1
|
Feng J, Jia Y, Xu B, Bi X, Ge Z, Ma G, Xie Y, Wang C, Ma D. Quantitative proteomic analysis for characterization of protein components related to dough quality and celiac disease in wheat flour, dough, and heat-treated dough. Food Chem 2024; 461:140924. [PMID: 39181042 DOI: 10.1016/j.foodchem.2024.140924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/23/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
High-sensitivity 4D label-free proteomic technology was used to identify protein components related to gluten quality and celiac disease (CD) in strong-gluten wheat cultivar KX 3302 and medium-gluten wheat cultivar BN 207. The highly expressed storage protein components in KX3302 were high-molecular-weight-glutenin-subunits (HMW-GSs), α-gliadin, and globulin, whereas those in BN207 were γ-gliadin, low-molecular-weight-glutenin-subunits (LMW-GSs) and avenin-like proteins. In addition, BN207 had more upregulated metabolic proteins than KX3302. The abundance of storage proteins increased during dough formation. After heat treatment, the upregulated proteins accounted for 57.53 % of the total proteins, but the downregulated storage proteins accounted for 79.34 % of the total storage proteins. In cultivar KX3302, CD proteins mainly included α-gliadin and HMW-GSs, whereas in BN207, they were mainly γ-gliadin and LMW-GSs. Thermal treatment significantly reduces the expression levels of CD-related proteins. These findings provide a new perspective on reducing the content of CD-related proteins in wheat products.
Collapse
Affiliation(s)
- Jianchao Feng
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuku Jia
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Beiming Xu
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Xintong Bi
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Zifei Ge
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Geng Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Yingxin Xie
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenyang Wang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Dongyun Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Ge HJ, Chen XL. Advances in understanding and managing celiac disease: Pathophysiology and treatment strategies. World J Gastroenterol 2024; 30:3932-3941. [PMID: 39351055 PMCID: PMC11438662 DOI: 10.3748/wjg.v30.i35.3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
In this editorial, we comment on an article published in the recent issue of the World Journal of Gastroenterology. Celiac disease (CeD) is a disease occurring in genetically susceptible individuals, which is mainly characterized by gluten intolerance in the small intestine and clinical symptoms such as abdominal pain, diarrhea, and malnutrition. Therefore, patients often need a lifelong gluten-free diet, which greatly affects the quality of life and expenses of patients. The gold standard for diagnosis is intestinal mucosal biopsy, combined with serological and genetic tests. At present, the lack of safe, effective, and satisfactory drugs for CeD is mainly due to the complexity of its pathogenesis, and it is difficult to find a perfect target to solve the multi-level needs of patients. In this editorial, we mainly review the pathological mechanism of CeD and describe the current experimental and improved drugs for various pathological aspects.
Collapse
Affiliation(s)
- Hao-Jie Ge
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
3
|
Norwig MC, Geisslitz S, Scherf KA. Comparative Label-Free Proteomics Study on Celiac Disease-Active Epitopes in Common Wheat, Spelt, Durum Wheat, Emmer, and Einkorn. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15040-15052. [PMID: 38906536 PMCID: PMC11228976 DOI: 10.1021/acs.jafc.4c02657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Wheat species with various ploidy levels may be different regarding their immunoreactive potential in celiac disease (CD), but a comprehensive comparison of peptide sequences with known epitopes is missing. Thus, we used an untargeted liquid chromatography tandem mass spectrometry method to analyze the content of peptides with CD-active epitope in the five wheat species common wheat, spelt, durum wheat, emmer, and einkorn. In total, 494 peptides with CD-active epitope were identified. Considering the average of the eight cultivars of each species, spelt contained the highest number of different peptides with CD-active epitope (193 ± 12, mean ± SD). Einkorn showed the smallest variability of peptides (63 ± 4) but higher amounts of certain peptides compared to the other species. The wheat species differ in the presence and distribution of CD-active epitopes; hence, the entirety of peptides with CD-active epitope is crucial for the assessment of their immunoreactive potential.
