1
|
Maneetong S, Thuadaij P. Bio-clay: Antioxidant-rich and stable for body mud scrubs. Heliyon 2024; 10:e29122. [PMID: 38601526 PMCID: PMC11004215 DOI: 10.1016/j.heliyon.2024.e29122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Clay is naturally occurring and poses a low risk. It is distinguished by mineral composition and ability to adsorb plant colorants and phytochemicals effectively. This study aimed to enhance the stability of bio-clay by preparing body mud scrubs through a solid-state reaction, combining volcanic clay with herbal plants, including Bougainvillea spp., Pandanus amaryllifolius Roxb., and Curcuma longa L. (bio-clay). The characterization of purification clay revealed strong stability within its mineral composition. The optimum condition for sampling was 4 °C, which reserved the total phenolic content (TPC), 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. A high Trolox equivalent antioxidant capacity (TEAC; mg TEAC/g sample) and low half-maximal inhibitory concentration (IC50) indicated excellent antioxidant activity. Over a storage period of 28 d, the Bougainvillea spp., Curcuma longa L., purified clay + Bougainvillea spp., and purified clay + Curcuma longa L. samples retained their stability. Their TPC, % scavenging, TEAC, and IC50 showed dominant antioxidant activity, stable active phenolic compounds, and the maintenance of extensive amounts. This compound is widely applied as a unique cosmetic ingredient.
Collapse
Affiliation(s)
- Sarunya Maneetong
- Division of Chemistry (Analytical Chemistry), Faculty of Science, Buriram Rajabhat University, Buriram, 31000, Thailand
| | - Pattaranun Thuadaij
- Division of Chemistry (Materials Science), Faculty of Science, Buriram Rajabhat University, Buriram, 31000, Thailand
| |
Collapse
|
2
|
Feitosa BF, Decker BLA, Brito ESD, Rodrigues S, Mariutti LRB. Microencapsulation of anthocyanins as natural dye extracted from fruits - A systematic review. Food Chem 2023; 424:136361. [PMID: 37216779 DOI: 10.1016/j.foodchem.2023.136361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Anthocyanins are naturally colored compounds that can be extracted from plants, especially fruits. Their molecules are unstable under normal processing conditions; thus, they must be protected using modern technologies, such as microencapsulation. For this reason, many industries are searching for information from review studies to find the conditions that improve these natural pigments' stability. This systematic review aimed to elucidate different aspects of anthocyanins, such as main extraction and microencapsulation methods, gaps in analytical techniques, and industrial optimization measurements. Initially, 179 scientific articles were retrieved, of which seven clusters were found with 10-36 cross-linked references. Sixteen articles containing 15 different botanical specimens were included in the review, most focusing on the whole fruit, pulp, or subproducts. The extraction and microencapsulation technique resulting in the highest anthocyanin content was sonication with ethanol, temperature below 40 °C, and maximum time of 30 min, followed by microencapsulation by spray drying with maltodextrin or gum Arabic. Color apps and simulation programs may help verify natural dyes' composition, characteristics, and behavior.
Collapse
Affiliation(s)
| | | | | | - Sueli Rodrigues
- Federal University of Ceará, 60020-181 Fortaleza, CE, Brazil.
| | | |
Collapse
|
3
|
Goyal N, Jerold F. Biocosmetics: technological advances and future outlook. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25148-25169. [PMID: 34825334 PMCID: PMC8616574 DOI: 10.1007/s11356-021-17567-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/12/2021] [Indexed: 04/16/2023]
Abstract
The paper provides an overview of biocosmetics, which has tremendous potential for growth and is attracting huge business opportunities. It emphasizes the immediate need to replace conventional fossil-based ingredients in cosmetics with natural, safe, and effective ingredients. It assembles recent technologies viable in the production/extraction of the bioactive ingredient, product development, and formulation processes, its rapid and smooth delivery to the target site, and fosters bio-based cosmetic packaging. It further explores industries that can be a trailblazer in supplying raw material for extraction of bio-based ingredients for cosmetics, creating biodegradable packaging, or weaving innovation in fashion clothing. Lastly, the paper discusses what it takes to become the first generation of a circular economy and supports the implementation of strict regulatory guidelines for any cosmetic sold globally.
