1
|
Zhang T, Liu Y, Cao J, Jiang L, Lin K, Wang P, Ren F, Yi H. Milk serum peptidomics revealed the age gelation of direct UHT milk. Food Chem 2024; 456:140012. [PMID: 38876066 DOI: 10.1016/j.foodchem.2024.140012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Age gelation is undesirable for direct UHT (dUHT) milk, which is closely related to protein hydrolysis. However, little information is available for the role of serum peptides during the age gelation. In this study, the composition and protein morphology of serum phase were characterized by RP-HPLC, ICP-MS and TEM. The results showed significant increases in soluble proteins, free amino acids, calcium, and phosphorus from casein micelles, indicating protein hydrolysis and peptide release into the serum phase. 23,466 peptides derived from caseins and other proteins were identified in serum phase by peptidomics. The serum peptide profiles of age gelation milk changed dramatically. Peptide fingerprinting revealed that plasmin and cathepsin contributed to the protein hydrolysis during age gelation, with a significant increase in their activity observed. 23 characteristic peptides were ultimately selected as potential indicators for age gelation. These findings provide new insights into the age gelation of UHT milk.
Collapse
Affiliation(s)
- Tai Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Yisuo Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Jiayuan Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Lu Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Kai Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Pengjie Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
2
|
Wang Y, Xiao R, Liu S, Wang P, Zhu Y, Niu T, Chen H. The Impact of Thermal Treatment Intensity on Proteins, Fatty Acids, Macro/Micro-Nutrients, Flavor, and Heating Markers of Milk-A Comprehensive Review. Int J Mol Sci 2024; 25:8670. [PMID: 39201356 PMCID: PMC11354856 DOI: 10.3390/ijms25168670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Milk thermal treatment, such as pasteurization, high-temperature short-time processing, and the emerging ultra-short-time processing (<0.5 s), are crucial for ensuring milk safety and extending its shelf life. Milk is a nutritive food matrix with various macro/micro-nutrients and other constituents that are possibly affected by thermal treatment for reasons associated with processing strength. Therefore, understanding the relationship between heating strength and milk quality is vital for the dairy industry. This review summarizes the impact of thermal treatment strength on milk's nutritional and sensory properties, the synthesizing of the structural integrity and bioavailability of milk proteins, the profile and stability of fatty acids, the retention of macro/micro-nutrients, as well as the overall flavor profile. Additionally, it examines the formation of heat-induced markers, such as Maillard reaction products, lactulose, furosine, and alkaline phosphatase activity, which serve as indicators of heating intensity. Flavor and heating markers are commonly used to assess the quality of pasteurized milk. By examining former studies, we conclude that ultra-short-time-processing-treated milk is comparable to pasteurized milk in terms of specific parameters (such as whey protein behavior, furosine, and ALP contents). This review aims to better summarize how thermal treatments influence the milk matrix, guiding the dairy industry's development and balancing milk products' safety and nutritional value.
Collapse
Affiliation(s)
- Yi Wang
- Food Laboratory of Zhongyuan, China Agricultural University, Beijing 100083, China;
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.X.); (S.L.); (P.W.); (Y.Z.)
| | - Ran Xiao
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.X.); (S.L.); (P.W.); (Y.Z.)
| | - Shiqi Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.X.); (S.L.); (P.W.); (Y.Z.)
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.X.); (S.L.); (P.W.); (Y.Z.)
| | - Yinhua Zhu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.X.); (S.L.); (P.W.); (Y.Z.)
| | - Tianjiao Niu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.X.); (S.L.); (P.W.); (Y.Z.)
| | - Han Chen
- Food Laboratory of Zhongyuan, China Agricultural University, Beijing 100083, China;
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.X.); (S.L.); (P.W.); (Y.Z.)
| |
Collapse
|
3
|
Wang Y, Guo M, Wu P, Fan K, Zhang W, Chen C, Ren F, Wang P, Luo J, Yu J. New insights into the destabilization of fat globules in ultra-instantaneous UHT milk induced by added plasmin: Molecular mechanisms and the effect of membrane structure on plasmin action. Colloids Surf B Biointerfaces 2024; 240:113987. [PMID: 38795586 DOI: 10.1016/j.colsurfb.2024.113987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Residual plasmin activity in whole ultra-instantaneous UHT (UI-UHT) milk causes rapid fat rise during storage, seriously affecting consumers' purchase intentions. In this work, the molecular mechanisms underlying fat destabilization in whole UI-UHT milk by added plasmin were investigated based on the hydrolysis behavior of interfacial proteins. By using SDS-PAGE and peptidomic analysis, we found that the hydrolysis of interfacial proteins by plasmin led to a decrease in the amount and coverage of interfacial proteins and an increase in zeta-potential value, causing the flocculation and coalescence of fat globules. Moreover, the hydrolysis pattern varied in different categories of interfacial proteins by plasmin. In total, 125 peptides in all samples were identified. Plasmin tended to hydrolyze most major milk fat globule membrane (MFGM) proteins into protein fragments (>10 kDa) rather than peptides (<10 kDa). In contrast, peptides derived from caseins were more preferentially identified within a relatively short incubation time. It was the co-hydrolysis of caseins and some major MFGM proteins as anchors that destroyed the stability of MFGM. Furthermore, studies on the effect of trilayer membrane structure remaining at the interface on the hydrolysis rate of major MFGM proteins by plasmin revealed that ADPH and BTN were very sensitive to plasmin action, while PAS 7 was very resistant to plasmin action. Overall, membrane structure reduced the susceptibility of some major MFGM proteins to plasmin and provided protective effects. Therefore, this study provided important insights into the hydrolysis behavior of interfacial proteins in whole UI-UHT milk induced by plasmin.
