1
|
Yang G, Zhu Y, Shi J, Peng Q, Lin Z, Lv H. Effects of anaerobic treatment on the non-volatile components and angiotensin-converting enzyme (ACE) inhibitory activity of purple-colored leaf tea. Food Chem X 2024; 23:101649. [PMID: 39139484 PMCID: PMC11321371 DOI: 10.1016/j.fochx.2024.101649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
This study investigated the effect of anaerobic treatment on the non-volatile components and angiotensin-converting enzyme (ACE) inhibitory activity in purple-colored leaf tea. Results showed that after 8 h of anaerobic treatment, the γ-aminobutyric acid (GABA) content significantly increased from 0.02 mg/g to 1.72 mg/g (p < 0.05), while lactic acid content gradually rose from non-detectable levels to 3.56 mg/g. Notably, certain flavonols like quercetin and myricetin exhibited significant increments, whereas the total anthocyanins (1.01 mg/g) and epigallocatechin-3-(3''-O-methyl) gallate (13.47 mg/g) contents remained almost unchanged. Furthermore, the ACE inhibition rate of purple-colored leaf tea increased significantly from 42.16% to 49.20% (p < 0.05) at a concentration of 2 mg/mL. Moreover, galloylated catechins showed stronger ACE inhibitory activity than non-galloylated catechins in both in vitro ACE inhibitory activity and molecular docking analysis. These findings might contribute to the development of special purple-colored leaf tea products with potential therapy for hypertension.
Collapse
Affiliation(s)
- Gaozhong Yang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yin Zhu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiang Shi
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qunhua Peng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi Lin
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haipeng Lv
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
2
|
Tobajas Y, Alemany-Fornés M, Samarra I, Romero-Giménez J, Cuñé-Castellana J, Tintoré M, del Pino A, Canela N, del Bas JM, Ortega-Olivé N, de Lecea C, Escoté X. Exploring the Relationship between Diamine Oxidase and Psychotropic Medications in Fibromyalgia Treatment, Finding No Reduction in Diamine Oxidase Levels and Activity except with Citalopram. J Clin Med 2024; 13:792. [PMID: 38337486 PMCID: PMC10856182 DOI: 10.3390/jcm13030792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Background: Histamine intolerance manifests when there is an imbalance between the production of histamine and the body's capacity to metabolise it. Within the gastrointestinal tract, diamine oxidase (DAO) plays a pivotal role in breaking down ingested histamine. Insufficient levels of DAO have been linked to various diseases affecting the respiratory, cardiovascular, nervous, muscular, and digestive systems; some of these symptoms are evidenced in fibromyalgia syndrome. This underscores the crucial role of DAO in maintaining the histamine balance and highlights its association with diverse physiological systems and health conditions. The management of fibromyalgia commonly involves the use of psychotropic medications; however, their potential interactions with DAO remain not fully elucidated. Methods: This study delved into the influence of various psychotropic medications on DAO activity through in vitro experiments. Additionally, we explored their impact on the human intestinal cell line Caco-2, examining alterations in DAO expression at both the mRNA and protein levels along with DAO activity. Results: Notably, the examined drugs-sertraline, pregabalin, paroxetine, alprazolam, and lorazepam-did not exhibit inhibitory effects on DAO activity or lead to reductions in DAO levels. In contrast, citalopram demonstrated a decrease in DAO activity in in vitro assays without influencing DAO levels and activity in human enterocytes. Conclusions: These findings imply that a collaborative approach involving psychotropic medications and DAO enzyme supplementation for individuals with fibromyalgia and a DAO deficiency could offer potential benefits for healthcare professionals in their routine clinical practice.
Collapse
Affiliation(s)
- Yaiza Tobajas
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health, 43204 Reus, Spain; (Y.T.); (J.R.-G.); (N.O.-O.)
| | - Marc Alemany-Fornés
- DR Healthcare-AB Biotek HNH, 43204 Reus, Spain; (M.A.-F.); (J.C.-C.); (M.T.); (C.d.L.)
| | - Iris Samarra
- Centre for Omic Sciences (COS), Joint Unit URV-Eurecat, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain; (I.S.); (A.d.P.); (N.C.)
| | - Jordi Romero-Giménez
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health, 43204 Reus, Spain; (Y.T.); (J.R.-G.); (N.O.-O.)
| | - Jordi Cuñé-Castellana
- DR Healthcare-AB Biotek HNH, 43204 Reus, Spain; (M.A.-F.); (J.C.-C.); (M.T.); (C.d.L.)
| | - Maria Tintoré
- DR Healthcare-AB Biotek HNH, 43204 Reus, Spain; (M.A.-F.); (J.C.-C.); (M.T.); (C.d.L.)
| | - Antoni del Pino
- Centre for Omic Sciences (COS), Joint Unit URV-Eurecat, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain; (I.S.); (A.d.P.); (N.C.)