Collapse
Affiliation(s)
- Nishu Goyal
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India.
| | - Frankline Jerold
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| |
Collapse
|
4
|
Cunha RV, Morais AIS, Trigueiro P, de Souza JSN, Damacena DHL, Brandão-Lima LC, Bezerra RDS, Fonseca MG, Silva-Filho EC, Osajima JA. Organic-Inorganic Hybrid Pigments Based on Bentonite: Strategies to Stabilize the Quinoidal Base Form of Anthocyanin. Int J Mol Sci 2023; 24:ijms24032417. [PMID: 36768738 PMCID: PMC9917136 DOI: 10.3390/ijms24032417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/28/2023] Open
Abstract
Anthocyanins are one of the natural pigments that humanity has employed the most and can substitute synthetic food dyes, which are considered toxic. They are responsible for most purple, blue, and red pigment nuances in tubers, fruits, and flowers. However, they have some limitations in light, pH, oxygen, and temperature conditions. Combining biomolecules and inorganic materials such as clay minerals can help to reverse these limitations. The present work aims to produce materials obtained using cetyltrimethylammonium bromide in bentonite clay for incorporation and photostabilization of anthocyanin dye. Characterizations showed that the organic molecules were intercalated between the clay mineral layers, and the dye was successfully incorporated at a different pH. Visible light-driven photostability tests were performed with 200 h of irradiation, confirming that the organic-inorganic matrices were efficient enough to stabilize the quinoidal base form of anthocyanin. The pigment prepared at pH 10 was three-fold more stable than pH 4, showing that the increase in the synthesis pH promotes more stable colors, probably due to the stronger intermolecular interaction obtained under these conditions. Therefore, organobentonite hybrids allow to stabilize the fragile color coming from the quinoidal base form of anthocyanin dyes.
Collapse
Affiliation(s)
- Robson V. Cunha
- Federal Institute of Piauí, Floriano Campus, IFPI, Floriano 64808-475, PI, Brazil
- LIMAV-Interdisciplinary Advanced Materials Laboratory, PPGCM-Materials Science and Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina 64049-550, PI, Brazil
| | - Alan I. S. Morais
- LIMAV-Interdisciplinary Advanced Materials Laboratory, PPGCM-Materials Science and Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina 64049-550, PI, Brazil
| | - Pollyana Trigueiro
- LIMAV-Interdisciplinary Advanced Materials Laboratory, PPGCM-Materials Science and Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina 64049-550, PI, Brazil
- Materials Science and Engineering Postgraduate Program-PPGCM/CCSST, UFMA, Imperatriz 65900-410, MA, Brazil
| | - João Sammy N. de Souza
- LIMAV-Interdisciplinary Advanced Materials Laboratory, PPGCM-Materials Science and Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina 64049-550, PI, Brazil
| | - Dihêgo H. L. Damacena
- LIMAV-Interdisciplinary Advanced Materials Laboratory, PPGCM-Materials Science and Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina 64049-550, PI, Brazil
| | - Luciano C. Brandão-Lima
- LIMAV-Interdisciplinary Advanced Materials Laboratory, PPGCM-Materials Science and Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina 64049-550, PI, Brazil
| | - Roosevelt D. S. Bezerra
- Federal Institute of Education, Science and Technology of Piauí, Teresina-Central Campus, IFPI, Teresina 64000-040, PI, Brazil
| | - Maria Gardennia Fonseca
- Research and Extension Center-Fuel and Materials Laboratory (NPE–LACOM), Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Edson C. Silva-Filho
- LIMAV-Interdisciplinary Advanced Materials Laboratory, PPGCM-Materials Science and Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina 64049-550, PI, Brazil
| | - Josy A. Osajima
- LIMAV-Interdisciplinary Advanced Materials Laboratory, PPGCM-Materials Science and Engineering Graduate Program, UFPI-Federal University of Piaui, Teresina 64049-550, PI, Brazil
- Correspondence:
| |
Collapse
|
5
|
Gutiérrez TJ, León IE, Ponce AG, Alvarez VA. Active and pH-Sensitive Nanopackaging Based on Polymeric Anthocyanin/Natural or Organo-Modified Montmorillonite Blends: Characterization and Assessment of Cytotoxicity. Polymers (Basel) 2022; 14:polym14224881. [PMID: 36433007 PMCID: PMC9697583 DOI: 10.3390/polym14224881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Polymeric anthocyanins are biologically active, pH-sensitive natural compounds and pigments with beneficial functional, pharmacological and therapeutic properties for consumer health. More recently, they have been used for the manufacture of active and pH-sensitive ("intelligent") food nanopackaging, due to their bathochromic effect. Nevertheless, in order for polymeric anthocyanins to be included either as a functional food or as a pharmacological additive (medicinal food), they inevitably need to be stabilized, as they are highly susceptible to environmental conditions. In this regard, nanopackaging has become a tool to overcome the limitations of polymeric anthocyanins. The objective of this study was to evaluate their structural, thermal, morphological, physicochemical, antioxidant and antimicrobial properties, as well as their responses to pH changes, and the cytotoxicity of blends made from polymeric anthocyanins extracted from Jamaica flowers (Hibiscus sabdariffa) and natural or organo-modified montmorillonite (Mt), as active and pH-sensitive nanopackaging. This study allowed us to conclude that organo-modified Mts are efficient pH-sensitive and antioxidant nanopackaging systems that contain and stabilize polymeric anthocyanins compared to natural Mt nanopackaging and stabilizing polymeric anthocyanins. However, the use of these polymeric anthocyanin-stabilizing organo-modified Mt-based nanopackaging systems are limited for food applications by their toxicity.
