigate N uptake and utilization-related traits associated with high wheat yield and good protein quality. Results showed that N uptake efficiency (NUpE) in the RW cropping system and N utilization efficiency (NUtE) in the SW cropping system explained 77.6 and 65.2% of yield variation, respectively, due to the contribution of fertile spikes and grain number per spike to grain yield varied depending on soil water and N availability in the two rotation systems. Lower grain protein content in the RW cropping system in comparison to the SW cropping system was mainly related to lower individual N accumulation at maturity, resulting from higher fertile spikes, rather than N harvest index (NHI). However, NHI in the SW cropping system accounted for greater variation in grain protein content. Both gluten index and post-anthesis N uptake were mainly affected by genotype, and low gluten index caused by high post-anthesis N uptake may be related to the simultaneous increase in kernel weight. N remobilization process associated with gluten quality was driven by increased sink N demand resulting from high grain number per unit area in the RW cropping system; confinement of low sink N demand and source capability resulted in low grain number per spike and water deficit limiting photosynthesis of flag leaf in the SW cropping system. CY-25 obtained high yield and wet gluten content at the expense of gluten index in the two wheat cropping systems, due to low plant height and high post-anthesis N uptake and kernel weight. From these results, we concluded that plant height, kernel weight, and post-anthesis N uptake were the critically agronomic and NUE-related traits for simultaneous selection of grain yield and protein quality. Our research results provided useful guidelines for improving both grain yield and protein quality by identifying desirable N-efficient genotypes in the two rotation systems.
Collapse
Affiliation(s)
- Yufeng Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kun Wang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Haolan Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hongkun Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Ting Zheng
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Huang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Gaoqiong Fan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Dimina L, Rémond D, Huneau JF, Mariotti F. Combining Plant Proteins to Achieve Amino Acid Profiles Adapted to Various Nutritional Objectives—An Exploratory Analysis Using Linear Programming. Front Nutr 2022; 8:809685. [PMID: 35187024 PMCID: PMC8850771 DOI: 10.3389/fnut.2021.809685] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Although plant proteins are often considered to have less nutritional quality because of their suboptimal amino acid (AA) content, the wide variety of their sources, both conventional and emerging, suggests potential opportunities from complementarity between food sources. This study therefore aimed to explore whether, and to what extent, combinations of protein ingredients could reproduce an AA profile set as a nutritional objective, and to identify theoretical solutions and limitations. We collected compositional data on protein ingredients and raw plant foods (n = 151), and then ran several series of linear optimization to identify protein ingredient mixes that maximized the content in indispensable AA and reproduced various objective profiles: a “balanced profile,” based on AA requirements for adults; “animal profiles” corresponding to conventional animal protein compositions, and a “cardioprotective profile,” which has been associated with a lower cardiovascular risk. We assumed a very good digestibility of plant protein isolates. As expected, obtaining a balanced profile was obvious, but we also identified numerous plant protein mixtures that met demanding AA profiles. Only for particularly demanding profiles, such as mimicking a particular animal protein, did solutions require the use of protein fractions from more specific sources such as pea or canola. Optimal plant blends could mimic animal proteins such as egg white, cow milk, chicken, whey or casein with a similarity reaching 94.2, 98.8, 86.4, 92.4, and 98.0%, respectively. The limiting constraints were mainly isoleucine, lysine, and histidine target contents. These different solutions offer potential for the formulation of mixtures adapted to specific populations or the design of plant-based substitutes. Some ingredients are not commercially available but they could be developed.
Collapse
Affiliation(s)
- Laurianne Dimina
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
- Université Clermont Auvergne, INRAE, UMR UNH, Clermont-Ferrand, France
| | - Didier Rémond
- Université Clermont Auvergne, INRAE, UMR UNH, Clermont-Ferrand, France
| | | | - François Mariotti
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
- *Correspondence: François Mariotti
| |
Collapse
|
9
|
Ilchenko Y, Buryukova O, Ilyushechkin V, Erin V. Impact of mineral fertilizers on winter wheat quality using No-Till technology. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225200084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The paper presents the study of the influence of ammophos, potassium magnesia and ammonium nitrate on the content of protein, gluten and grain unit of winter wheat using No-Till technology in the edaphoclimatic conditions of the southern zone of Rostov Region. It was shown that the application of mineral fertilizers to the surface soil layer during winter wheat cultivation using No-Till technology improves the grain quality. The highest grain quality parameters (protein content – 13.4% and gluten content – 25.3%, grain unit – 780.0 g/l) were obtained when ammophos and potassium magnesia were jointly added prior to sowing at a depth of 10 cm with double dressing of ammonium nitrate in the tillering and booting phases. High direct dependence of protein content in winter wheat grain on the accumulation of nitrate nitrogen in soil in the booting phase was revealed in all test layers: 0–10 (r = 0.85), 10–20 (r = 0.72), 0–30 cm (r = 0.76). The gluten content in the grain and its grain unit significantly depended on the mobility of phosphorus in the surface soil layer – 0–10 cm (r = 0.66 and 0.52, respectively). Along with the quality improvement of winter wheat grain, the rational use of mineral fertilizers in the No-Till system increases its yield. There is a direct positive relationship between grain protein content and winter wheat yield (r = 0.93).