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit URV-Eurecat, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain; (I.S.); (A.d.P.); (N.C.)
| | - Josep M. del Bas
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain;
| | - Nàdia Ortega-Olivé
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health, 43204 Reus, Spain; (Y.T.); (J.R.-G.); (N.O.-O.)
| | - Carlos de Lecea
- DR Healthcare-AB Biotek HNH, 43204 Reus, Spain; (M.A.-F.); (J.C.-C.); (M.T.); (C.d.L.)
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health, 43204 Reus, Spain; (Y.T.); (J.R.-G.); (N.O.-O.)
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Spain
| |
Collapse
|
3
|
Tobajas Y, Alemany-Fornés M, Samarra I, Romero-Giménez J, Tintoré M, del Pino A, Canela N, del Bas JM, Ortega-Olivé N, de Lecea C, Escoté X. Diamine Oxidase Interactions with Anti-Inflammatory and Anti-Migraine Medicines in the Treatment of Migraine. J Clin Med 2023; 12:7502. [PMID: 38068554 PMCID: PMC10707353 DOI: 10.3390/jcm12237502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 07/03/2024] Open
Abstract
Histamine intolerance arises when there is a disparity between the production of histamine and the body's ability to break it down. In the gastrointestinal tract, the primary enzyme responsible for metabolizing ingested histamine is diamine oxidase (DAO), and a shortage of this enzyme has been associated with some diseases related to the respiratory, cardiovascular, nervous, muscular, and digestive systems, in addition to migraines. The treatment of migraines typically revolves around the utilization of both anti-migraine and anti-inflammatory drugs, but their interaction with DAO is not thoroughly understood. In this study, we examined the impact of nonsteroidal anti-inflammatory drugs (NSAIDs) and anti-migraine medications on DAO activity through in vitro experiments. We also investigated their effects on the human intestinal cell line Caco-2, assessing changes in DAO expression (both at the mRNA and protein levels) as well as DAO activity. The tested drugs, including ibuprofen, acetylsalicylic acid, paracetamol, a combination of acetylsalicylic acid with paracetamol and caffeine, zolmitriptan, and sumatriptan, did not inhibit DAO activity or reduce their levels. However, naproxen reduced DAO protein levels in human enterocyte cultures while not affecting DAO activity. These results suggest that combining anti-inflammatory and anti-migraine drugs with DAO enzyme supplementation for migraine patients with DAO deficiency could be beneficial for healthcare professionals in their daily practice.
Collapse
Affiliation(s)
- Yaiza Tobajas
- EURECAT, Centre Tecnològic de Catalunya, Nutrition and Health, 43204 Reus, Spain; (Y.T.); (J.R.-G.); (N.O.-O.)
| | - Marc Alemany-Fornés
- DR Healthcare-AB Biotek HNH, 08017 Barcelona, Spain; (M.A.-F.); (M.T.); (C.d.L.)
| | - Iris Samarra
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain; (I.S.); (A.d.P.); (N.C.)
| | - Jordi Romero-Giménez
- EURECAT, Centre Tecnològic de Catalunya, Nutrition and Health, 43204 Reus, Spain; (Y.T.); (J.R.-G.); (N.O.-O.)
| | - Maria Tintoré
- DR Healthcare-AB Biotek HNH, 08017 Barcelona, Spain; (M.A.-F.); (M.T.); (C.d.L.)
| | - Antoni del Pino
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain; (I.S.); (A.d.P.); (N.C.)