Collapse
Affiliation(s)
- Yi Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Mengyuan Guo
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - PeiPei Wu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China
| | - Ke Fan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China
| | - Weibo Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Chong Chen
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jie Luo
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China.
| | - Jinghua Yu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Fan K, Wu P, Guo M, Wang Y, Cao Y, Wang P, Ren F, Luo J. Destabilization of ultra-instantaneous ultra-high-temperature sterilized milk stored at different temperatures. J Dairy Sci 2024; 107:5460-5472. [PMID: 38554824 DOI: 10.3168/jds.2024-24705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/25/2024] [Indexed: 04/02/2024]
Abstract
Ultra-instantaneous UHT (UI-UHT, >155°C, <0.1 s) treated milk exhibits higher retention of active protein than regular UHT milk. However, UI-UHT products demonstrate increased susceptibility to destabilization during storage. This study aimed at monitoring the destabilizing process of UI-UHT milk across different storage temperatures and uncovering its potential mechanisms. Compared with regular UHT treatment, ultra-instantaneous treatment markedly accelerated the milk's destabilization process. Aged gel formation occurred after 45 d of storage at 25°C, whereas creaming and sedimentation were observed after 15 d at 37°C. To elucidate the instability mechanism, measurements of plasmin activity, protein hydrolysis levels, and proteomics of the aged gel were conducted. In UI-UHT milk, plasmin activity, and protein hydrolysis levels significantly increased during storage. Excessive protein hydrolysis at 37°C resulted in sedimentation, whereas moderate hydrolysis and an increase in protein particle size at 25°C resulted in aged gel formation. Proteomics analysis results indicated that the aged gel from UI-UHT milk contained intact caseins, major whey proteins, and their derived peptides. Furthermore, specific whey proteins including albumin, lactotransferrin, enterotoxin-binding glycoprotein PP20K, and MFGM proteins were identified in the gel. Additionally, MFGM proteins in UI-UHT milk experienced considerable hydrolysis during storage, contributing to fat instability. This study lays a theoretical foundation for optimizing UI-UHT milk storage conditions to enhance the quality of liquid milk products.
Collapse
Affiliation(s)
- Ke Fan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410114, China
| | - Peipei Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410114, China
| | - Mengyuan Guo
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yi Wang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ye Cao
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410114, China
| | - Pengjie Wang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410114, China.
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410114, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
5
|
Chang G, Li Q, Wang T, Zhang B, Wu W, Lv C, Sun T, Zhou T, Zheng W, Wang Y, Wang X. Characterization of Pseudomonas spp. contamination and in situ spoilage potential in pasteurized milk production process. Food Res Int 2024; 188:114463. [PMID: 38823831 DOI: 10.1016/j.foodres.2024.114463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
To investigate the prevalence of Pseudomonas in the pasteurized milk production process and its effect on milk quality, 106 strains of Pseudomonas were isolated from the pasteurized milk production process of a milk production plant in Shaanxi Province, China. The protease, lipase and biofilm-producing capacities of the 106 Pseudomonas strains were evaluated, and the spoilage enzyme activities of their metabolites were assessed by simulating temperature incubation in the refrigerated (7 °C) and transport environment (25 °C) segments and thermal treatments of pasteurization (75 °C, 5 min) and ultra-high temperature sterilization (121 °C, 15 s). A phylogenetic tree was drawn based on 16S rDNA gene sequencing and the top 5 strains were selected as representative strains to identify their in situ spoilage potential by examining their growth potential and ability to hydrolyze proteins and lipids in milk using growth curves, pH, whiteness, Zeta-potential, lipid oxidation, SDS-PAGE and volatile flavor compounds. The results showed that half and more of the isolated Pseudomonas had spoilage enzyme production and biofilm capacity, and the spoilage enzyme activity of metabolites was affected by the culture temperature and sterilization method, but ultra-high temperature sterilization could not completely eliminate the enzyme activity. The growth of Pseudomonas lundensis and Pseudomonas qingdaonensis was less affected by temperature and time, and the hydrolytic capacity of extracellular protease and lipase secreted by Pseudomonas lurida was the strongest, which had the greatest effect on milk quality. Therefore, it is crucial to identify the key contamination links of Pseudomonas, the main bacteria responsible for milk spoilage, and the influence of environmental factors on its deterioration.
Collapse
Affiliation(s)
- Guanhong Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianhong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bozheng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wendi Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunyang Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongzhuo Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wanxiang Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, China
| | - Yeru Wang
- National Center for Food Safety Risk Assessment, Beijing, China.
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Miller AL, Renye JA, Oest AM, Liang C, Garcia RA, Plumier BM, Tomasula PM. Bacteriocin production by lactic acid bacteria using ice cream co-product as the fermentation substrate. J Dairy Sci 2024; 107:3468-3477. [PMID: 38246535 DOI: 10.3168/jds.2023-24249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Ice cream manufacture commonly results in the accumulation of wasted product that contains valuable food-grade quality components, including fat, carbohydrates, and protein. Methods have been developed for recovering the fat from this waste stream, but this results in the generation of a co-product rich in fermentable carbohydrates. This study aimed to investigate the potential for using this co-product as a fermentation substrate for production of antimicrobial peptides, called bacteriocins, by dairy starter cultures. Results showed that Streptococcus thermophilus B59671 and Lactococcus lactis 11454 produced the broad-spectrum bacteriocins thermophilin 110 and nisin, respectively, when the fermentation substrate was melted ice cream, or a co-product generated by a modified butter churning technique. Bacteriocin production varied depending on the brand and variety of vanilla ice cream used in this study. When an alternate enzyme-assisted fat extraction technique was used, S. thermophilus metabolism was impaired within the resulting co-product, and thermophilin 110 production was not observed. Lactococcus lactis was still able to grow in this co-product, but antimicrobial activity was not observed. Results from this study suggest the co-product generated when using the churning technique is a better choice to use as a base medium for future studies to optimize bacteriocin production.
Collapse
Affiliation(s)
- Amanda L Miller
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, Wyndmoor, PA 19038.
| | - John A Renye
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, Wyndmoor, PA 19038
| | - Adam M Oest
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, Wyndmoor, PA 19038
| | - Chen Liang
- Department of Viticulture & Enology, University of California, Davis, Davis, CA 95616
| | - Rafael A Garcia
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, Wyndmoor, PA 19038
| | - Benjamin M Plumier
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, Wyndmoor, PA 19038
| | - Peggy M Tomasula
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, Wyndmoor, PA 19038
| |
Collapse
|
7
|
Wu P, Guo M, Wang P, Wang Y, Fan K, Zhou H, Qian W, Li H, Wang M, Wei X, Ren F, Luo J. Age Gelation in Direct Steam Infusion Ultra-High-Temperature Milk: Different Heat Treatments Produce Different Gels. Foods 2024; 13:1236. [PMID: 38672908 PMCID: PMC11049407 DOI: 10.3390/foods13081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
To investigate the gelation process of direct ultra-high-temperature (UHT) milk, a pilot-scale steam infusion heat treatment was used to process milk samples over a wide temperature of 142-157 °C for 0.116-6 s, followed by storage at 4 °C, 25 °C, and 37 °C. The results of the physicochemical properties of milk showed that the particle sizes and plasmin activities of all milk samples increased during storage at 25 °C, but age gelation only occurred in three treated samples, 147 °C/6 s, 142 °C/6 s, and 142 °C/3 s, which all had lower plasmin activities. Furthermore, the properties of formed gels were further compared and analyzed by the measures of structure and intermolecular interaction. The results showed that the gel formed in the 147 °C/6 s-treated milk with a higher C* value had a denser network structure and higher gel strength, while the 142 °C/6 s-treated milk had the highest porosity. Furthermore, disulfide bonds were the largest contributor to the gel structure, and there were significant differences in disulfide bonds, hydrophobic interaction forces, hydrogen bonds, and electrostatic force among the gels. Our results showed that the occurrence of gel was not related to the thermal load, and the different direct UHT treatments produced different age gels in the milk.