Collapse
|
10
|
Bile acid binding capacity, dietary fibre and phenolic contents of modern and old bread wheat varieties and landraces: a comparison over the course of around one century. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Lacorn M, Dubois T, Weiss T, Zimmermann L, Schinabeck TM, Loos-Theisen S, Scherf K. Determination of Gliadin as a Measure of Gluten in Food by R5 sandwich ELISA RIDASCREEN® Gliadin Matrix Extension: Collaborative Study 2012.01. J AOAC Int 2021; 105:442-455. [PMID: 34791280 PMCID: PMC8924645 DOI: 10.1093/jaoacint/qsab148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/15/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022]
Abstract
Background According to Codex Alimentarius, food products containing less than 20 mg/kg gluten can be labeled as “gluten-free.” Since 2002, the R5 antibody method allowed determination of gluten levels and led to a huge improvement of products available to celiac disease (CD) patients. Method The R5-containing test kit RIDASCREEN® Gliadin in combination with the cocktail solution was endorsed as Codex Type 1 Method in 2006 based on a collaborative study with corn-based bread, rice-based dough, wheat starches, rice, and corn flour. In 2012, the method was approved as First Action Official MethodSM2012.01 with an “in foods” claim. For Final Action in 2016, the matrix claim was reduced to rice- and corn-based matrixes. Objective Therefore, R-Biopharm decided to start a collaborative study to demonstrate the wide applicability of Official Method 2012.01 for the quantitative analysis of gliadin in soy, starches, pseudo cereals, legumes, spices, juice, nut nougat crème, cream cheese, pesto, meat, vegetarian meat alternative, cookies, dessert, cake, fish, bread, candies, and potatoes. Materials for incurring were the MoniQA wheat flour and the PWG gliadin preparation. Results Gliadin levels ranged from 3.4 up to 27.4 mg gliadin per kg. The results of the collaborative study with 14 participating laboratories showed recoveries ranging from 80 to 130%. Relative reproducibility standard deviations for contaminated samples were between 9.8 and 27.7%. Conclusions The collaborative study results confirmed that the method is accurate and suitable to measure gliadin in important gluten-free food matrixes. Highlights The title and applicability statement of Official Method 2012.01 were changed as proposed.
Collapse
Affiliation(s)
- Markus Lacorn
- R-Biopharm AG, An der neuen Bergstraße 17, 64297 Darmstadt, Germany
| | - Tina Dubois
- R-Biopharm AG, An der neuen Bergstraße 17, 64297 Darmstadt, Germany
| | - Thomas Weiss
- R-Biopharm AG, An der neuen Bergstraße 17, 64297 Darmstadt, Germany
| | - Lisa Zimmermann
- Hochschule Geisenheim University, Department of Food Safety, Von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Teresa-Maria Schinabeck
- Hochschule Geisenheim University, Department of Food Safety, Von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Simone Loos-Theisen
- Hochschule Geisenheim University, Department of Food Safety, Von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Katharina Scherf
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences, Department of Bioactive and Functional Food Chemistry, Adenauerring 20 a, Building 50.41, 76131 Karlsruhe, Germany
| |
Collapse
|
12
|
Rani M, Siddiqi RA, Sogi DS, Gill BS. Comparative evaluation of amino acid composition and protein profile of gliadin from different extraction protocols. Cereal Chem 2021. [DOI: 10.1002/cche.10491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Monika Rani
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| | | | - Dalbir Singh Sogi
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| | - Balmeet Singh Gill
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| |
Collapse
|
13
|
Garcia VS, Bersanetti PA, Morandim-Giannetti ADA. Peptidases production by fungi obtained from Manihot esculenta Crantz waste and its application in gluten hydrolysis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Takač V, Tóth V, Rakszegi M, Mikić S, Mirosavljević M, Kondić-Špika A. Differences in Processing Quality Traits, Protein Content and Composition between Spelt and Bread Wheat Genotypes Grown under Conventional and Organic Production. Foods 2021; 10:156. [PMID: 33450999 PMCID: PMC7828489 DOI: 10.3390/foods10010156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 01/19/2023] Open
Abstract
The unique rheological properties of bread wheat dough and the breadmaking quality of its flour are the main factors responsible for the global distribution and utilization of wheat. Recently, interest in the production and expansion of spelt wheat has been boosted due to its significance in the production of healthy food, mostly originated from organic production. The aim of this study was to examine and compare quality parameters (gluten content, Zeleny sedimentation volume, farinograph dough properties), protein content and composition (by the Dumas method, Size Exclusion (SE) and Reversed Phase (RP) High Performance Liquid Chromatography (HPLC) analyses) of five bread and five spelt wheat varieties grown under conventional and organic production in Hungary and under conventional production in Serbia. Most of the analyzed traits showed significant differences between varieties, wheat species and growing sites. Total protein content was significantly higher in spelt than in bread wheat and under conventional than under organic production. In comparison to spelt, bread wheat showed better breadmaking quality, characterized by a higher amount of glutenins (in particular high molecular weight glutenin subunits) and unextractable polymeric proteins. The proportion of the gliadins was also found to be different under conventional and organic systems. Spelt Ostro and Oberkulmer-Rotkorn and bread wheat varieties Balkan, Estevan and Pobeda proved suitable for low input and organic systems.