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain; (I.S.); (A.d.P.); (N.C.)
| | - Josep M. del Bas
- EURECAT, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain;
| | - Nàdia Ortega-Olivé
- EURECAT, Centre Tecnològic de Catalunya, Nutrition and Health, 43204 Reus, Spain; (Y.T.); (J.R.-G.); (N.O.-O.)
| | - Carlos de Lecea
- DR Healthcare-AB Biotek HNH, 08017 Barcelona, Spain; (M.A.-F.); (M.T.); (C.d.L.)
| | - Xavier Escoté
- EURECAT, Centre Tecnològic de Catalunya, Nutrition and Health, 43204 Reus, Spain; (Y.T.); (J.R.-G.); (N.O.-O.)
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Spain
| |
Collapse
|
4
|
Tobajas Y, Alemany-Fornés M, Samarra I, Romero-Giménez J, Tintoré M, Del Pino A, Canela N, Del Bas JM, Ortega-Olivé N, de Lecea C, Escoté X. Interaction of Diamine Oxidase with Psychostimulant Drugs for ADHD Management. J Clin Med 2023; 12:4666. [PMID: 37510782 PMCID: PMC10380856 DOI: 10.3390/jcm12144666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Histamine intolerance occurs when there is an imbalance between histamine production and the capacity for histamine degradation. Diamine oxidase (DAO) is the main enzyme for the catabolism of ingested histamine degradation in the gastrointestinal tract and its deficiency has been linked to allergy-like symptoms. Psychostimulant drugs are commonly used to treat Attention Deficit Hyperactivity Disorder (ADHD), but their interaction with DAO is not well characterized. In this work, we evaluated the effects of psychostimulant drugs (methylphenidate and lisdexamfetamine) on in vitro DAO activity and in the human cell line of enterocytes (Caco-2), evaluating DAO expression (mRNA and protein) and DAO activity. Methylphenidate and lisdexamfetamine did not repress the in vitro DAO activity. In addition, in Caco-2 cells, lisdexamfetamine promoted a strong upregulation of DAO mRNA levels, whereas methylphenidate tended to induce DAO activity. To sum up, methylphenidate and lisdexamfetamine treatments do not reduce DAO activity. These findings could be useful for physicians prescribing these two drugs to ADHD patients affected by DAO deficiency.
Collapse
Affiliation(s)
- Yaiza Tobajas
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health, 43204 Reus, Spain
| | | | - Iris Samarra
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain
| | - Jordi Romero-Giménez
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health, 43204 Reus, Spain
| | | | - Antoni Del Pino
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| | - Nàdia Ortega-Olivé
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health, 43204 Reus, Spain
| | | | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health, 43204 Reus, Spain
| |
Collapse
|
5
|
Hou D, Tang J, Feng Q, Niu Z, Shen Q, Wang L, Zhou S. Gamma-aminobutyric acid (GABA): a comprehensive review of dietary sources, enrichment technologies, processing effects, health benefits, and its applications. Crit Rev Food Sci Nutr 2023; 64:8852-8874. [PMID: 37096548 DOI: 10.1080/10408398.2023.2204373] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Gamma-aminobutyric acid (GABA) is a naturally occurring potential bioactive compound present in plants, microorganisms, animals, and humans. Especially, as a main inhibitory neurotransmitter in the central nervous system, GABA possesses a broad spectrum of promising bioactivities. Thus, functional foods enriched with GABA have been widely sought after by consumers. However, the GABA levels in natural foods are usually low, which cannot meet people's demand for health effects. With the increasing public awareness on the food securities and naturally occurring processes, using enrichment technologies to elevate the GABA contents in foods instead of exogenous addition can enhance the acceptability of health-conscious consumers. Herein, this review provides a comprehensive insight on the dietary sources, enrichment technologies, processing effects of GABA, and its applications in food industry. Furthermore, the various health benefits of GABA-enriched foods, mainly including neuroprotection, anti-insomnia, anti-depression, anti-hypertensive, anti-diabetes, and anti-inflammatory are also summarized. The main challenges for future research on GABA are related to exploring high GABA producing strains, enhancing the stability of GABA during storage, and developing emerging enrichment technologies without affecting food quality and other active ingredients. A better understanding of GABA may introduce new windows for its application in developing functional foods.