Collapse
Affiliation(s)
- Marie-Christin Norwig
- Technical
University of Munich, TUM School of Life
Sciences, Freising 85354, Germany
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Freising 85354, Germany
| | - Sabrina Geisslitz
- Department
of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology
(KIT), Karlsruhe 76131, Germany
| | - Katharina A. Scherf
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Freising 85354, Germany
- Department
of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology
(KIT), Karlsruhe 76131, Germany
- Technical
University of Munich, TUM School of Life
Sciences, Professorship of Food Biopolymer Systems, Freising 85354, Germany
| |
Collapse
|
4
|
Zhang Y, Wu H, Fu L. A review of gluten detoxification in wheat for food applications: approaches, mechanisms, and implications. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38470104 DOI: 10.1080/10408398.2024.2326618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
With the improved knowledge of gluten-related disorders, especially celiac disease (CD), the market of gluten-free food is growing. However, the current gluten-free diet still presents challenges in terms of nutrition, acceptability, and cost due to the absence of gluten. It is important to note that gluten-related allergies or sensitivities have different underlying causes. And individuals with mild non-celiac gluten disorder symptoms may not necessarily require the same gluten-free treatments. Scientists are actively seeking alternative solutions for these consumers. This review delves into the various strategies employed by researchers for detoxifying gluten or modifying its main protein, gliadin, including genetic treatment, transamidation and deamidation, hydrolysis, and microbial treatments. The mechanisms, constraints of these techniques, their current utilization in food items, as well as their implications for gluten-related disorders, are discussed in detail. Although there is still a gap in the application of these methods as alternative solutions in the real market, the summary provided by our review could be beneficial for peers in enriching their basic ideas and developing more applicable solutions for wheat gluten detoxification.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Haoyi Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| |
Collapse
|
5
|
Lu Y, Ji H, Chen Y, Li Z, Timira V. A systematic review on the recent advances of wheat allergen detection by mass spectrometry: future prospects. Crit Rev Food Sci Nutr 2023; 63:12324-12340. [PMID: 35852160 DOI: 10.1080/10408398.2022.2101091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wheat is one of the three major staple foods in the world. Although wheat is highly nutritional, it has a variety of allergenic components that are potentially fatal to humans and pose a significant hazard to the growth and consumption of wheat. Wheat allergy is a serious health problem, which is becoming more and more prevalent all over the world. To address and prevent related health risks, it is crucial to establish precise and sensitive detection and analytical methods as well as an understanding of the structure and sensitization mechanism of wheat allergens. Among various analytical tools, mass spectrometry (MS) is known to have high specificity and sensitivity. It is a promising non immune method to evaluate and quantify wheat allergens. In this article, the current research on the detection of wheat allergens based on mass spectrometry is reviewed. This review provides guidance for the further research on wheat allergen detection using mass spectrometry, and speeds up the development of wheat allergen research in China.