Collapse
Affiliation(s)
- Verica Takač
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (S.M.); (M.M.); (A.K.-Š.)
| | - Viola Tóth
- Centre for Agricultural Research, Agricultural Institute, Brunszvik u. 2, 2462 Martonvásár, Hungary; (V.T.); (M.R.)
| | - Marianna Rakszegi
- Centre for Agricultural Research, Agricultural Institute, Brunszvik u. 2, 2462 Martonvásár, Hungary; (V.T.); (M.R.)
| | - Sanja Mikić
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (S.M.); (M.M.); (A.K.-Š.)
| | - Milan Mirosavljević
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (S.M.); (M.M.); (A.K.-Š.)
| | - Ankica Kondić-Špika
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (S.M.); (M.M.); (A.K.-Š.)
| |
Collapse
|
15
|
Cao W, Baumert JL, Downs ML. Compositional and immunogenic evaluation of fractionated wheat beers using mass spectrometry. Food Chem 2020; 333:127379. [PMID: 32653678 DOI: 10.1016/j.foodchem.2020.127379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/01/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
The safety and regulatory status of fermented products derived from gluten-containing grains for patients with celiac disease remains controversial. Bottom-up mass spectrometry (MS) has complemented immunoassays for the compositional and immunogenic analyses of wheat beers. However, uncharacterized proteolysis during brewing followed by the secondary digestion for MS has made the analysis and data interpretation complicated. In this study, the composition and immunogenic potential of seven commercially available wheat beers were evaluated using bottom-up MS with the aid of fractionation and a multi-step peptide search strategy to identify peptides generated by various types of proteolysis. Gluten-derived peptides accounted for approximately 50% and 20% of the total number of wheat-derived and barley-derived peptides, respectively, in the investigated beers. Although relatively large polypeptides cannot be thoroughly characterized using traditional bottom-up proteomics, up to 50% of peptides identified contained celiac-immunogenic motifs, and consumption of wheat beers would pose risks for celiac patients.
Collapse
Affiliation(s)
- Wanying Cao
- Food Allergy Research and Resource Program, Department of Food Science and Technology, Food Innovation Center, 1901 North 21st Street, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Joseph L Baumert
- Food Allergy Research and Resource Program, Department of Food Science and Technology, Food Innovation Center, 1901 North 21st Street, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Melanie L Downs
- Food Allergy Research and Resource Program, Department of Food Science and Technology, Food Innovation Center, 1901 North 21st Street, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
16
|
Huang X, Ma K, Leinonen S, Sontag-Strohm T. Barley C-Hordein as the Calibrant for Wheat Gluten Quantification. Foods 2020; 9:foods9111637. [PMID: 33182660 PMCID: PMC7697280 DOI: 10.3390/foods9111637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 01/03/2023] Open
Abstract
The lack of certified reference materials has been one major challenge for gluten quantification in gluten-free products. In this study, the feasibility of using barley C-hordein as the calibrant for wheat gluten in R5 sandwich enzyme-linked immunosorbent assay (ELISA) was investigated. The gluten composition and total gluten R5 reactivity ranged largely depending on the genotypes and the growing environment. The conversion factor of gliadin to gluten averaged 1.31 for common wheat, which is smaller than the theoretical factor of 2. Each gluten group had varying reactivity against the R5 antibody, where ω1.2-, γ- and α-gliadins were the main reactive groups from wheat gluten. A mixture of wheat cultivars or one single cultivar as the reference material can be difficult to keep current. Based on the average R5 reactivity of total gluten from the 27 common wheat cultivars, here we proposed 10% C-hordein mixed with an inert protein as the calibrant for wheat gluten quantification. In spiking tests of gluten-free oat flour and biscuits, calibration using 10% C-hordein achieved the same recovery as the gliadin standard with its cultivar-specific conversion factor. For its good solubility and good affinity to the R5 antibody, the application of C-hordein increases the probability of developing a series of reference materials for various food matrices.
Collapse
|
17
|
Recent progress in analytical method development to ensure the safety of gluten-free foods for celiac disease patients. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Pronin D, Börner A, Scherf KA. Old and modern wheat (Triticum aestivum L.) cultivars and their potential to elicit celiac disease. Food Chem 2020; 339:127952. [PMID: 33152854 DOI: 10.1016/j.foodchem.2020.127952] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022]
Abstract
One potential explanation for the increasing prevalence of celiac disease (CD) over the past decades is that breeding may have inadvertently changed the immunoreactive potential of wheat. To test this hypothesis, we quantitated four CD-active peptides, namely the 33-mer and peptides containing the DQ2.5-glia-α1a/DQ2.5-glia-α2 (P1), DQ2.5-glia-α3 (P2) and DQ2.5-glia-γ1 (P3) epitopes, in a set of 60 German hexaploid winter wheat cultivars from 1891 to 2010 and grown in three consecutive years. The contents of CD-active peptides were affected more by the harvest year than by the cultivar. The 33-mer and P1 peptides showed no tendency regarding their absolute contents in the flour, but they tended to increase slightly over time when calculated relative to the α-gliadins. No trends in relative or absolute values were observed for the P2 and P3 peptides derived from α- and γ-gliadins. Therefore, the immunoreactive potential of old and modern wheat cultivars appears to be similar.