Collapse
Affiliation(s)
- Dianzhi Hou
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Jian Tang
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Qiqian Feng
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Zhitao Niu
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, Beijing, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Sumei Zhou
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
6
|
Yang G, Meng Q, Shi J, Zhou M, Zhu Y, You Q, Xu P, Wu W, Lin Z, Lv H. Special tea products featuring functional components: Health benefits and processing strategies. Compr Rev Food Sci Food Saf 2023; 22:1686-1721. [PMID: 36856036 DOI: 10.1111/1541-4337.13127] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/08/2022] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
The functional components in tea confer various potential health benefits to humans. To date, several special tea products featuring functional components (STPFCs) have been successfully developed, such as O-methylated catechin-rich tea, γ-aminobutyric acid-rich tea, low-caffeine tea, and selenium-rich tea products. STPFCs have some unique and enhanced health benefits when compared with conventional tea products, which can meet the specific needs and preferences of different groups and have huge market potential. The processing strategies to improve the health benefits of tea products by regulating the functional component content have been an active area of research in food science. The fresh leaves of some specific tea varieties rich in functional components are used as raw materials, and special processing technologies are employed to prepare STPFCs. Huge progress has been achieved in the research and development of these STPFCs. However, the current status of these STPFCs has not yet been systematically reviewed. Here, studies on STPFCs have been comprehensively reviewed with a focus on their potential health benefits and processing strategies. Additionally, other chemical components with the potential to be developed into special teas and the application of tea functional components in the food industry have been discussed. Finally, suggestions on the promises and challenges for the future study of these STPFCs have been provided. This paper might shed light on the current status of the research and development of these STPFCs. Future studies on STPFCs should focus on screening specific tea varieties, identifying new functional components, evaluating health-promoting effects, improving flavor quality, and elucidating the interactions between functional components.
Collapse
Affiliation(s)
- Gaozhong Yang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Meng
- College of Food Science, Southwest University, Chongqing, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Mengxue Zhou
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiushuang You
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Wenliang Wu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
7
|
Wang L, Li X, Gao F, Liu Y, Lang S, Wang C, Zhang D. Effect of ultrasound combined with exogenous GABA treatment on polyphenolic metabolites and antioxidant activity of mung bean during germination. ULTRASONICS SONOCHEMISTRY 2023; 94:106311. [PMID: 36738696 PMCID: PMC9926298 DOI: 10.1016/j.ultsonch.2023.106311] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/08/2023] [Accepted: 01/21/2023] [Indexed: 05/27/2023]
Abstract
Mung bean seeds were treated by a combination of ultrasound and γ-aminobutyric acid (GABA). Effect of these treatments on the free polyphenols content, antioxidant activity, and digestibility of mung bean sprouts was evaluated. Additionally, phenolic compounds were analyzed and identified using a metabolomics approach. The combined ultrasound and GABA treatments significantly enhanced the free polyphenols and flavonoids content (P < 0.05) of mung bean sprouts depending on sprouting duration. Besides, a positive correlation (P < 0.05) was found between the polyphenols content and in vitro antioxidant activity of mung bean sprouts. Moreover, a total number of 608 metabolites were detected, and 55 polyphenol compounds were identified, including flavonoids, isoflavones, phenols, and coumarins. Also, the KEGG metabolic pathway analysis revealed 10 metabolic pathways of phenols, including flavonoid, isoflavone, and phenylpropanoid biosynthesis. Powder of 48 h sprouted mung bean released polyphenols during simulated gastric digestion and possessed antioxidant activity.
Collapse
Affiliation(s)
- Lidong Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Daqing Center of Inspection and Testing for Agricultural Products and Processed Products Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Xiaoqiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Fei Gao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Ying Liu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Shuangjing Lang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Dongjie Zhang
- Daqing Center of Inspection and Testing for Agricultural Products and Processed Products Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
8
|
Quantitative 1H NMR with global spectral deconvolution approach for the determination of gamma-aminobutyric acid in Chinese yam (Dioscorea polystachya Turczaninow). ANAL SCI 2023; 39:221-227. [PMID: 36427159 DOI: 10.1007/s44211-022-00221-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
We developed a quantitative proton nuclear magnetic resonance (qNMR) with global spectral deconvolution (GSD) method to determine the gamma-aminobutyric acid content in Chinese yam with the proton signal at δH 2.30. Trimethylsilyl-2,2,3,3-tetradeuteropropionic acid sodium salt was set as the internal standard. The method was validated and showed admissible stability, repeatability, and precision. Compared to the traditional high-performance liquid chromatography method, this method did not involve tedious pre-treatment and expensive standard. Compared to ordinary qNMR, GSD algorithm could effectively remove the effect of noise, baseline distortions and signal overlapping. Overall, qNMR with GSD method is a rapid, simple and reliable method to quantitatively determine functional metabolites even overlapped with other compounds in herbs or foods.