Collapse
Affiliation(s)
- Tomy J. Gutiérrez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Colón 10850, Mar del Plata B7608FLC, Argentina
- Correspondence: ; Tel.: +54-223-6260627; Fax: +54-223-481-0046
| | - Ignacio E. León
- Centro de Química Inorgánica “Dr. Pedro J. Aymonino” (CEQUINOR), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Blvd. 120 No. 1465, La Plata 1900, Argentina
| | - Alejandra G. Ponce
- Grupo de Investigación en Ingeniería en Alimentos (GIIA), Instituto de Ciencia y Tecnología de Alimentos y Ambiente (INCITAA, CIC-UNMDP), Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, Mar del Plata B7602AYL, Argentina
| | - Vera A. Alvarez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Colón 10850, Mar del Plata B7608FLC, Argentina
| |
Collapse
|
6
|
Luiza Koop B, Nascimento da Silva M, Diniz da Silva F, Thayres dos Santos Lima K, Santos Soares L, José de Andrade C, Ayala Valencia G, Rodrigues Monteiro A. Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: Sources, classification and enhanced stabilization by encapsulation and adsorption. Food Res Int 2022; 153:110929. [DOI: 10.1016/j.foodres.2021.110929] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/14/2022]
|
7
|
Szadkowski B, Rogowski J, Maniukiewicz W, Beyou E, Marzec A. New natural organic–inorganic pH indicators: Synthesis and characterization of pro-ecological hybrid pigments based on anthraquinone dyes and mineral supports. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Oancea S. A Review of the Current Knowledge of Thermal Stability of Anthocyanins and Approaches to Their Stabilization to Heat. Antioxidants (Basel) 2021; 10:1337. [PMID: 34572968 PMCID: PMC8468304 DOI: 10.3390/antiox10091337] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/10/2023] Open
Abstract
Anthocyanins are colored valuable biocompounds, of which extraction increases globally, although functional applications are restrained by their limited environmental stability. Temperature is a critical parameter of food industrial processing that impacts on the food matrix, particularly affecting heat-sensitive compounds such as anthocyanins. Due to the notable scientific progress in the field of thermal stability of anthocyanins, an analytical and synthetic integration of published data is required. This review focuses on the molecular mechanisms and the kinetic parameters of anthocyanin degradation during heating, both in extracts and real food matrices. Several kinetic models (Arrhenius, Eyring, Ball) of anthocyanin degradation were studied. Crude extracts deliver more thermally stable anthocyanins than purified ones. A different anthocyanin behavior pattern within real food products subjected to thermal processing has been observed due to interactions with some nutrients (proteins, polysaccharides). The most recent studies on the stabilization of anthocyanins by linkages to other molecules using classical and innovative methods are summarized. Ensuring appropriate thermal conditions for processing anthocyanin-rich food will allow a rational design for the future development of stable functional products, which retain these bioactive molecules and their functionalities to a great extent.