Collapse
Affiliation(s)
- Peipei Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China; (P.W.); (K.F.); (H.Z.)
| | - Mengyuan Guo
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.G.); (P.W.)
| | - Pengjie Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.G.); (P.W.)
| | - Yi Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China;
| | - Ke Fan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China; (P.W.); (K.F.); (H.Z.)
| | - Hui Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China; (P.W.); (K.F.); (H.Z.)
| | - Wentao Qian
- Mengniu Hi-Tech Dairy Products (Beijing) Co., Ltd., Beijing 101100, China; (W.Q.); (H.L.)
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China; (M.W.); (X.W.)
| | - Hongliang Li
- Mengniu Hi-Tech Dairy Products (Beijing) Co., Ltd., Beijing 101100, China; (W.Q.); (H.L.)
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China; (M.W.); (X.W.)
| | - Menghui Wang
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China; (M.W.); (X.W.)
| | - Xiaojun Wei
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China; (M.W.); (X.W.)
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.G.); (P.W.)
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China; (P.W.); (K.F.); (H.Z.)
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.G.); (P.W.)
| |
Collapse
|
8
|
Qin X, Cheng J, Qi X, Guan N, Chen Q, Pei X, Jiang Y, Yang X, Man C. Effect of Thermostable Enzymes Produced by Psychrotrophic Bacteria in Raw Milk on the Quality of Ultra-High Temperature Sterilized Milk. Foods 2023; 12:3752. [PMID: 37893644 PMCID: PMC10606520 DOI: 10.3390/foods12203752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Ultra-high temperature sterilized milk (UHT) is a popular dairy product known for its long shelf life and convenience. However, protein gel aging and fat quality defects like creaming and flavor deterioration may arise during storage. These problems are primarily caused by thermostable enzymes produced by psychrotrophic bacteria. In this study, four representative psychrotrophic bacteria strains which can produce thermostable enzymes were selected to contaminate UHT milk artificially. After 11, 11, 13, and 17 weeks of storage, the milk samples, which were contaminated with Pseudomonas fluorescens, Chryseobacterium carnipullorum, Lactococcus raffinolactis and Acinetobacter guillouiae, respectively, demonstrated notable whey separation. The investigation included analyzing the protein and fat content in the upper and bottom layers of the milk, as well as examining the particle size, Zeta potential, and pH in four sample groups, indicating that the stability of UHT milk decreases over time. Moreover, the spoiled milk samples exhibited a bitter taste, with the dominant odor being attributed to ketones and acids. The metabolomics analysis revealed that three key metabolic pathways, namely ABC transporters, butanoate metabolism, and alanine, aspartate, and glutamate metabolism, were found to be involved in the production of thermostable enzymes by psychrotrophic bacteria. These enzymes greatly impact the taste and nutrient content of UHT milk. This finding provides a theoretical basis for further investigation into the mechanism of spoilage.
Collapse
Affiliation(s)
- Xue Qin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (X.Q.); (J.C.); (X.Q.); (Q.C.); (Y.J.); (X.Y.)
| | - Jingqi Cheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (X.Q.); (J.C.); (X.Q.); (Q.C.); (Y.J.); (X.Y.)
| | - Xuehe Qi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (X.Q.); (J.C.); (X.Q.); (Q.C.); (Y.J.); (X.Y.)
| | - Ning Guan
- Center for Dairy Safety and Quality, National Center of Technology Innovation for Dairy, No. 1 Jinshan Road, Jinshan Development Zone, Hohhot 010110, China;
| | - Qing Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (X.Q.); (J.C.); (X.Q.); (Q.C.); (Y.J.); (X.Y.)
| | - Xiaoyan Pei
- Risk Assessment Department, Inner Mongolia Yili Industrial Group Co., Ltd., No. 1 Jinshan Road, Jinshan Development Zone, Hohhot 010110, China;
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (X.Q.); (J.C.); (X.Q.); (Q.C.); (Y.J.); (X.Y.)
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (X.Q.); (J.C.); (X.Q.); (Q.C.); (Y.J.); (X.Y.)
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (X.Q.); (J.C.); (X.Q.); (Q.C.); (Y.J.); (X.Y.)
| |
Collapse
|
9
|
Zarei M, Elmi Anvari S, Maktabi S, Saris PEJ, Yousefvand A. Identification, proteolytic activity quantification and biofilm-forming characterization of Gram-positive, proteolytic, psychrotrophic bacteria isolated from cold raw milk. PLoS One 2023; 18:e0290953. [PMID: 37703270 PMCID: PMC10499245 DOI: 10.1371/journal.pone.0290953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/19/2023] [Indexed: 09/15/2023] Open
Abstract
Psychrotrophic bacteria of raw milk face the dairy industry with significant spoilage and technological problems due to their ability to produce heat-resistant enzymes and biofilms. Despite extensive information about Gram-negative psychrotrophic bacteria in milk, little is known about Gram-positive psychrotrophic bacteria in milk, and their proteolytic activity and biofilm-forming characteristics. In the present study, Gram-positive, proteolytic, psychrotrophic bacteria of cold raw milk were identified, and their proteolytic activity and biofilm-forming capacity were quantified. In total, 12 genera and 22 species were represented among the bacterial isolates, however 50% belonged to three genera, namely Staphylococcus (19.4%), Bacillus (16.7%), and Enterococcus (13.9%). Different levels of proteolytic activity were detected in the identified isolates, even among the strains belonging to the same species. In addition, proteolytic activity was significantly higher at 25°C than at 7°C for all isolates. The crystal violet staining assay in polystyrene microtitre plates revealed a high level of variation in the biofilm-forming capacity at 7°C. After 72 hours of incubation, 11.1% of the strains did not produce a biofilm, while 27.8%, 52.8%, and 8.3% produced low, moderate, and high amounts of biofilm on polystyrene, respectively. The psychrotrophic bacteria were also able to produce biofilms on the surface of stainless steel coupons in ultra-high temperature milk after 72 h of incubation at 7°C; the number of attached cells ranged from 1.34 to 5.11 log cfu/cm2. These results expand the knowledge related to the proteolytic activity and biofilm-forming capacity of Gram-positive psychrotrophic milk bacteria.