Collapse
Affiliation(s)
- Yingjun Lu
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Hua Ji
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), Beijing, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| |
Collapse
|
6
|
Evaluation of Glycemic Index of Six Different Samples of Commercial and Experimental Pasta Differing in Wheat Varieties and Production Processes. Foods 2021; 10:foods10092221. [PMID: 34574331 PMCID: PMC8465557 DOI: 10.3390/foods10092221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 02/03/2023] Open
Abstract
Pasta is a staple food of the Mediterranean Diet, and it is traditionally made of durum wheat semolina. In Sicily, durum wheat production and its transformation into semolina, bread, and pasta are well-developed economic sectors. For pasta, there is a wide supply of commercial brands, whether coming from conventional industrial manufacturing or from medium to small and local handcrafted production. Both conventional durum wheat and local durum wheat landraces, such as Timilia and Russello, are used for pasta production, but local landraces are, for the most, transformed into handcrafted pasta. The market of local landraces durum wheat pasta has risen in recent decades, in Sicily and in Italy as well, boosted by a perceived high nutritional and healthy value of these wheat derivatives. In particular, a popular and scientifically unproven idea suggests that a reduced glycemic response might be elicited by these pasta landraces. Therefore, to test this hypothesis, the main objective of the present study was the evaluation of the glycemic index (GI) of four samples of Timilia and Russello handcrafted pasta and two samples of conventional durum wheat pasta. The study enrolled fourteen healthy weight male and female volunteers aged from 18 to 46; eight test sessions were performed twice a week, every session testing a pasta sample (six sessions) or the glucose solution chosen as reference food (two sessions). The standard methodology for GI measurement was followed during each step of the study. The six tested pasta samples were characterized regarding their composition (protein, fiber, and starch content) and their whole production processes (milling method and milling diagram of flour or semolina, drying temperature, and diagram of pasta shape). The six tested pasta samples showed GI values ranging from low (34.1) to intermediate (63.1). Timilia and Russello pasta are the first GI calculations available. The two samples made of conventional grains showed lower values of GI (34.1 and 37.8). The results do not support the popular idea of a reduced glycemic response elicited by Timilia and Russello wheat landrace pasta; the tested samples showed GI values in the range of 56.2 to 63.1. However, some consideration should be made of factors other than wheat varieties and related to production processes that may have affected the final GIs of the pastas. Even if the study is not designed to discriminate among factors related to wheat varieties or processes used to produce different pasta, it is a preliminary step in the characterization of the healthy potential of the local wheat landraces, popularly called ancient grain. A future implementation of the local wheat landraces supply chain should pay attention to all the factors above, from a better seed identity certification to the production process in order to further improve the healthy value of these staples of the Mediterranean Diet.
Collapse
|
7
|
de Sousa T, Ribeiro M, Sabença C, Igrejas G. The 10,000-Year Success Story of Wheat! Foods 2021; 10:2124. [PMID: 34574233 PMCID: PMC8467621 DOI: 10.3390/foods10092124] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Wheat is one of the most important cereal crops in the world as it is used in the production of a diverse range of traditional and modern processed foods. The ancient varieties einkorn, emmer, and spelt not only played an important role as a source of food but became the ancestors of the modern varieties currently grown worldwide. Hexaploid wheat (Triticum aestivum L.) and tetraploid wheat (Triticum durum Desf.) now account for around 95% and 5% of the world production, respectively. The success of this cereal is inextricably associated with the capacity of its grain proteins, the gluten, to form a viscoelastic dough that allows the transformation of wheat flour into a wide variety of staple forms of food in the human diet. This review aims to give a holistic view of the temporal and proteogenomic evolution of wheat from its domestication to the massively produced high-yield crop of our day.
Collapse
Affiliation(s)
- Telma de Sousa
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (M.R.); (C.S.)
- Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2825-149 Lisbon, Caparica, Portugal
| | - Miguel Ribeiro
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (M.R.); (C.S.)
- Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2825-149 Lisbon, Caparica, Portugal
| | - Carolina Sabença
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (M.R.); (C.S.)
- Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2825-149 Lisbon, Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (M.R.); (C.S.)
- Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2825-149 Lisbon, Caparica, Portugal
| |
Collapse
|
8
|
Ribeiro M, de Sousa T, Sabença C, Poeta P, Bagulho AS, Igrejas G. Advances in quantification and analysis of the celiac-related immunogenic potential of gluten. Compr Rev Food Sci Food Saf 2021; 20:4278-4298. [PMID: 34402581 DOI: 10.1111/1541-4337.12828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/18/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
Gluten-free products have emerged in response to the increasing prevalence of gluten-related disorders, namely celiac disease. Therefore, the quantification of gluten in products intended for consumption by individuals who may suffer from these pathologies must be accurate and reproducible, in a way that allows their proper labeling and protects the health of consumers. Immunochemical methods have been the methods of choice for quantifying gluten, and several kits are commercially available. Nevertheless, they still face problems such as the initial extraction of gluten in complex matrices or the use of a standardized reference material to validate the results. Lately, other methodologies relying mostly on mass spectrometry-based techniques have been explored, and that may allow, in addition to quantitative analysis, the characterizationof gluten proteins. On the other hand, although the level of 20 mg/kg of gluten detected by these methods is sufficient for a product to be considered gluten-free, its immunogenic potential for celiac patients has not been clinically validated. In this sense, in vitro and in vivo models, such as the organoid technology applied in gut-on-chip devices and the transgenic humanized mouse models, respectively, are being developed for investigating both the gluten-induced pathogenesis and the treatment of celiac disease. Due to the ubiquitous nature of gluten in the food industry, as well as the increased prevalence of gluten-related disorders, here we intend to summarize the available methods for gluten quantification in food matrices and for the evaluation of its immunogenic potential concerning the development of novel therapies for celiac disease to highlight active research and discuss knowledge gaps and current challenges in this field.
Collapse
Affiliation(s)
- Miguel Ribeiro
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| | - Telma de Sousa
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| | - Carolina Sabença
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| | - Patrícia Poeta
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal.,Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Ana Sofia Bagulho
- National Institute for Agrarian and Veterinarian Research, Elvas, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| |
Collapse
|
9
|
Pilolli R, De Angelis M, Lamonaca A, De Angelis E, Rizzello CG, Siragusa S, Gadaleta A, Mamone G, Monaci L. Prototype Gluten-Free Breads from Processed Durum Wheat: Use of Monovarietal Flours and Implications for Gluten Detoxification Strategies. Nutrients 2020; 12:E3824. [PMID: 33327648 PMCID: PMC7765144 DOI: 10.3390/nu12123824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
In this investigation, we reported the production of prototype breads from the processed flours of three specific Triticum turgidum wheat genotypes that were selected in our previous investigation for their potential low toxic/immunogenic activity for celiac disease (CD) patients. The flours were subjected to sourdough fermentation with a mixture of selected Lactobacillus strains, and in presence of fungal endoproteases. The breads were characterized by R5 competitive enzyme linked immunosorbent assay in order to quantify the residual gluten, and the differential efficacy in gluten degradation was assessed. In particular, two of them were classified as gluten-free (<20 ppm) and very low-gluten content (<100 ppm) breads, respectively, whereas the third monovarietal prototype retained a gluten content that was well above the safety threshold prescribed for direct consumption by CD patients. In order to investigate such a genotype-dependent efficiency of the detoxification method applied, an advanced proteomic characterization by high-resolution tandem mass spectrometry was performed. Notably, to the best of our knowledge, this is the first proteomic investigation which benefitted, for protein identification, from the full sequencing of the Triticum turgidum ssp. durum genome. The differences of the proteins' primary structures affecting their susceptibility to hydrolysis were investigated. As a confirmation of the previous immunoassay-based results, two out of the three breads made with the processed flours presented an exhaustive degradation of the epitopic sequences that are relevant for CD immune stimulatory activity. The list of the detected epitopes was analyzed and critically discussed in light of their susceptibility to the detoxification strategy applied. Finally, in-vitro experiments of human gastroduodenal digestion were carried out in order to assess, in-silico, the toxicity risk of the prototype breads under investigation for direct consumption by CD patients. This approach allowed us to confirm the total degradation of the epitopic sequences upon gastro-duodenal digestion.
Collapse
Affiliation(s)
- Rosa Pilolli
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (A.L.); (E.D.A.); (L.M.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (M.D.A.); (C.G.R.); (S.S.)
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (A.L.); (E.D.A.); (L.M.)