Collapse
Affiliation(s)
- Simona Oancea
- Department of Agricultural Sciences and Food Engineering, "Lucian Blaga" University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550024 Sibiu, Romania
| |
Collapse
|
9
|
Elsawy M, Faheim AA, Salem SS, Owda M, Abd El‐Wahab ZH, Abd El‐Wahab H. Cu (II), Zn (II), and Ce (III) metal complexes as antimicrobial pigments for surface coating and flexographic ink. Appl Organomet Chem 2021; 35. [DOI: 10.1002/aoc.6196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/28/2021] [Indexed: 09/01/2023]
Affiliation(s)
- M.M. Elsawy
- Chemistry Department, Faculty of Science (Girls) Al‐Azhar University Cairo Egypt
| | - Abeer A. Faheim
- Chemistry Department, Faculty of Science (Girls) Al‐Azhar University Cairo Egypt
| | - Salem S. Salem
- Botany and Microbiology Department, Faculty of Science (Boys) Al‐Azhar University Cairo Egypt
| | - M.E. Owda
- Chemistry Department, Faculty of Science (Boys) Al‐Azhar University Cairo Egypt
| | | | - H. Abd El‐Wahab
- Chemistry Department, Faculty of Science (Boys) Al‐Azhar University Cairo Egypt
| |
Collapse
|
10
|
Gaviria YAR, Palencia NSN, Capello C, Trevisol TC, Monteiro AR, Valencia GA. Nanostructured pH‐Indicator Films Based on Cassava Starch, Laponite, and Jambolan (
Syzygium cumini
) Fruit Manufactured by Thermo‐Compression. STARCH-STARKE 2021. [DOI: 10.1002/star.202000208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yessica Alexandra Rodriguez Gaviria
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
- Escuela de Ingeniería Química Universidad Industrial de Santander (UIS) Cra 27 Calle 9 Bucaramanga 680002 Colombia
| | - Natalia Stefanía Navarro Palencia
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
- Escuela de Ingeniería Química Universidad Industrial de Santander (UIS) Cra 27 Calle 9 Bucaramanga 680002 Colombia
| | - Cristiane Capello
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| | - Thalles Canton Trevisol
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| | - Alcilene Rodrigues Monteiro
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| |
Collapse
|
11
|
Giovannini G, Rossi RM, Boesel LF. Changes in Optical Properties upon Dye-Clay Interaction: Experimental Evaluation and Applications. NANOMATERIALS 2021; 11:nano11010197. [PMID: 33466754 PMCID: PMC7830015 DOI: 10.3390/nano11010197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
The development of hybrid materials with unique optical properties has been a challenge for the creation of high-performance composites. The improved photophysical and photochemical properties observed when fluorophores interact with clay minerals, as well as the accessibility and easy handling of such natural materials, make these nanocomposites attractive for designing novel optical hybrid materials. Here, we present a method of promoting this interaction by conjugating dyes with chitosan. The fluorescent properties of conjugated dye–montmorillonite (MMT) hybrids were similar to those of free dye–MMT hybrids. Moreover, we analyzed the relationship between the changes in optical properties of the dye interacting with clay and its structure and defined the physical and chemical mechanisms that take place upon dye–MMT interactions leading to the optical changes. Conjugation to chitosan additionally ensures stable adsorption on clay nanoplatelets due to the strong electrostatic interaction between chitosan and clay. This work thus provides a method to facilitate the design of solid-state hybrid nanomaterials relevant for potential applications in bioimaging, sensing and optical purposes.
Collapse
|
12
|
Coelho Leandro G, Capello C, Luiza Koop B, Garcez J, Rodrigues Monteiro A, Ayala Valencia G. Adsorption-desorption of anthocyanins from jambolan (Syzygium cumini) fruit in laponite® platelets: Kinetic models, physicochemical characterization, and functional properties of biohybrids. Food Res Int 2020; 140:109903. [PMID: 33648205 DOI: 10.1016/j.foodres.2020.109903] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 01/09/2023]
Abstract
This study aims to develop and characterize biohybrids (BH) based on anthocyanins (ACNs) from jambolan (Syzygium cumini) and laponite® (Lap). ACNs from jambolan fruit were extracted using an acidified water solution at pH 1. ACNs were recovered from extract using Lap as adsorbent between 5 °C and 40 °C. There was no significant effect (p > 0.05) of the temperature on the adsorption process of ACNs. Thus, the process was classified as physical adsorption in heterogeneous sites where ACNs were stabilized by means of van der Waals force, π - π force, and hydrogen bonding on the Lap surface. After adsorption, the BH powder appeared to have an amorphous structure and red color. However, the color changed at pH ≥ 7. In addition, the obtained BH showed antioxidant properties and high stability when exposed to visible light irradiation. This research reports new information about the valorization and application of ACNs from jambolan for food industrial applications.