Collapse
Affiliation(s)
- Darina Pronin
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466 Seeland, OT Gatersleben, Germany.
| | - Katharina Anne Scherf
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany.
| |
Collapse
|
19
|
Holzhauser T, Johnson P, Hindley JP, O'Connor G, Chan CH, Costa J, Fæste CK, Hirst BJ, Lambertini F, Miani M, Robert MC, Röder M, Ronsmans S, Bugyi Z, Tömösközi S, Flanagan SD. Are current analytical methods suitable to verify VITAL® 2.0/3.0 allergen reference doses for EU allergens in foods? Food Chem Toxicol 2020; 145:111709. [PMID: 32866515 DOI: 10.1016/j.fct.2020.111709] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/25/2023]
Abstract
Food allergy affects up to 6% of Europeans. Allergen identification is important for the risk assessment and management of the inadvertent presence of allergens in foods. The VITAL® initiative for voluntary incidental trace allergen labeling suggests protein reference doses, based on clinical reactivity in food challenge studies, at or below which voluntary labelling is unnecessary. Here, we investigated if current analytical methodology could verify the published VITAL® 2.0 doses, that were available during this analysis, in serving sizes between 5 and 500 g. Available data on published and commercial ELISA, PCR and mass spectrometry methods, especially for the detection of peanuts, soy, hazelnut, wheat, cow's milk and hen's egg were reviewed in detail. Limit of detection, quantitative capability, matrix compatibility, and specificity were assessed. Implications by the recently published VITAL® 3.0 doses were also considered. We conclude that available analytical methods are capable of reasonably robust detection of peanut, soy, hazelnut and wheat allergens for levels at or below the VITAL® 2.0 and also 3.0 doses, with some methods even capable of achieving this in a large 500 g serving size. Cow's milk and hen's egg are more problematic, largely due to matrix/processing incompatibility. An unmet need remains for harmonized reporting units, available reference materials, and method ring-trials to enable validation and the provision of comparable measurement results.
Collapse
Affiliation(s)
- Thomas Holzhauser
- Paul-Ehrlich-Institut, Division of Allergology, D-63225, Langen, Germany.
| | - Philip Johnson
- University of Nebraska-Lincoln, Department of Food Science and Technology, FARRP, Rm 266 Food Innovation Center, 1901 N 21 Street, PO Box 886207, Lincoln, NE, 68588-6207, USA.
| | | | - Gavin O'Connor
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116, Braunschweig, Germany.
| | | | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Christiane K Fæste
- Norwegian Veterinary Institute, Toxicology Research Group, P.O. Box 750 Sentrum, 0106, Oslo, Norway.
| | | | | | - Michela Miani
- International Life Sciences Institute, European Branch, ILSI Europe a.i.s.b.l., Brussels, Belgium.
| | - Marie-Claude Robert
- Nestlé Research, Institute of Food Safety and Analytical Sciences, Lausanne, Switzerland.
| | - Martin Röder
- Ifp Institut für Produktqualität GmbH, Wagner-Régeny-Str. 8, 12489, Berlin, Germany.
| | | | - Zsuzsanna Bugyi
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest, Hungary.
| | - Sándor Tömösközi
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest, Hungary.
| | | |
Collapse
|
20
|
Daly M, Bromilow SN, Nitride C, Shewry PR, Gethings LA, Mills ENC. Mapping Coeliac Toxic Motifs in the Prolamin Seed Storage Proteins of Barley, Rye, and Oats Using a Curated Sequence Database. Front Nutr 2020; 7:87. [PMID: 32766270 PMCID: PMC7379453 DOI: 10.3389/fnut.2020.00087] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Wheat gluten, and related prolamin proteins in rye, barley and oats cause the immune-mediated gluten intolerance syndrome, coeliac disease. Foods labelled as gluten-free which can be safely consumed by coeliac patients, must not contain gluten above a level of 20 mg/Kg. Current immunoassay methods for detection of gluten can give conflicting results and may underestimate levels of gluten in foods. Mass spectrometry methods have great potential as an orthogonal method, but require curated protein sequence databases to support method development. The GluPro database has been updated to include avenin-like sequences from bread wheat (n = 685; GluPro v1.1) and genes from the sequenced wheat genome (n = 699; GluPro v 1.2) and Triticum turgidum ssp durum (n = 210; GluPro v 2.1). Companion databases have been developed for prolamin sequences from barley (n = 64; GluPro v 3.0), rye (n = 41; GluPro v 4.0), and oats (n = 27; GluPro v 5.0) and combined to provide a complete cereal prolamin database, GluPro v 6.1 comprising 1,041 sequences. Analysis of the coeliac toxic motifs in the curated sequences showed that they were absent from the minor avenin-like proteins in bread and durum wheat and barley, unlike the related avenin proteins from oats. A comparison of prolamin proteins from the different cereal species also showed α- and γ-gliadins in bread and durum wheat, and the sulphur poor prolamins in all cereals had the highest density of coeliac toxic motifs. Analysis of ion-mobility mass spectrometry data for bread wheat (cvs Chinese Spring and Hereward) showed an increased number of identifications when using the GluPro v1.0, 1.1 and 1.2 databases compared to the limited number of verified sequences bread wheat sequences in reviewed UniProt. This family of databases will provide a basis for proteomic profiling of gluten proteins from all the gluten containing cereals and support identification of specific peptide markers for use in development of new methods for gluten quantitation based on coeliac toxic motifs found in all relevant cereal species.