Collapse
|
9
|
Huang D, Li M, Wang H, Fu M, Hu S, Wan X, Wang Z, Chen Q. Combining gas chromatography-ion mobility spectrometry and olfactory analysis to reveal the effect of filled-N2 anaerobic treatment duration on variation in the volatile profiles of gabaron green tea. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
10
|
Zhou S, Zhang J, Ma S, Ou C, Feng X, Pan Y, Gong S, Fan F, Chen P, Chu Q. Recent advances on white tea: Manufacturing, compositions, aging characteristics and bioactivities. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
11
|
Chen JY, Shyu YT, Wu SJ. Enhancement of γ-aminobutyric acid content in shells of passion fruit (Passiflora edulis) under anoxic vacuum conditions. J Food Sci 2023; 88:72-82. [PMID: 36524610 DOI: 10.1111/1750-3841.16401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022]
Abstract
Passiflora edulis, commonly known as passion fruit, is a popular all-weather fruit eaten fresh or processed. Its shells, which currently are mostly discarded as waste and hurt the environment, account for more than half of the passion fruit. The shells contain gamma-aminobutyric acid (GABA) which is the main inhibitory neurotransmitter and has many proven medical values such as antidepressant, anti-anxiety, etc. Many studies have shown that GABA production in plants can be significantly increased by reverse stress. Taking Tainong 1 as a typical passion fruit cultivar, this study explored the optimal anoxic vacuum treatment for increasing the GABA content of passion fruit shells. The content increased to 2139.25 ± 26.69 mg/100 g on day 4 of chill storage after vacuum packing (63.68% higher than the control). The activities of glutamate decarboxylase (GAD) and diamine oxidase (DAO) were significantly higher in the vacuum-treated group than in the control group after 4 days of vacuum-chill storage. On day 5 of vacuum-chill storage, the activities of all measured enzymes decreased except for the increase of GABA transaminase (GABA-T), which was accompanied by a decrease in GABA content. Vacuum treatment and subsequent chill storage increased the content of GABA, thereby increasing functional value of passion fruit shells.
Collapse
Affiliation(s)
- Juo-Yu Chen
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Yuan-Tay Shyu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan.,Food Safety Center, National Taiwan University, Taipei, Taiwan
| | - Sz-Jie Wu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan.,Food Safety Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Heli Z, Hongyu C, Dapeng B, Yee Shin T, Yejun Z, Xi Z, Yingying W. Recent advances of γ-aminobutyric acid: Physiological and immunity function, enrichment, and metabolic pathway. Front Nutr 2022; 9:1076223. [PMID: 36618705 PMCID: PMC9813243 DOI: 10.3389/fnut.2022.1076223] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
γ-aminobutyric acid (GABA) is a non-protein amino acid which naturally and widely occurs in animals, plants, and microorganisms. As the chief inhibitory neurotransmitter in the central nervous system of mammals, it has become a popular dietary supplement and has promising application in food industry. The current article reviews the most recent literature regarding the physiological functions, preparation methods, enrichment methods, metabolic pathways, and applications of GABA. This review sheds light on developing GABA-enriched plant varieties and food products, and provides insights for efficient production of GABA through synthetic biology approaches.