Collapse
Affiliation(s)
- Mehdi Zarei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sahar Elmi Anvari
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Siavash Maktabi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Amin Yousefvand
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Aguilera-Toro M, Kragh ML, Thomasen AV, Piccini V, Rauh V, Xiao Y, Wiking L, Poulsen NA, Hansen LT, Larsen LB. Proteolytic activity and heat resistance of the protease AprX from Pseudomonas in relation to genotypic characteristics. Int J Food Microbiol 2023; 391-393:110147. [PMID: 36848797 DOI: 10.1016/j.ijfoodmicro.2023.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
AprX is an alkaline metalloprotease produced by Pseudomonas spp. and encoded by its initial gene of the aprX-lipA operon. The intrinsic diversity among Pseudomonas spp. regarding their proteolytic activity is the main challenge for the development of accurate methods for spoilage prediction of ultra-high temperature (UHT) treated milk in the dairy industry. In the present study, 56 Pseudomonas strains were characterized by assessing their proteolytic activity in milk before and after lab-scale UHT treatment. From these, 24 strains were selected based on their proteolytic activity for whole genome sequencing (WGS) to identify common genotypic characteristics that correlated with the observed variations in proteolytic activity. Four groups (A1, A2, B and N) were determined based on operon aprX-lipA sequence similarities. These alignment groups were observed to significantly influence the proteolytic activity of the strains, with an average proteolytic activity of A1 > A2 > B > N. The lab-scale UHT treatment did not significantly influence their proteolytic activity, indicating a high thermal stability of proteases among strains. Amino acid sequence variation of biologically-relevant motifs in the AprX sequence, namely the Zn2+-binding motif at the catalytic domain and the C-terminal type I secretion signaling mechanism, were found to be highly conserved within alignment groups. These motifs could serve as future potential genetic biomarkers for determination of alignment groups and thereby strain spoilage potential.
Collapse
Affiliation(s)
| | - Martin Laage Kragh
- Technical University of Denmark, Food Microbiology and Hygiene Research Group, Denmark
| | | | | | | | - Yinghua Xiao
- Arla Innovation Center, Arla Foods Amba, Denmark
| | - Lars Wiking
- Department of Food Science, Aarhus University, Denmark
| | | | | | | |
Collapse
|
11
|
Sun Y, Wang R, Li Q, Ma Y. Influence of storage time on protein composition and simulated digestion of UHT milk and centrifugation presterilized UHT milk in vitro. J Dairy Sci 2023; 106:3109-3122. [PMID: 37002142 DOI: 10.3168/jds.2022-22602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/06/2022] [Indexed: 03/31/2023]
Abstract
The centrifugation presterilizing UHT (C-UHT) sterilization method removes 90% of the microorganism and somatic cells from raw milk using high-speed centrifugation following UHT treatment. This study aimed to study the changes in protein composition and plasmin in the UHT and C-UHT milk. The digestive characteristics, composition, and peptide spectrum of milk protein sterilized with the 2 technologies were studied using a dynamic digestive system of a simulated human stomach. The Pierce bicinchoninic acid assay, laser scanning confocal microscope, liquid chromatography-tandem mass spectrometry, and AA analysis were used to study the digestive fluid at different time points of gastric digestion in vitro. The results demonstrated that C-UHT milk had considerably higher protein degradation than UHT milk. Different processes resulted during the cleavage of milk proteins at different sites during digestion, resulting in different derived peptides. The results showed there was no significant effect of UHT and C-UHT on the peptide spectrum of milk proteins, but C-UHT could release relatively more bioactive peptides and free AA.
Collapse
Affiliation(s)
- Yue Sun
- Department of Food Nutrition and Health, School of Medicine and Nutrition, Harbin Institute of Technology, Harbin, China, 150001
| | - Rongchun Wang
- Department of Food Nutrition and Health, School of Medicine and Nutrition, Harbin Institute of Technology, Harbin, China, 150001; Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China, 450001.
| | - Qiming Li
- New Hope Dairy Co. Ltd., Chengdu, Sichuan, China, 610063; Dairy Nutrition and Function, Key Laboratory of Sichuan Province, Chengdu, China, 610000
| | - Ying Ma
- Department of Food Nutrition and Health, School of Medicine and Nutrition, Harbin Institute of Technology, Harbin, China, 150001; Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China, 450001
| |
Collapse
|
12
|
The Impact of Low-Temperature Inactivation of Protease AprX from Pseudomonas on Its Proteolytic Capacity and Specificity: A Peptidomic Study. DAIRY 2023. [DOI: 10.3390/dairy4010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The destabilization of UHT milk during its shelf life can be promoted by the residual proteolytic activity attributed to the protease AprX from Pseudomonas. To better understand the hydrolysis patterns of AprX, and to evaluate the feasibility of using low-temperature inactivation (LTI) for AprX, the release of peptides through AprX activity on milk proteins was examined using an LC-MS/MS-based peptidomic analysis. Milk samples were either directly incubated to be hydrolyzed by AprX, or preheated under LTI conditions (60 °C for 15 min) and then incubated. Peptides and parent proteins (the proteins from which the peptides originated) were identified and quantified. The peptides were mapped and the cleavage frequency of amino acids in the P1/P1′ positions was analyzed, after which the influence of LTI and the potential bitterness of the formed peptides were determined. Our results showed that a total of 2488 peptides were identified from 48 parent proteins, with the most abundant peptides originating from κ-casein and β-casein. AprX may also non-specifically hydrolyze other proteins in milk. Except for decreasing the bitterness potential in skim UHT milk, LTI did not significantly reduce the AprX-induced hydrolysis of milk proteins. Therefore, the inactivation of AprX by LTI may not be feasible in UHT milk production.