Collapse
Affiliation(s)
- Matthew Daly
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Sophie N Bromilow
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Chiara Nitride
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Peter R Shewry
- Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, United Kingdom
| | | | - E N Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
21
|
Schall E, Scherf KA, Bugyi Z, Török K, Koehler P, Schoenlechner R, Tömösközi S. Further Steps Toward the Development of Gluten Reference Materials - Wheat Flours or Protein Isolates? FRONTIERS IN PLANT SCIENCE 2020; 11:906. [PMID: 32733501 PMCID: PMC7359866 DOI: 10.3389/fpls.2020.00906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Celiac disease is a gluten-induced hypersensitivity reaction that requires a lifelong gluten-free diet. Gluten-free foods must not contain more than 20 mg/kg gluten as laid down by Codex Alimentarius. Measuring the presence of gluten with routine immunoanalytical methods in food is a serious challenge as many factors affect accurate determination. Comparability of the results obtained with different methods and method validation are hindered by the lack of a widely accepted reference material (RM). The core questions of RM development from wheat are the number of cultivars to be included and the format of gluten (i.e., flour, gluten, or gliadin isolates) to be applied. Therefore, the aim of our work was to produce an appropriate gluten RM from wheat. For this, five previously selected wheat cultivars and their blend were used to produce flours, gluten and gliadin isolates under laboratory conditions. Protein content, protein composition and responses to different ELISA methods were compared and widely evaluated in our study. The protein contents of the flours were 12.1-18.7%, those of the gluten isolates 93.8-97.4% and those of the gliadin isolates 72.7-101.9%. The gluten and gliadin isolates had similar protein profiles as the source flours. By comparing the different wheat cultivars and their protein isolates, we found that the isolation had a smaller effect on protein composition than genetic variability. The choice of a blend would be more suitable for the production of a RM in case of flours and also isolates. The immunoanalytical results showed that the isolation had an effect on the analytical results, but its extent depended on the ELISA method. The use of flour would be more applicable in this regard, but handling of the material and long-term stability should also be considered in the final decision of gluten RM production.
Collapse
Affiliation(s)
- Eszter Schall
- Research Group of Cereal Science and Food Quality, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Katharina A. Scherf
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Zsuzsanna Bugyi
- Research Group of Cereal Science and Food Quality, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Kitti Török
- Research Group of Cereal Science and Food Quality, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | | | - Regine Schoenlechner
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Sándor Tömösközi
- Research Group of Cereal Science and Food Quality, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
22
|
Schall E, Scherf KA, Bugyi Z, Hajas L, Török K, Koehler P, Poms RE, D'Amico S, Schoenlechner R, Tömösközi S. Characterisation and comparison of selected wheat (Triticum aestivum L.) cultivars and their blends to develop a gluten reference material. Food Chem 2020; 313:126049. [DOI: 10.1016/j.foodchem.2019.126049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
|
23
|
Scherf KA, Catassi C, Chirdo F, Ciclitira PJ, Feighery C, Gianfrani C, Koning F, Lundin KEA, Schuppan D, Smulders MJM, Tranquet O, Troncone R, Koehler P. Recent Progress and Recommendations on Celiac Disease From the Working Group on Prolamin Analysis and Toxicity. Front Nutr 2020; 7:29. [PMID: 32258047 PMCID: PMC7090026 DOI: 10.3389/fnut.2020.00029] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Celiac disease (CD) affects a growing number of individuals worldwide. To elucidate the causes for this increase, future multidisciplinary collaboration is key to understanding the interactions between immunoreactive components in gluten-containing cereals and the human gastrointestinal tract and immune system and to devise strategies for CD prevention and treatment beyond the gluten-free diet. During the last meetings, the Working Group on Prolamin Analysis and Toxicity (Prolamin Working Group, PWG) discussed recent progress in the field together with key stakeholders from celiac disease societies, academia, industry and regulatory bodies. Based on the current state of knowledge, this perspective from the PWG members provides recommendations regarding clinical, analytical and legal aspects of CD. The selected key topics that require future multidisciplinary collaborative efforts in the clinical field are to collect robust data on the increasing prevalence of CD, to evaluate what is special about gluten-specific T cells, to study their kinetics and transcriptomics and to put some attention to the identification of the environmental agents that facilitate the breaking of tolerance to gluten. In the field of gluten analysis, the key topics are the precise assessment of gluten immunoreactive components in wheat, rye and barley to understand how these are affected by genetic and environmental factors, the comparison of different methods for compliance monitoring of gluten-free products and the development of improved reference materials for gluten analysis.