Collapse
Affiliation(s)
- Gabriel Coelho Leandro
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Cristiane Capello
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Betina Luiza Koop
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Jussara Garcez
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Alcilene Rodrigues Monteiro
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
13
|
Bendokas V, Stanys V, Mažeikienė I, Trumbeckaite S, Baniene R, Liobikas J. Anthocyanins: From the Field to the Antioxidants in the Body. Antioxidants (Basel) 2020; 9:E819. [PMID: 32887513 PMCID: PMC7555562 DOI: 10.3390/antiox9090819] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
Anthocyanins are biologically active water-soluble plant pigments that are responsible for blue, purple, and red colors in various plant parts-especially in fruits and blooms. Anthocyanins have attracted attention as natural food colorants to be used in yogurts, juices, marmalades, and bakery products. Numerous studies have also indicated the beneficial health effects of anthocyanins and their metabolites on human or animal organisms, including free-radical scavenging and antioxidant activity. Thus, our aim was to review the current knowledge about anthocyanin occurrence in plants, their stability during processing, and also the bioavailability and protective effects related to the antioxidant activity of anthocyanins in human and animal brains, hearts, livers, and kidneys.
Collapse
Affiliation(s)
- Vidmantas Bendokas
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania; (V.S.); (I.M.)
| | - Vidmantas Stanys
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania; (V.S.); (I.M.)
| | - Ingrida Mažeikienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania; (V.S.); (I.M.)
| | - Sonata Trumbeckaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (S.T.); (R.B.)
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rasa Baniene
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (S.T.); (R.B.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Julius Liobikas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (S.T.); (R.B.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
14
|
Xu M, Shen C, Zheng H, Xu Y, Xue C, Zhu B, Hu J. Metabolomic analysis of acerola cherry (Malpighia emarginata) fruit during ripening development via UPLC-Q-TOF and contribution to the antioxidant activity. Food Res Int 2019; 130:108915. [PMID: 32156365 DOI: 10.1016/j.foodres.2019.108915] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/07/2019] [Accepted: 12/15/2019] [Indexed: 01/12/2023]
Abstract
Acerola cherry (Malpighia emarginata D.C.) is a tropical fruit of great economic and nutritional value due to its high content of vitamin C. However, there is little information available about which ripening stage of Acerola cherry can provide the best nutrients. In the current study, the chemical variation at two developmental stages (immature and mature) were investigated by metabolic profiling, and the biological properties of Acerola cherry and its antioxidant assays at four developmental stages were measured, respectively. Through comprehensive metabolites analysis via ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry system (UPLC-QTOF), 1896 annotated metabolite features were obtained, and 133 metabolites were finally identified according to the MS/MS fragments compared with these standards in in-house database. Statistically differences in the levels of amino acids, flavonoids, lipids, terpenoids and ascorbic acids were found between mature and immature fruits. Interestingly, most of differential accumulated amino acids, flavonoids, lipids, and terpenoids predominantly accumulated in the mature fruits and ascorbic acid predominantly accumulated in the immature fruits. On the other hand, their antioxidant activities were compared. The alcoholic extract of immature acerola fruit possessed better scavenging ability of DPPH and ABTS than the mature one. The well correlations were found between the antioxidant potential with its content of ascorbic acid (r = 0.9803 and 0.9897, respectively). In conclusion, Acerola cherry showed very different metabolite profile and antioxidant activities during the fruit ripening development. The maturity of Acerola cherry has to be considered when it is being used for health food products.