Collapse
Affiliation(s)
- Zhou Heli
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Hongyu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Bao Dapeng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China,National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Tan Yee Shin
- Faculty of Science and Mushroom Research Centre, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Zhong Yejun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Zhang Xi
- BannerBio Nutraceuticals Inc., Shenzhen, China
| | - Wu Yingying
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China,*Correspondence: Wu Yingying,
| |
Collapse
|
13
|
Mei X, Hu L, Song Y, Zhou C, Mu R, Xie X, Li J, Xiang L, Weng Q, Yang Z. Heterologous Expression and Characterization of Tea ( Camellia sinensis) Polyamine Oxidase Homologs and Their Involvement in Stresses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11880-11891. [PMID: 36106904 DOI: 10.1021/acs.jafc.2c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polyamine oxidase (PAO) is a key enzyme maintaining polyamine homeostasis, which affects plant physiological activities. Until now, the gene members and function of PAOs in tea (Camellia sinenesis) have not been fully identified. Here, through the expression in Escherichia coli and Nicotiana benthamiana, we identified six genes annotated as CsPAO in tea genome and transcriptome and determined their enzyme reaction modes and gene expression profiles in tea cultivar 'Yinghong 9'. We found that CsPAO1,2,3 could catalyze spermine, thermospermine, and norspermidine, and CsPAO2,3 could catalyze spermidine in the back-conversion mode, which indicated that the precursor of γ-aminobutyric acid might originate from the oxidation of putrescin but not spermidine. We further investigated the changes of CsPAO activity with temperature and pH and their stability. Kinetic parameters suggested that CsPAO2 was the major PAO modifying polyamine composition in tea, and it could be inactivated by β-hydroxyethylhydrazine and aminoguanidine. Putrescine content and CsPAO2 expression were high in tea flowers. CsPAO2 responded to wound, drought, and salt stress; CsPAO1 might be the main member responding to cold stress; anoxia induced CsPAO3. We conclude that in terms of phylogenetic tree, enzyme characteristics, and expression profile, CsPAO2 might be the dominant CsPAO in the polyamine degradation pathway.
Collapse
Affiliation(s)
- Xin Mei
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Liuhong Hu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Yuyan Song
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Caibi Zhou
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Ren Mu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Xintai Xie
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Jing Li
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Lan Xiang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Qingbei Weng
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Ziyin Yang
- South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
14
|
Sun Y, Mehmood A, Battino M, Xiao J, Chen X. Enrichment of Gamma-aminobutyric acid in foods: From conventional methods to innovative technologies. Food Res Int 2022; 162:111801. [DOI: 10.1016/j.foodres.2022.111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022]
|
15
|
Zhou B, Ma B, Xu C, Wang J, Wang Z, Huang Y, Ma C. Impact of enzymatic fermentation on taste, chemical compositions and in vitro antioxidant activities in Chinese teas using E-tongue, HPLC and amino acid analyzer. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Zhou B, Wang Z, Yin P, Ma B, Ma C, Xu C, Wang J, Wang Z, Yin D, Xia T. Impact of prolonged withering on phenolic compounds and antioxidant capability in white tea using LC-MS-based metabolomics and HPLC analysis: Comparison with green tea. Food Chem 2022; 368:130855. [PMID: 34496334 DOI: 10.1016/j.foodchem.2021.130855] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/19/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022]
Abstract
Contents of 20 bioactive compounds in 12 teas produced in Xinyang Region were determined by high performance liquid chromatography. Ultra-high performance liquid chromatography-quadrupole time of flight-mass spectrometry was developed for untargeted metabolomics analysis. Antioxidant activities were measured by 4 various assays. Those teas could be completely divided into green and white tea through principal component analysis, hierarchical cluster analysis and orthonormal partial least squares-discriminant analysis (R2Y = 0.996 and Q2 = 0.982, respectively). The prolonged withering generated 472 differentiated metabolites between white and green tea, prompted significant decreases (variable importance in the projection > 1.0, p-value < 0.05 and fold change > 1.50) of most catechins and 8 phenolic acids to form 4 theaflavins, and benefited for the accumulation of 17 flavonoids and flavonoid glycosides, 8 flavanone and their derivatives, 20 free amino acids, 12 sugars and 1 purine alkaloid. Additionally, kaempferol and taxifolin contributed to 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability of white tea.