Collapse
Affiliation(s)
- Katharina A. Scherf
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Carlo Catassi
- Department of Pediatrics, Polytechnic University of Marche, Ancona, Italy
| | - Fernando Chirdo
- Instituto de Estudios Inmunologicos y Fisiopatologicos- IIFP (UNLP-CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Paul J. Ciclitira
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | | | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, Italian National Council of Research, Naples, Italy
| | - Frits Koning
- Leiden University Medical Centre, Leiden, Netherlands
| | - Knut E. A. Lundin
- Department of Gastroenterology, Oslo University Hospital Rikshospitalet and Stiftelsen KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Detlef Schuppan
- Institute for Translational Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Riccardo Troncone
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), Department of Medical Translational Sciences, University Federico II, Naples, Italy
| | | |
Collapse
|
24
|
Lexhaller B, Colgrave ML, Scherf KA. Characterization and Relative Quantitation of Wheat, Rye, and Barley Gluten Protein Types by Liquid Chromatography-Tandem Mass Spectrometry. FRONTIERS IN PLANT SCIENCE 2019; 10:1530. [PMID: 31921226 PMCID: PMC6923249 DOI: 10.3389/fpls.2019.01530] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/01/2019] [Indexed: 05/24/2023]
Abstract
The consumption of wheat, rye, and barley may cause adverse reactions to wheat such as celiac disease, non-celiac gluten/wheat sensitivity, or wheat allergy. The storage proteins (gluten) are known as major triggers, but also other functional protein groups such as α-amylase/trypsin-inhibitors or enzymes are possibly harmful for people suffering of adverse reactions to wheat. Gluten is widely used as a collective term for the complex protein mixture of wheat, rye or barley and can be subdivided into the following gluten protein types (GPTs): α-gliadins, γ-gliadins, ω5-gliadins, ω1,2-gliadins, high- and low-molecular-weight glutenin subunits of wheat, ω-secalins, high-molecular-weight secalins, γ-75k-secalins and γ-40k-secalins of rye, and C-hordeins, γ-hordeins, B-hordeins, and D-hordeins of barley. GPTs isolated from the flours are useful as reference materials for clinical studies, diagnostics or in food analyses and to elucidate disease mechanisms. A combined strategy of protein separation according to solubility followed by preparative reversed-phase high-performance liquid chromatography was employed to purify the GPTs according to hydrophobicity. Due to the heterogeneity of gluten proteins and their partly polymeric nature, it is a challenge to obtain highly purified GPTs with only one protein group. Therefore, it is essential to characterize and identify the proteins and their proportions in each GPT. In this study, the complexity of gluten from wheat, rye, and barley was demonstrated by identification of the individual proteins employing an undirected proteomics strategy involving liquid chromatography-tandem mass spectrometry of tryptic and chymotryptic hydrolysates of the GPTs. Different protein groups were obtained and the relative composition of the GPTs was revealed. Multiple reaction monitoring liquid chromatography-tandem mass spectrometry was used for the relative quantitation of the most abundant gluten proteins. These analyses also allowed the identification of known wheat allergens and celiac disease-active peptides. Combined with functional assays, these findings may shed light on the mechanisms of gluten/wheat-related disorders and may be useful to characterize reference materials for analytical or diagnostic assays more precisely.
Collapse
Affiliation(s)
- Barbara Lexhaller
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Michelle L. Colgrave
- CSIRO Agriculture and Food, St Lucia, QLD, Australia
- School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Katharina A. Scherf
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
25
|
Schall E, Bugyi Z, Hajas L, Török K, Tömösközi S. Applicability of ELISA methods for high gluten-containing samples. ACTA ALIMENTARIA 2019. [DOI: 10.1556/066.2019.48.3.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- E. Schall
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Szent Gellért tér 4. Hungary
| | - Zs. Bugyi
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Szent Gellért tér 4. Hungary
| | - L. Hajas
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Szent Gellért tér 4. Hungary
| | - K. Török
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Szent Gellért tér 4. Hungary
| | - S. Tömösközi
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Szent Gellért tér 4. Hungary
| |
Collapse
|
26
|
Brouns F, van Rooy G, Shewry P, Rustgi S, Jonkers D. Adverse Reactions to Wheat or Wheat Components. Compr Rev Food Sci Food Saf 2019; 18:1437-1452. [PMID: 33336916 DOI: 10.1111/1541-4337.12475] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Abstract
Wheat is an important staple food globally, providing a significant contribution to daily energy, fiber, and micronutrient intake. Observational evidence for health impacts of consuming more whole grains, among which wheat is a major contributor, points to significant risk reduction for diabetes, cardiovascular disease, and colon cancer. However, specific wheat components may also elicit adverse physical reactions in susceptible individuals such as celiac disease (CD) and wheat allergy (WA). Recently, broad coverage in the popular and social media has suggested that wheat consumption leads to a wide range of adverse health effects. This has motivated many consumers to avoid or reduce their consumption of foods that contain wheat/gluten, despite the absence of diagnosed CD or WA, raising questions about underlying mechanisms and possible nocebo effects. However, recent studies did show that some individuals may suffer from adverse reactions in absence of CD and WA. This condition is called non-celiac gluten sensitivity (NCGS) or non-celiac wheat sensitivity (NCWS). In addition to gluten, wheat and derived products contain many other components which may trigger symptoms, including inhibitors of α-amylase and trypsin (ATIs), lectins, and rapidly fermentable carbohydrates (FODMAPs). Furthermore, the way in which foods are being processed, such as the use of yeast or sourdough fermentation, fermentation time and baking conditions, may also affect the presence and bioactivity of these components. The present review systematically describes the characteristics of wheat-related intolerances, including their etiology, prevalence, the components responsible, diagnosis, and strategies to reduce adverse reactions.