Collapse
Affiliation(s)
- Mingfeng Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Han Zheng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yunsheng Xu
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022 China
| | - Changfeng Xue
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022 China
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
15
|
|
16
|
A Comparative Study on Color Stability of Anthocyanin Hybrid Pigments Derived from 1D and 2D Clay Minerals. MATERIALS 2019; 12:ma12203287. [PMID: 31658609 PMCID: PMC6829488 DOI: 10.3390/ma12203287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022]
Abstract
Anthocyanin extracted from the fresh blue berry fruits was loaded onto different clay minerals including one-dimensional tubular halloysite and fibrous sepiolite, and two-dimensional lamellar kaolinite and montmorillonite to fabricate reversible allochroic hybrid pigments. The effect of the possible interaction mechanism between anthocyanin and clay minerals on the color stability of hybrid pigments was investigated. Due to the difference in the structures and properties of clay minerals, natural anthocyanin was inclined to be absorbed on the surface and intercalated into the interlayer of 2:1 type layered montmorillonite, while it was mainly anchored on the surface of 1:1 type kaolinite and halloysite. By contrast, it was simultaneously loaded on the surface and confined into the nanochannels and/or grooves of 2:1 type chain-layered sepiolite. Interestingly, the resulting hybrid pigments presented good thermal stability and resistance to chemical reagents, as well as reversible gas-sensitive allochroic behavior in HCl or NH3 gases, especially anthocyanin/sepiolite hybrid pigments due to the shielding effect of the well-defined nanochannels and grooves of sepiolite. Based on this color-change behavior, a simple pH test paper was also prepared with obvious color change at different pH values by coating the filter paper with anthocyanin/sepiolite hybrid pigments.
Collapse
|
17
|
Chi J, Ge J, Yue X, Liang J, Sun Y, Gao X, Yue P. Preparation of nanoliposomal carriers to improve the stability of anthocyanins. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Separation of anthocyanins extracted from red cabbage by adsorption onto chitosan films. Int J Biol Macromol 2019; 131:905-911. [DOI: 10.1016/j.ijbiomac.2019.03.145] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 11/17/2022]
|
19
|
Teepakakorn A(P, Yamaguchi T, Ogawa M. The Improved Stability of Molecular Guests by the Confinement into Nanospaces. CHEM LETT 2019. [DOI: 10.1246/cl.181026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aranee (Pleng) Teepakakorn
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Tetsuo Yamaguchi
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
20
|
Marzec A, Szadkowski B, Rogowski J, Maniukiewicz W, Rybiński P, Prochoń M. New Organic/Inorganic Pigments Based on Azo Dye and Aluminum-Magnesium Hydroxycarbonates with Various Mg/Al Ratios. MATERIALS 2019; 12:ma12081349. [PMID: 31027185 PMCID: PMC6515457 DOI: 10.3390/ma12081349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/19/2023]
Abstract
This study set out to investigate the impact of aluminum-magnesium hydroxycarbonates (LHs) with various Mg/Al ratios on the formation of hybrid pigments. The colorants were also evaluated for their flame-retardant properties. In the first part of the study, the hybrid pigments were submitted to comprehensive characterization using time-of-flight secondary ion mass spectrometry (TOF-SIMS), 27Al solid-state nuclear magnetic resonance (NMR) spectroscopy, powder X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), and N2 adsorption as well as scanning and transmission electron microscopy (SEM/STEM). The relationship between the Mg/Al ratios of the LH carriers and the formation of lake pigments was explored. The TOF-SIMS spectrum of LH modified with azo chromophore (AC) showed an intense peak for the C19H15O5N2Mg+ ion, confirming metal-dye interactions. Incorporation of the organic colorant into the LH host enhanced its resistance to dissolution in organic solvent (butyl acetate), as well as improving its color stability under elevated temperatures. The second part of the study evaluated the flammability of ethylene-norbornene (EN) composites, in which the pigments had been applied as colorants. Cone calorimetry revealed that addition of the organic-inorganic pigments resulted in a substantial improvement of the flame retardancy, reflected by the decreased values of the heat release rate (HRRMAX) and total heat release parameter (THR) of the EN composites in comparison to a neat sample (unfilled EN).
Collapse
Affiliation(s)
- Anna Marzec
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland.
| | - Bolesław Szadkowski
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland.
| | - Jacek Rogowski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Waldemar Maniukiewicz
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Przemysław Rybiński
- Department of Management and Environmental Protection, Jan Kochanowski University, Zeromskiego 5, 25-369 Kielce, Poland.
| | - Mirosława Prochoń
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland.