Collapse
Affiliation(s)
- Binxing Zhou
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Zihao Wang
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Tea College, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan, China
| | - Peng Yin
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Tea College, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan, China; Key Laboratory of Tea Science of Education of Ministry, College of Horticulture, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Bingsong Ma
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Cunqiang Ma
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Chengcheng Xu
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiacai Wang
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Ziyu Wang
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dingfang Yin
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
17
|
Li M, Lu J, Tao M, Li M, Yang H, Xia EH, Chen Q, Wan X. Genome-Wide Identification of Seven Polyamine Oxidase Genes in Camellia sinensis (L.) and Their Expression Patterns Under Various Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2020; 11:544933. [PMID: 33013966 PMCID: PMC7500180 DOI: 10.3389/fpls.2020.544933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/13/2020] [Indexed: 05/26/2023]
Abstract
Polyamines (PAs) in plant play a critical role in growth and development and in response to environmental stress. Polyamine oxidase (PAO) is a flavin adenine dinucleotide dependent enzyme that plays a major role in PA catabolism. For the first time, PAO genes in tea plant were screened for the whole genome-wide and seven CsPAO genes were identified, which were named CsPAO1-7. Phylogenetic tree analysis revealed seven CsPAO protein sequences classed into three groups, including clade I, III, and IV. Compared with other plants, the tea plant lacked clade II members. Genetic structure and tissue specific expression analysis showed that there were significant differences among members of the CsPAO gene family. Among members of the CsPAOs family, CsPAO4 and CsPAO5 contain more introns and are highly expressed in various organizations. CsPAO1, CsPAO4, and CsPAO5 genes were cloned and expressed heterologously to verify theirs function. Heat map showed high response of CsPAO5 to drought stress, while CsPAO1 and CsPAO2 were sensitive to changes in nitrogen nutrition. Furthermore, exogenous abscisic acid (ABA) treatment indicated that the expression of most CsPAO genes in roots and leaves was significantly induced. In the root, Spm content increased significantly, while Put and Spd content decreased, suggesting that ABA has great influence on the biosynthesis of PAs. Anaerobic treatment of picked tea leaves showed that the decomposition of PAs was promoted to a certain extent. The above data help to clarify the role of CsPAO in response abiotic and nitrogen nutritional stresses in tea plants, and provide a reference perspective for the potential influence of PAs on the tea processing quality.
Collapse
Affiliation(s)
- Mengshuang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jing Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mingmin Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mengru Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Hua Yang
- College of Science, Anhui Agricultural University, Hefei, China
| | - En-hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
18
|
Cui J, Yu C, Zhong DB, Zhao Y, Yu X. Melatonin and calcium act synergistically to enhance the coproduction of astaxanthin and lipids in Haematococcus pluvialis under nitrogen deficiency and high light conditions. BIORESOURCE TECHNOLOGY 2020; 305:123069. [PMID: 32114308 DOI: 10.1016/j.biortech.2020.123069] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 05/20/2023]
Abstract
This study focused on the influence of integrating melatonin (MT) and calcium (Ca2+) on the simultaneous accumulation of astaxanthin and lipids in Haematococcus pluvialis under abiotic stress conditions. Compared with the control condition, MT induction enhanced astaxanthin and lipid contents by 65.89% and 27.38%, respectively. The highest contents of astaxanthin and lipids under combined exposure to MT and Ca2+ were 3.8% and 49.53%, respectively, which were 1.13- and 1.21-fold higher than those of cells treated with MT alone. The application of MT and Ca2+ also promoted the expression of carotenogenic and lipogenic genes and increased the levels of Ca2+ and γ-aminobutyric acid (GABA) but decreased reactive oxygen species (ROS) levels. Further evidence indicated that the increased cellular Ca2+ could promote astaxanthin biosynthesis under MT induction by regulating carotenogenic gene levels and GABA and ROS signalling. The integrated strategy efficiently improved the coproduction of astaxanthin and lipids in H. pluvialis.