Collapse
Affiliation(s)
- Fred Brouns
- Dept. of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht Univ., Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Gonny van Rooy
- Div. of Gastroenterology-Hepatology, Dept. of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht Univ. Medical Center, Maastricht, The Netherlands
| | - Peter Shewry
- Rothamsted Research, Harpenden, Hertfordshire, U.K
| | - Sachin Rustgi
- Dept. of Plant and Environmental Sciences, School of Health Research, Clemson Univ., Florence, SC, 29505, U.S.A.,Dept. of Crop & Soil Sciences, Washington State Univ., Pullman, WA, U.S.A
| | - Daisy Jonkers
- Div. of Gastroenterology-Hepatology, Dept. of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht Univ. Medical Center, Maastricht, The Netherlands
| |
Collapse
|
27
|
Panda R, Garber EAE. Detection and Quantitation of Gluten in Fermented-Hydrolyzed Foods by Antibody-Based Methods: Challenges, Progress, and a Potential Path Forward. Front Nutr 2019; 6:97. [PMID: 31316993 PMCID: PMC6611335 DOI: 10.3389/fnut.2019.00097] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Celiac disease (CD) affects ~1 in 141 individuals in the United States, requiring adherence to a strict gluten-free diet. The Codex Standard and the European Commission states that gluten level of gluten-free foods must not exceed 20 ppm. The FDA requires food bearing the labeling claim “gluten-free” to contain <20 ppm gluten. Accurate quantitation of gluten in fermented-hydrolyzed foods by antibody-based methods is a challenge due to the lack of appropriate reference materials and variable proteolysis. The recent uses of proteases (e.g., proline endopeptidases or PEP) to hydrolyze immunopathogenic sequences of gluten proteins further complicates the quantitation of immunopathogenic gluten. The commercially available antibody-based methods routinely used to detect and quantitate gluten are not able to distinguish between different hydrolytic patterns arising from differences in fermentation processes. This is a severe limitation that makes accurate quantitation and, ultimately, a detailed evaluation of any potential health risk associated with consuming the food difficult. Utilizing gluten-specific antibodies, a recently developed multiplex-competitive ELISA along with western blot analysis provides a potential path forward in this direction. These complimentary antibody-based technologies provide insight into the extent of proteolysis resulting from various fermentation processes and have the potential to aid in the selection of appropriate hydrolytic calibration standards, leading to accurate gluten quantitation in fermented-hydrolyzed foods.
Collapse
Affiliation(s)
- Rakhi Panda
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, MD, United States
| | - Eric A E Garber
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
28
|
Meeting the challenge of developing food crops with improved nutritional quality and food safety: leveraging proteomics and related omics techniques. Biotechnol Lett 2019; 41:471-481. [PMID: 30820711 DOI: 10.1007/s10529-019-02655-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
Abstract
Eliminating malnutrition remains an imminent priority in our efforts to achieve food security and providing adequate calories, proteins, and micronutrients to the growing world population. Malnutrition may be attributed to socio-economic factors (poverty and limited accessibility to nutritional food), dietary preferences, inherent nutrient profiles of traditional food crops, and to a combination of all such factors. Modern advancements in "omics" technology have made it possible to reliably predict, diagnose, and suggest ways to remedy the low protein content and bioavailability of key micronutrients in food crops. In this review, we briefly describe how proteomics techniques can potentially be used for improving the nutrient profile of major crops, through high throughput multiplexed assays. Food safety is another important issue where proteomics and related platforms can offer solution for absolute quantitation of food allergens and mycotoxins present in the plant-based food. The purpose of the present review is to discuss the proteomic-based strategies in food crops to meet the challenges of overcoming malnutrition throughout the world.
Collapse
|
29
|
The role of incurred materials in method development and validation to account for food processing effects in food allergen analysis. Anal Bioanal Chem 2019; 411:4465-4480. [PMID: 30758527 DOI: 10.1007/s00216-019-01642-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
The issue of undeclared allergens represents a matter of great concern, being the subject of many alert notifications by the Rapid Alert System for Food and Feed portal of the European Commission, often leading to food recalls. The availability of reliable analytical approaches able to detect and quantify hidden allergens in processed foods is increasingly requested by the food industry, food safety authorities and regulatory bodies to protect sensitive consumers' health. The present review discusses the fundamental role of incurred materials for method development and analytical performance assessment in a metrology perspective on testing for undeclared allergens in processed foodstuffs. Due to the nature of the analytes and their susceptibility to various processing effects, reliability and comparability of results have posed a great challenge. In this context, the use of incurred samples as reference materials permits simulation of the effects of food processing on target analyte structure affecting analyte extractability and detectability. Graphical abstract ᅟ.
Collapse
|
30
|
Pilolli R, Gadaleta A, Mamone G, Nigro D, De Angelis E, Montemurro N, Monaci L. Scouting for Naturally Low-Toxicity Wheat Genotypes by a Multidisciplinary Approach. Sci Rep 2019; 9:1646. [PMID: 30733459 PMCID: PMC6367382 DOI: 10.1038/s41598-018-36845-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/29/2018] [Indexed: 12/23/2022] Open
Abstract
Over the last years, great efforts have been devoted to develop effective gluten detoxification strategies with a consequent detrimental alteration of the technological properties as well. Obtaining low-gluten products without affecting the rheological properties of wheat could still be considered a new challenge to face. In this investigation, we presented a comprehensive characterization of durum wheat genotypes aimed at identifying low gluten ones, which combine the potential lower toxicity/immunogenicity with conserved yield and rheological properties to encompass the perspective usability for bread or pasta making. A preliminary profiling of gluten proteins was accomplished by immunoassay-based quantification and liquid chromatography coupled to UV detection, focusing on the gliadin fraction as main responsible for immunoreactivity in celiac disease patients. In addition, data on grain protein content, grain yield per spike, dry gluten and gluten index were collected in order to provide complementary information about productivity-related traits and quali-quantitative characteristics related to wheat nutritional value and its technological properties. The whole pool of data was statistically evaluated driving to the selection of a preferred list of candidate low-toxicity genotypes that were subjected to in-vitro simulated gastroduodenal digestion and untargeted HR-MS/MS peptide identification. Finally, an in-silico risk assessment of potential toxicity for celiac disease patients was performed according to the most recent guidance provided by EFSA.