Collapse
|
13
|
Extending the Shelf Life of Raw Milk and Pasteurized Milk with Plantaricin FB-2. Foods 2023; 12:foods12030608. [PMID: 36766137 PMCID: PMC9914688 DOI: 10.3390/foods12030608] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Raw milk and pasteurized milk are characterized by a short shelf life, and drinking expired raw milk and pasteurized milk causes illness. In the study, Plantaricin FB-2 (extracted from Lactiplantibacillus plantarum FB-2) was added to liquid milk. By evaluating the microbial growth, acidity changes, protein content, and sensory changes in raw milk and pasteurized milk during storage, it was found that when Plantaricin FB-2 was added at 0.4 g/kg, the shelf life of raw milk was extended by 3 days (7 days if not added). The shelf life of pasteurized milk with Plantaricin FB-2 was extended to 31 days (25 days in the control group), and the optimal amount was 0.3 g/kg. This confirmed that Plantaricin FB-2 can effectively prolong the shelf life of raw and pasteurized milk. This study provides valuable information for the application of bacteriocins produced by Lactiplantibacillus plantarum in raw milk and pasteurized milk to improve their shelf life.
Collapse
|
14
|
Markers and Mechanisms of Deterioration Reactions in Dairy Products. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-023-09331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Peptidomic Fingerprints of Stored UHT Milk Inoculated with Protease Extracts from Different Pseudomonas Strains Relative to aprX Expression and Visible Spoilage. DAIRY 2023. [DOI: 10.3390/dairy4010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lately, concern about the protease AprX produced by Pseudomonas has increased in the dairy industry due to its ability to survive UHT treatment and spoil UHT milk. Efficient prediction methods for UHT milk spoilage are currently lacking, mainly due to high diversity in proteolytic potential between Pseudomonas strains. The present study aimed to gain more insight into the variability between Pseudomonas strains regarding proteolytic potential by comparing their proteolytic capability with their aprX expression levels and differences in peptide formation. The variability in aprX expression levels in four Pseudomonas strains were related to physical stability, milk proteolysis and peptidomic cleavage patterns of milk proteins in a storage experiment of UHT milk inoculated with protease extracellular extracts and stored for 45 days at 20 °C. A positive relationship was observed between the relative expression of aprX and milk proteolysis during storage, with the strain Pseudomonas panacis DSM 18529 showing the highest level in both parameters. This strain was the only strain to show visual gelation, which occurred after 21 days. The peptide formation analysis showed a similar protein hydrolysis pattern between strains and high hydrolysis of αs1-caseins during long-term spoilage putatively due to the activity of AprX was observed.
Collapse
|
16
|
Limited hydrolysis as a strategy to improve the non-covalent interaction of epigallocatechin-3-gallate (EGCG) with whey protein isolate near the isoelectric point. Food Res Int 2022; 161:111847. [DOI: 10.1016/j.foodres.2022.111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/11/2022] [Accepted: 08/21/2022] [Indexed: 11/23/2022]
|
17
|
Santos FRD, Leite Júnior BRDC, Tribst AAL. Kinetic parameters of microbial thermal death in goat cheese whey and growth of surviving microorganisms under refrigeration. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Biochemical, microbiological, and structural evaluations to early detect age gelation of milk caused by proteolytic activity of Pseudomonas fluorescens. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractHeat–stable peptidase AprX, released by Pseudomonas species in raw milk during cold storage, can cause gelation of UHT milk since it is able to split caseinomacropeptides (CMPtot) from κ-casein, so inducing aggregation of casein micelles. Identifying raw milk susceptibility to gelation would allow UHT milk manufacturers to select appropriate processing conditions or give the milk a different destination. Two approaches, i.e., detection of free CMPtot and evidence of casein aggregates, were evaluated as possible indicators for early detecting milk destabilization. With this aim, microfiltered milk was inoculated with a P. fluorescence strain and incubated at either 4 or 25 °C. The presence of CMPtot was detected using capillary electrophoresis after 96 and 24 h at the two temperatures, respectively, when milk also became heat unstable and small flocks of protein appeared. Confocal laser scanning microscopy evidenced initial aggregates of casein micelles after 48 and 24 h at 4 and 25 °C, respectively. Keeping the milk at 25 °C/24 h could be a useful condition to accelerate milk destabilization. Despite the similar timing of instability detection, presence of CMPtot was the only trait specific for AprX activity.
Collapse
|
19
|
Wang Y, Deng Y, Sun J, Cai W, Han X. The effect of extracellular protease secreted by
Pseudomonas fluorescens
W3
on the quality of
UHT
milk. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Yingwang Deng
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Jialei Sun
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Wenjing Cai
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Xue Han
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| |
Collapse
|
20
|
|
21
|
Wang Y, Sun J, Deng Y, Tu Y, Niu H, Cai W, Han X. Whey protein influences the production and activity of extracellular protease from Pseudomonas fluorescens W3. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Potential application of non-thermal atmospheric plasma in reducing the activity of Pseudomonas-secreted proteases in milk. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
|
24
|
Morandi S, Pica V, Masotti F, Cattaneo S, Brasca M, De Noni I, Silvetti T. Proteolytic Traits of Psychrotrophic Bacteria Potentially Causative of Sterilized Milk Instability: Genotypic, Phenotypic and Peptidomic Insight. Foods 2021; 10:foods10050934. [PMID: 33923137 PMCID: PMC8145555 DOI: 10.3390/foods10050934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
The proteolytic traits of the psychrotrophic strains Pseudomonas poae LP5, Pseudomonas fluorescens LPF3, Chryseobacterium joostei LPR1, Pseudomonas fulva PS1, Citrobacter freundii PS37, Hafnia alvei PS46, and Serratia marcescens PS92 were initially investigated by phenotypic and genotypic approaches. Six strains elicited extracellular proteolytic activity, and five expressed the thermostable AprX or (likely) Ser1 enzymes. Then, the strains were inoculated (104 CFU/mL) in microfiltered pasteurized milk and kept at 4 °C for five days. All of the strains reached 108 CFU/mL at the end of storage and five produced thermostable extracellular proteolytic enzymes. The freshly inoculated samples and the corresponding samples at 108 CFU/mL were batch-sterilized (131 °C, 30 s) and kept at 45 °C up to 100 days. The former samples did not gel until the end of incubation, whereas the latter, containing P. poae, P. fluorescens, C. joostei, C. freundii, and S. marcescens, gelled within a few days of incubation. The thermostable proteolytic activity of strains affected the peptidomic profile, and specific proteolyzed zones of β-CN were recognized in the gelled samples. Overall, the results confirm some proteolytic traits of psychrotrophic Pseudomonas spp. strains and provide additional insights on the proteolytic activity of psychrotrophic bacteria potentially responsible for sterilized milk destabilization.