| |
Collapse
|
21
|
Estimation of Ascorbic Acid in Intact Acerola (Malpighia emarginata DC) Fruit by NIRS and Chemometric Analysis. HORTICULTURAE 2019. [DOI: 10.3390/horticulturae5010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acerola fruit is one of the richest natural sources of ascorbic acid ever known. As a consequence, acerola fruit and its products are demanded worldwide for the production of health supplements and the development of functional products. However, the analytical determination of ascorbic acid is time-consuming and costly. In this study, we show a non-destructive, reliable, and fast method to measure the ascorbic acid content in intact acerola, using near-infrared spectroscopy (NIRS) associated with multivariate calibration methods. Models using variable selection by means of interval partial least squares (iPLS) and a genetic algorithm (GA) were tested. The best model for ascorbic acid content, based on the prediction performance, was the GA-PLS method with second derivative spectral pretreatment, with a root mean square error of cross-validation equal to 22.9 mg/100 g, root mean square error of prediction equal to 46.3 mg/100 g, ratio of prediction to deviation equal to 8.0, determination coefficient for calibration equal to 0.98 and determination coefficient for prediction equal to 0.96. The current methodology, using NIR spectroscopy and chemometrics, is a promising and rapid tool to determine the ascorbic acid content of intact acerola fruit.
Collapse
|
22
|
Teepakakorn AP, Bureekaew S, Ogawa M. Adsorption-Induced Dye Stability of Cationic Dyes on Clay Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14069-14075. [PMID: 30369238 DOI: 10.1021/acs.langmuir.8b02978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rhodamine 6G (R6G) was adsorbed on smectite clays, a natural montmorillonite, a synthetic saponite, and synthetic hectorites, and the decolorization of the dyes upon visible light irradiation was examined for aqueous suspensions and cast films. Excellent dye stability was achieved when a natural montmorillonite was used. Apart from R6G, better photostability was also achieved when the tris(2,2'-bipyridine)ruthenium(II) complex was adsorbed on a natural montmorillonite. The excited state of the dye was quenched efficiently by the impurities in the natural montmorillonite. From the relationship between the excited-state quenching (as derived from photoluminescence quantum efficiency and photoluminescence intensity) and the decolorization rate constant, the quenching of the excited state of the dye adsorbed on the natural montmorillonite was proposed as the important mechanism for the stabilization of dyes upon photoirradiation.
Collapse
|
23
|
Increased thermal stability of anthocyanins at pH 4.0 by guar gum in aqueous dispersions and in double emulsions W/O/W. Int J Biol Macromol 2018; 117:665-672. [DOI: 10.1016/j.ijbiomac.2018.05.219] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 11/21/2022]
|
24
|
Fredes C, Becerra C, Parada J, Robert P. The Microencapsulation of Maqui ( Aristotelia chilensis (Mol.) Stuntz) Juice by Spray-Drying and Freeze-Drying Produces Powders with Similar Anthocyanin Stability and Bioaccessibility. Molecules 2018; 23:molecules23051227. [PMID: 29783783 PMCID: PMC6100133 DOI: 10.3390/molecules23051227] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 11/16/2022] Open
Abstract
The microencapsulation of maqui juice by spray-drying and freeze-drying was studied as a strategy to protect anthocyanins in new food formulations in order to improve the anthocyanin retention before consumption and the bioaccessibility. It is well known that the encapsulation method affects both the shape and size of powders, being assumed that undefined forms of freeze-drying powders might affect their stability due to the high permeability to oxygen. The objective of this study was to compare the microencapsulation of maqui juice by spray-drying and freeze-drying, evaluating the stability of specific anthocyanins in yogurt and after in vitro digestion. Results indicated that most relevant differences between spray-drying and freeze-drying powders were the morphology and particle size that affect their solubility (70.4⁻59.5%) when they were reconstituted in water. Nevertheless these differences did not affect the stability of anthocyanins as other research have proposed. Both encapsulation methods generated powders with a high stability of 3-O-monoglycosylated anthocyanins in yogurt (half-life values of 75⁻69 days for delphinidin-3-sambubioside). Furthermore, no significant differences in the bioaccessibility of anthocyanins between maqui juice powders (44.1⁻43.8%) were found. In conclusion, the microencapsulation of maqui juice by freeze-drying is as effective as spray-drying to produce new value-added food formulations with stable anthocyanins.
Collapse
Affiliation(s)
- Carolina Fredes
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone Pohlhammer 1007, Independencia 8380492, Chile.
| | - Camila Becerra
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone Pohlhammer 1007, Independencia 8380492, Chile.
| | - Javier Parada
- Institute of Food Science and Technology, Faculty of Agricultural Sciences, Austral University of Chile, Valdivia 5090000, Chile.
| | - Paz Robert
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone Pohlhammer 1007, Independencia 8380492, Chile.
| |
Collapse
|