Collapse
Affiliation(s)
- Rosa Pilolli
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), via Giovanni Amendola, 122/O - 70126, Bari, Italy.
| | - Agata Gadaleta
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), via Giovanni Amendola, 122/O - 70126, Bari, Italy
- Department of Agricultural & Environmental Sciences, Università degli Studi di Bari Aldo Moro, via G. Amendola, 165/A - 70126, Bari, Italy
| | - Gianfranco Mamone
- Institute of Food Sciences, National Research Council of Italy (ISA-CNR), via Roma, 64 - 83100, Avellino, Italy
| | - Domenica Nigro
- Department of Soil, Plant & Food Sciences, Università degli Studi di Bari Aldo Moro, via G. Amendola 165/, A - 70126, Bari, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), via Giovanni Amendola, 122/O - 70126, Bari, Italy
| | - Nicola Montemurro
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), via Giovanni Amendola, 122/O - 70126, Bari, Italy
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), via Giovanni Amendola, 122/O - 70126, Bari, Italy
| |
Collapse
|
31
|
Sakandar HA, Hussain R, Kubow S, Sadiq FA, Huang W, Imran M. Sourdough bread: A contemporary cereal fermented product. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13883] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hafiz Arbab Sakandar
- Faculty of Biological Sciences, Microbiology Department Quaid‐I‐Azam University Islamabad Pakistan
- Faculty of Agricultural and Environmental Sciences, School of Human Nutrition McGill University Montreal Quebec Canada
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Raza Hussain
- Faculty of Agricultural and Environmental Sciences, School of Human Nutrition McGill University Montreal Quebec Canada
| | - Stan Kubow
- Faculty of Agricultural and Environmental Sciences, School of Human Nutrition McGill University Montreal Quebec Canada
| | | | - Weining Huang
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Muhammad Imran
- Faculty of Biological Sciences, Microbiology Department Quaid‐I‐Azam University Islamabad Pakistan
| |
Collapse
|
32
|
Abstract
Gluten is among the 14 major food allergens officially recognized by Regulation (EU) No. 1169/2011. The risk to coeliac patients from gluten presence in the food products they consume is likely due to the unintentional contamination of naturally gluten-free (GF) and GF-labelled products, or to hidden sources of gluten in processed GF products. The aim of this paper is to provide a snapshot of gluten risk analysis, with emphasis on immunological methods currently used in gluten detection. The study highlights that immunoassays have some advantages over other analytical methods in gluten determination and are suitable for routine tests. However, some factors (e.g., complexity of the food matrix, type of the applied antibody, gluten extraction procedures and lack of reference material) affect the reliability of obtained results. Hence, efforts are required at an analytical level to overcome the drawbacks of the immunological methods currently available. Harmonization is necessary, so as to assist both consumers in making safe food choices, and the food industry in gluten risk assessment, management and communication.
Collapse
|
33
|
Preparation of a Defined Gluten Hydrolysate for Diagnosis and Clinical Investigations of Wheat Hypersensitivities. Nutrients 2018; 10:nu10101411. [PMID: 30279386 PMCID: PMC6213373 DOI: 10.3390/nu10101411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Gluten is the trigger for celiac disease (CD), non-celiac gluten/wheat sensitivity (NCGS), and wheat allergy. An oral food challenge is often needed for diagnosis, but there are no standardized gluten challenge materials with known composition available. To fill this gap, two materials, commercially available gluten and a food-grade gluten hydrolysate (pepgluten), were extensively characterized. Pepgluten was prepared from gluten by incubation with a pepsin dietary supplement and acetic acid at 37 °C for 120 min. The components of pepgluten were crude protein (707 mg/g), starch (104 mg/g), water (59 mg/g), fat (47 mg/g), dietary fiber (41 mg/g) and ash (11 mg/g). The protein/peptide fraction of pepgluten (1 g) contained equivalents derived from 369 mg gliadins and 196 mg glutenins, resulting in 565 mg total gluten equivalents, 25 mg albumins/globulins, 22 mg α-amylase/trypsin inhibitors and 48 mg pepsin capsule proteins. The slightly acidic, dough-like smell and bitter taste of pepgluten could be completely camouflaged in multivitamin juice with bitter lemon, grapefruit juice, or vegetable and fruit smoothies. Thus, pepgluten met the criteria for placebo-controlled challenges (active and placebo materials are identical regarding appearance, taste, smell, and texture) and is appropriate as a standard preparation for the oral food challenge and clinical investigations to study wheat hypersensitivities.
Collapse
|
34
|
Wheat cultivar and species influence variability of gluten ELISA analyses based on polyclonal and monoclonal antibodies R5 and G12. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
35
|
The Overlapping Area of Non-Celiac Gluten Sensitivity (NCGS) and Wheat-Sensitive Irritable Bowel Syndrome (IBS): An Update. Nutrients 2017; 9:nu9111268. [PMID: 29160841 PMCID: PMC5707740 DOI: 10.3390/nu9111268] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023] Open
Abstract
Gluten-related disorders have recently been reclassified with an emerging scientific literature supporting the concept of non-celiac gluten sensitivity (NCGS). New research has specifically addressed prevalence, immune mechanisms, the recognition of non-immunoglobulin E (non-IgE) wheat allergy and overlap of NCGS with irritable bowel syndrome (IBS)-type symptoms. This review article will provide clinicians with an update that directly impacts on the management of a subgroup of their IBS patients whose symptoms are triggered by wheat ingestion.
Collapse
|