Collapse
Affiliation(s)
- Stefano Morandi
- National Research Council, Institute of Sciences of Food Production, Via G. Celoria 2, 20133 Milan, Italy; (S.M.); (M.B.); (T.S.)
| | - Valentina Pica
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (V.P.); (F.M.); (S.C.)
| | - Fabio Masotti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (V.P.); (F.M.); (S.C.)
| | - Stefano Cattaneo
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (V.P.); (F.M.); (S.C.)
| | - Milena Brasca
- National Research Council, Institute of Sciences of Food Production, Via G. Celoria 2, 20133 Milan, Italy; (S.M.); (M.B.); (T.S.)
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (V.P.); (F.M.); (S.C.)
- Correspondence:
| | - Tiziana Silvetti
- National Research Council, Institute of Sciences of Food Production, Via G. Celoria 2, 20133 Milan, Italy; (S.M.); (M.B.); (T.S.)
| |
Collapse
|
25
|
Wang Y, Han X, Chen X, Deng Y. Potential harmful of extracellular proteases secreted by
Pseudomonas fluorescens
W3 on milk quality. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Xue Han
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Xi Chen
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Yingwang Deng
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| |
Collapse
|
26
|
Identification of Pseudomonas jessenii and Pseudomonas gessardii as the most proteolytic Pseudomonas isolates in Iranian raw milk and their impact on stability of sterilized milk during storage. J DAIRY RES 2020; 87:368-374. [PMID: 32893770 DOI: 10.1017/s0022029920000709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Identification of the most proteolytic Pseudomonas strains that can produce heat-resistant proteases and contribute to the Ultra High Temperature (UHT) milk destabilization is of great interest. In the present study, among the 146 Pseudomonas isolates that encoded the aprX gene, five isolates with the highest proteolytic activity were selected and identified based on 16S rRNA, rpoD and gyrB gene sequences data. The identification results were confirmed by phylogenetic analysis based on multilocus sequence analysis and identified the representative isolates as P. jessenii (two isolates) and P. gessardii (three isolates). Casein zymography demonstrated the ability of these species to produce heat-resistant enzymes, AprX, with molecular mass of about 48 kDa during storage at 7° C for 72 h. In sterilized milk samples, the residual activity of AprX caused a considerable enhancement in the degree of protein hydrolysis, non-protein nitrogen and non-casein nitrogen contents of the samples during a two-month storage. This enhancement was slightly higher in samples containing enzyme produced by P. jessenii compared to P. gessardii ones, resulting in earlier onset of sterilized milk destabilization. Hence, this study revealed that P. jessenii and P. gessardii can play a considerable role in deterioration of Iranian commercial long-life milk.
Collapse
|
27
|
Kim SC, Yun SY, Ahn NH, Kim SM, Imm JY. Effect of Homogenization Pressure on Plasmin Activity and Mechanical Stress-Induced Fat Aggregation of Commercially Sterilized Ultra High Temperature Milk during Storage. Food Sci Anim Resour 2020; 40:734-745. [PMID: 32968726 PMCID: PMC7492180 DOI: 10.5851/kosfa.2020.e48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 01/11/2023] Open
Abstract
Commercially sterilized ultra high temperature (UHT) milk was manufactured at different homogenization pressures (20, 25, and 30 MPa), and changes in fat particle size, mechanical stress-induced fat aggregation, plasmin activity, and lipid oxidation were monitored during ambient storage of the UHT milk for up to 16 wk. The particle sizes of milk fat globules were significantly decreased as homogenization pressure increased from 20 to 30 MPa (p<0.05). The presence of mechanical stress-induced fat aggregates in milk produced at 20 MPa was significantly higher than for UHT milk produced at either 25 or 30 MPa. This difference was maintained all throughout the storage. There were no significant differences in plasmin activity, trichloroacetic acid (12%, w/v) soluble peptides, and the extent of lipid oxidation. Based on these results, an increase of homogenization pressure from 20 (the typical homogenization pressure employed in the Korea dairy industry) to 25-30 MPa significantly decreased mechanical stress-induced fat aggregation without affecting susceptibility to lipid oxidation during storage.
Collapse
Affiliation(s)
- Sun-Chul Kim
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| | - So-Yul Yun
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| | - Na-Hyun Ahn
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| | - Seong-Min Kim
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| |
Collapse
|
28
|
Alinovi M, Wiking L, Corredig M, Mucchetti G. Effect of frozen and refrigerated storage on proteolysis and physicochemical properties of high-moisture citric mozzarella cheese. J Dairy Sci 2020; 103:7775-7790. [PMID: 32684456 DOI: 10.3168/jds.2020-18396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/27/2020] [Indexed: 01/07/2023]
Abstract
High-moisture mozzarella is one of the most-exported Italian cheeses worldwide, but its quality is affected by storage. Freezing is regarded as a solution to decrease product waste, extend market reach, and increase convenience, but its effect on quality has to be estimated. In this study, the details related to proteolysis, physicochemical properties, and sensory quality parameters of high-moisture mozzarella as a function of frozen storage (1, 3, and 4 mo) and subsequent refrigerated storage after thawing (1, 3, and 8 d) were evaluated. Frozen cheeses stored at -18°C showed a higher extent of proteolysis, as well as different colorimetric and sensory properties, compared with the fresh, nonfrozen control. Sensory evaluation showed the emergence of oxidized and bitter taste after 1 mo of frozen storage, which supports the proteolysis data. The extent of proteolysis of frozen-stored cheese after thawing was greater than that measured in fresh cheese during refrigerated storage. These results help better understand the changes occurring during frozen storage of high-moisture mozzarella cheese and evaluate possible means to decrease the effect of freezing on the cheese matrix.