Collapse
Affiliation(s)
- Jing Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Chunli Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Du-Bo Zhong
- Yunnan Yunce Quality Testing Co., Ltd, Kunming 650217, China
| | - Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
19
|
Wu Q, Guo R, Zhang W, Li D, Rao B, Ma S, Zhao F, Yao K, Zhuang Y. Effects of aminoguanidine on γ‐aminobutyric acid accumulation pathways in fresh tea leaves under hypoxic conditions. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qinyan Wu
- Zhenjiang Institute of Agricultural Sciences in Hill Area of Jiangsu Province Jurong Jiangsu 212400 China
| | - Rui Guo
- Zhenjiang Institute of Agricultural Sciences in Hill Area of Jiangsu Province Jurong Jiangsu 212400 China
| | - Wenwen Zhang
- Agricultural Committee of Zhenjiang City Jurong Jiangsu 212400 China
| | - Dongdong Li
- Jiangsu Vocational College of Agriculture and Forestry Jurong Jiangsu 212400 China
| | - Bing Rao
- Zhenjiang Institute of Agricultural Sciences in Hill Area of Jiangsu Province Jurong Jiangsu 212400 China
| | - Shengzhou Ma
- Zhenjiang Institute of Agricultural Sciences in Hill Area of Jiangsu Province Jurong Jiangsu 212400 China
| | - Fei Zhao
- Zhenjiang Institute of Agricultural Sciences in Hill Area of Jiangsu Province Jurong Jiangsu 212400 China
| | - Kebing Yao
- Zhenjiang Institute of Agricultural Sciences in Hill Area of Jiangsu Province Jurong Jiangsu 212400 China
| | - Yiqing Zhuang
- Zhenjiang Institute of Agricultural Sciences in Hill Area of Jiangsu Province Jurong Jiangsu 212400 China
- Jiangsu Academy of Agricultural Sciences Nanjing Jiangsu 210049 China
| |
Collapse
|
20
|
The Interplay among Polyamines and Nitrogen in Plant Stress Responses. PLANTS 2019; 8:plants8090315. [PMID: 31480342 PMCID: PMC6784213 DOI: 10.3390/plants8090315] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/27/2022]
Abstract
The interplay between polyamines (PAs) and nitrogen (N) is emerging as a key factor in plant response to abiotic and biotic stresses. The PA/N interplay in plants connects N metabolism, carbon (C) fixation, and secondary metabolism pathways. Glutamate, a pivotal N-containing molecule, is responsible for the biosynthesis of proline (Pro), arginine (Arg) and ornithine (Orn) and constitutes a main common pathway for PAs and C/N assimilation/incorporation implicated in various stresses. PAs and their derivatives are important signaling molecules, as they act largely by protecting and preserving the function/structure of cells in response to stresses. Use of different research approaches, such as generation of transgenic plants with modified intracellular N and PA homeostasis, has helped to elucidate a plethora of PA roles, underpinning their function as a major player in plant stress responses. In this context, a range of transgenic plants over-or under-expressing N/PA metabolic genes has been developed in an effort to decipher their implication in stress signaling. The current review describes how N and PAs regulate plant growth and facilitate crop acclimatization to adverse environments in an attempt to further elucidate the N-PAs interplay against abiotic and biotic stresses, as well as the mechanisms controlling N-PA genes/enzymes and metabolites.
Collapse
|
21
|
Yu Z, Yang Z. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Crit Rev Food Sci Nutr 2019; 60:844-858. [DOI: 10.1080/10408398.2018.1552245] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Chen Q, Zhang Y, Tao M, Li M, Wu Y, Qi Q, Yang H, Wan X. Comparative Metabolic Responses and Adaptive Strategies of Tea Leaves ( Camellia sinensis) to N 2 and CO 2 Anaerobic Treatment by a Nontargeted Metabolomics Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9565-9572. [PMID: 30133278 DOI: 10.1021/acs.jafc.8b03067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
It is well-known that anaerobic treatment has been considered as a utility process to accumulate γ-aminobutyric acid (GABA) in tea leaves. In this article, the nonvolatile differential compounds in picked-tea leaves between filled-N2 treatment and filled-CO2 treatment were compared in metabolic profiles and dynamic changes via ultrahigh performance liquid chromatography linked to a hybrid quadrupole orthogonal time-of-flight mass spectrometer (UPLC-Q-TOF-MS). Multivariate analysis and heat map of hierarchical clustering analysis indicated that filled-N2 treatment resulted in a wider range of metabolic perturbation than filled-CO2 treatment, but GABA accumulates faster and more significantly under filled-CO2 treatment than other treatment. The differential metabolites in anaerobic treatment were mainly reflected in the levels of glucose metabolism and amino acid metabolism, and the main differential pathway included the glyoxylate metabolism pathway, galactose metabolism, and phenylalanine metabolism. These metabolomic analyses were also evaluated to illuminate the physiological adaptive strategies of tea adopted to tolerate certain anaerobic stress types.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
- Key Laboratory of Agricultural Products Processing Engineering of Anhui Province , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
| | - Yamin Zhang
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
| | - Minming Tao
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
| | - Mengshuang Li
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
| | - Yun Wu
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
| | - Qi Qi
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
- Key Laboratory of Agricultural Products Processing Engineering of Anhui Province , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
| | - Hua Yang
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
| |
Collapse
|