Collapse
Affiliation(s)
- Marcello Alinovi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 47/A, Parma, Italy 43124.
| | - Lars Wiking
- Department of Food Science, Aarhus University, Agro Food Park 48, Skejby, Denmark 8200; iFood Center, Department of Food Science, Aarhus University, Agro Food Park 48, Skejby, Denmark 8200
| | - Milena Corredig
- Department of Food Science, Aarhus University, Agro Food Park 48, Skejby, Denmark 8200; iFood Center, Department of Food Science, Aarhus University, Agro Food Park 48, Skejby, Denmark 8200
| | - Germano Mucchetti
- Food and Drug Department, University of Parma, Parco Area delle Scienze 47/A, Parma, Italy 43124
| |
Collapse
|
29
|
Paludetti LF, O'Callaghan TF, Sheehan JJ, Gleeson D, Kelly AL. Effect of Pseudomonas fluorescens proteases on the quality of Cheddar cheese. J Dairy Sci 2020; 103:7865-7878. [PMID: 32600766 DOI: 10.3168/jds.2019-18043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/10/2020] [Indexed: 12/31/2022]
Abstract
The objective of this study was to investigate the effect of adding different levels of a thermoresistant protease produced by a Pseudomonas fluorescens strain to milk on the manufacture and quality of Cheddar cheese. Fresh raw milk was collected, standardized, and pasteurized at 72°C for 15 s, and the enzyme was added to give a protease activity of 0.15 or 0.60 U/L (treatments P1 and P4, respectively), while one sample had no enzyme added (control). Milk was stored at 4°C for 48 h and Cheddar cheese was manufactured after 0 and 48 h of storage. Results indicated that the protease was active in milk during 48 h of storage; however, its effect on milk composition was minimal. The protein that was preferentially hydrolyzed by the protease over storage was β-casein, followed by κ-casein. The mean cheese yield and recovery of fat and protein obtained for all cheeses were not affected by protease activity. The protease showed low activity during cheese manufacture, possibly because of unfavorable conditions, including low pH. One of the factors that might have influenced protease activity was the pH of the curd (approximately 6.55 after acidification and 5.35 at milling), which was lower than that at which the enzyme would have optimum activity (pH 7 to 9). Consequently, the composition, pH, patterns of proteolysis, and hardness of all cheeses produced were similar and in accordance with values expected for that type of cheese, independently of the protease activity level. However, slight increases in proteolysis were observed in P4 cheeses and produced using milk stored for 48 h. Both the P1 and P4 cheeses had higher concentrations of free amino acids (FAA) compared with the control, whereas urea-PAGE electrophoretograms indicated a greater breakdown of caseins in the P4 cheese samples, which may be related to possible increases in numbers of proteolytic bacteria in milk during storage. Therefore, the thermoresistant psychrotrophic bacterial protease(s) tested in this study may affect the manufacture or quality of Cheddar cheese during ripening to a relatively limited extent. However, controlling initial levels of proteolytic bacteria in raw milk remains essential, because proteolysis affects the development of flavor and texture in cheese.
Collapse
Affiliation(s)
- Lizandra F Paludetti
- Teagasc Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 County Cork, Ireland; School of Food and Nutritional Sciences, University College Cork, T12 K8AF County Cork, Ireland
| | - Tom F O'Callaghan
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 County Cork, Ireland
| | - Jeremiah J Sheehan
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 County Cork, Ireland.
| | - David Gleeson
- Teagasc Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 County Cork, Ireland
| | - Alan L Kelly
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF County Cork, Ireland
| |
Collapse
|
30
|
Zhang D, Li S, Palmer J, Teh KH, Leow S, Flint S. The relationship between numbers of Pseudomonas bacteria in milk used to manufacture UHT milk and the effect on product quality. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Paludetti LF, Kelly AL, Gleeson D. Effect of thermoresistant protease of Pseudomonas fluorescens on rennet coagulation properties and proteolysis of milk. J Dairy Sci 2020; 103:4043-4055. [PMID: 32147268 DOI: 10.3168/jds.2019-17771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/26/2019] [Indexed: 01/05/2023]
Abstract
This study aimed to investigate the effect of different activity levels of a thermoresistant protease, produced by Pseudomonas fluorescens (ATCC 17556), on the cheesemaking properties of milk and proteolysis levels. Sterilized reconstituted skim milk powder was inoculated with the bacteria, and after incubation, centrifuged to obtain a supernatant-containing protease. Raw milk was collected and inoculated to obtain a protease activity of 0.15, 0.60, and 1.5 U/L of milk (treatments P1, P4, and P10, respectively). One sample was not inoculated (control) and noninoculated supernatant was added to a fifth sample to be used as a negative control. Samples were stored at 4°C for 72 h. After 0, 48, and 72 h, the rennet coagulation properties and proteolysis levels were assessed. The protease produced was thermoresistant, as no significant differences were observed in the activity in the pasteurized (72°C for 15 s) and nonpasteurized supernatants. The chromatograms and electrophoretograms indicated that the protease preferably hydrolyzed κ-casein and β-casein, and levels of proteolysis increased with added protease activity over storage time. The hydrolysis of αS-caseins and major whey proteins increased considerably in P10 milk samples. At 0 h, the increase in the level of protease activity decreased the rennet coagulation time (RCT, min) of the samples, possibly due to synergistic proteolysis of κ-casein into para-κ-casein. However, over prolonged storage, hydrolysis of β-casein and αS-casein increased in P4 and P10 samples. The RCT of P4 samples increased over time and the coagulum became softer, whereas P10 samples did not coagulate after 48 h of storage. In contrast, the RCT of P1 samples decreased over time and a firmer coagulum was obtained, possibly due to a lower rate of hydrolysis of β-casein and αS-casein. Increased levels of protease could result in further hydrolysis of caseins, affecting the processability of milk over storage time.
Collapse
Affiliation(s)
- Lizandra F Paludetti
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland; School of Food and Nutritional Sciences, University College Cork, County Cork T12 K8AF, Ireland
| | - Alan L Kelly
- School of Food and Nutritional Sciences, University College Cork, County Cork T12 K8AF, Ireland
| | - David Gleeson
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland.
| |
Collapse
|
32
|
Ranvir S, Sharma R, Gandhi K, Upadhyay N, Mann B. Assessment of proteolysis in ultra‐high temperature milk using attenuated total reflectance–Fourier transform infrared spectroscopy. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suvartan Ranvir
- Dairy Chemistry Division ICAR‐National Dairy Research Institute Karnal 132001 India
| | - Rajan Sharma
- Dairy Chemistry Division ICAR‐National Dairy Research Institute Karnal 132001 India
| | - Kamal Gandhi
- Dairy Chemistry Division ICAR‐National Dairy Research Institute Karnal 132001 India
| | - Neelam Upadhyay
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal 132001 India
| | - Bimlesh Mann
- Dairy Chemistry Division ICAR‐National Dairy Research Institute Karnal 132001 India
| |
Collapse
|
33
|
Zhang C, Bijl E, Muis KE, Hettinga K. Stability of fat globules in UHT milk during proteolysis by the AprX protease from Pseudomonas fluorescens and by plasmin. J Dairy Sci 2020; 103:179-190. [DOI: 10.3168/jds.2019-17150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023]
|
34
|
Yuan L, Sadiq FA, Burmølle M, Wang NI, He G. Insights into Psychrotrophic Bacteria in Raw Milk: A Review. J Food Prot 2019; 82:1148-1159. [PMID: 31225978 DOI: 10.4315/0362-028x.jfp-19-032] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIGHLIGHTS Levels of psychrotrophic bacteria in raw milk are affected by to habitats and farm hygiene. Biofilms formed by psychrotrophic bacteria are persistent sources of contamination. Heat-stable enzymes produced by psychrotrophic bacteria compromise product quality. Various strategies are available for controlling dairy spoilage caused by psychrotrophic bacteria.
Collapse
Affiliation(s)
- Lei Yuan
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.,2 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Faizan A Sadiq
- 3 School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Mette Burmølle
- 2 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - N I Wang
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Guoqing He
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
35
|
Zhang C, Bijl E, Svensson B, Hettinga K. The Extracellular Protease AprX fromPseudomonasand its Spoilage Potential for UHT Milk: A Review. Compr Rev Food Sci Food Saf 2019; 18:834-852. [DOI: 10.1111/1541-4337.12452] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Chunyue Zhang
- Dairy Science and Technology, Food Quality and Design GroupWageningen Univ. and Research P.O. Box 17 6700 AA Wageningen the Netherlands
| | - Etske Bijl
- Dairy Science and Technology, Food Quality and Design GroupWageningen Univ. and Research P.O. Box 17 6700 AA Wageningen the Netherlands
| | - Birgitta Svensson
- Tetra Pak Processing Systems ABRuben Rausings gata 221 86 Lund Sweden
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design GroupWageningen Univ. and Research P.O. Box 17 6700 AA Wageningen the Netherlands
| |
Collapse
|
36
|
D'Incecco P, Brasca M, Rosi V, Morandi S, Ferranti P, Picariello G, Pellegrino L. Bacterial proteolysis of casein leading to UHT milk gelation: An applicative study. Food Chem 2019; 292:217-226. [PMID: 31054668 DOI: 10.1016/j.foodchem.2019.04.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 01/22/2023]
Abstract
Heat-stable peptidases released in refrigerated raw milk by psychrotrophic bacteria are responsible for UHT milk gelation. K-casein-derived caseinomacropeptides, identified by mass spectrometry, were constantly detected in gelled milk by capillary electrophoresis. Strains of Pseudomonas fluorescens, Ps. poae and Chryseobacterium joostei, selected among aprX-positive strains from raw milk, were incubated in milk up to 6 days at 4 °C before sterilization (98 °C/4 min). Samples were then stored at 25 or 40 °C, visually observed for gelation, and analysed for presence of caseinomacropeptides throughout 90 days of storage. Depending on cold pre-incubation time, caseinomacropeptides accumulated well before gelation onset in milk stored at 25 °C. Caseinomacropeptides were successively degraded, especially in milk stored at 40 °C, due to extensive proteolysis, and an abundant sediment developed instead of a gel. The caseinomacropeptides are here presented as an early indicator of UHT milk gelation and a mechanism explaining this phenomenon is proposed.
Collapse
Affiliation(s)
- Paolo D'Incecco
- Department of Food, Environmental and Nutritional Sciences, University of Milano, Milan, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Milan, Italy
| | - Veronica Rosi
- Department of Food, Environmental and Nutritional Sciences, University of Milano, Milan, Italy
| | - Stefano Morandi
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Milan, Italy
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy; Institute of Food Science and Technology, National Research Council of Italy (ISA-CNR), Avellino, Italy
| | - Gianluca Picariello
- Institute of Food Science and Technology, National Research Council of Italy (ISA-CNR), Avellino, Italy
| | - Luisa Pellegrino
- Department of Food, Environmental and Nutritional Sciences, University of Milano, Milan, Italy.
| |
Collapse
|
37
|
Anema SG. Age Gelation, Sedimentation, and Creaming in UHT Milk: A Review. Compr Rev Food Sci Food Saf 2018; 18:140-166. [PMID: 33337027 DOI: 10.1111/1541-4337.12407] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 11/30/2022]
Abstract
Demand for ultra-high-temperature (UHT) milk and milk protein-based beverages is growing. UHT milk is microbiologically stable. However, on storage, a number of chemical and physical changes occur and these can reduce the quality of the milk. These changes can be sufficiently undesirable so as to limit acceptance or shelf life of the milk. The most severe changes in UHT milk during storage are age gelation, with an irreversible three-dimensional protein network forming throughout, excessive sedimentation with a compact layer of protein-enriched material forming rapidly at the bottom of the pack, and creaming with excessive fat accumulating at the top. For age gelation, it is known that at least two mechanisms can lead to gelation during storage. One mechanism involves proteolytic degradation of the proteins through heat-stable indigenous or exogenous enzymes, destabilizing milk and ultimately forming a gel. The other mechanism is referred to as a physico-chemical mechanism. Several factors are known to affect the physico-chemical age gelation, such as milk/protein concentration, heat load during processing (direct compared with indirect UHT processes), and milk composition. Similar factors to age gelation are known to affect sedimentation. There are relatively few studies on the creaming of UHT milk during storage, suggesting that this defect is less common or less detrimental compared with gelation and sedimentation. This review focuses on the current state of knowledge of age gelation, sedimentation, and creaming of UHT milks during storage, providing a critical evaluation of the available literature and, based on this, mechanisms for age gelation and sedimentation are proposed.
Collapse
Affiliation(s)
- Skelte G Anema
- Fonterra Research and Development Centre, Private Bag 11029, Dairy Farm Road, Palmerston North, 4442, New Zealand.,Riddet Inst., Massey Univ., Private Bag 11222, Palmerston North, 4442, New Zealand
| |
Collapse
|