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (A.L.); (E.D.A.); (L.M.)
| | - Carlo Giuseppe Rizzello
- Department of Soil, Plant and Food Science, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (M.D.A.); (C.G.R.); (S.S.)
| | - Sonya Siragusa
- Department of Soil, Plant and Food Science, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (M.D.A.); (C.G.R.); (S.S.)
| | - Agata Gadaleta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy;
| | | | - Linda Monaci
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (A.L.); (E.D.A.); (L.M.)
| |
Collapse
|
10
|
Mumolo MG, Rettura F, Melissari S, Costa F, Ricchiuti A, Ceccarelli L, de Bortoli N, Marchi S, Bellini M. Is Gluten the Only Culprit for Non-Celiac Gluten/Wheat Sensitivity? Nutrients 2020; 12:E3785. [PMID: 33321805 PMCID: PMC7762999 DOI: 10.3390/nu12123785] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The gluten-free diet (GFD) has gained increasing popularity in recent years, supported by marketing campaigns, media messages and social networks. Nevertheless, real knowledge of gluten and GF-related implications for health is still poor among the general population. The GFD has also been suggested for non-celiac gluten/wheat sensitivity (NCG/WS), a clinical entity characterized by intestinal and extraintestinal symptoms induced by gluten ingestion in the absence of celiac disease (CD) or wheat allergy (WA). NCG/WS should be regarded as an "umbrella term" including a variety of different conditions where gluten is likely not the only factor responsible for triggering symptoms. Other compounds aside from gluten may be involved in the pathogenesis of NCG/WS. These include fructans, which are part of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs), amylase trypsin inhibitors (ATIs), wheat germ agglutinin (WGA) and glyphosate. The GFD might be an appropriate dietary approach for patients with self-reported gluten/wheat-dependent symptoms. A low-FODMAP diet (LFD) should be the first dietary option for patients referring symptoms more related to FODMAPs than gluten/wheat and the second-line treatment for those with self-reported gluten/wheat-related symptoms not responding to the GFD. A personalized approach, regular follow-up and the help of a skilled dietician are mandatory.
Collapse
Affiliation(s)
| | - Francesco Rettura
- Gastrointestinal Unit, Department of Translational Sciences and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.G.M.); (S.M.); (F.C.); (A.R.); (L.C.); (N.d.B.); (S.M.); (M.B.)
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Pronin D, Börner A, Weber H, Scherf KA. Wheat ( Triticum aestivum L.) Breeding from 1891 to 2010 Contributed to Increasing Yield and Glutenin Contents but Decreasing Protein and Gliadin Contents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13247-13256. [PMID: 32648759 DOI: 10.1021/acs.jafc.0c02815] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Epidemiologic studies suggest an increasing prevalence of celiac disease and non-celiac gluten/wheat sensitivity. With wheat proteins being the main triggers, changes in wheat protein composition are discussed as a potential cause. The goals of breeding toward increased yield and resistance might have inadvertently contributed to a higher immunostimulatory potential of modern wheat cultivars compared to old wheat cultivars. Therefore, agronomic characteristics, protein content, and gluten composition of 60 German winter wheat cultivars first registered between 1891 and 2010 grown in 3 years were analyzed. While plant height and spike density decreased over time, yield and harvest index increased. The protein and gliadin contents showed a decreasing trend, whereas glutenin contents increased, but there were no changes in albumin/globulin and gluten contents. Overall, the harvest year had a more significant effect on protein composition than the cultivar. At the protein level, we found no evidence to support an increased immunostimulatory potential of modern winter wheat.
Collapse
Affiliation(s)
- Darina Pronin
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466 Seeland/OT Gatersleben, Germany
| | - Hans Weber
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466 Seeland/OT Gatersleben, Germany
| | - Katharina Anne Scherf
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| |
Collapse
|
12
|
Penuelas J, Gargallo-Garriga A, Janssens IA, Ciais P, Obersteiner M, Klem K, Urban O, Zhu YG, Sardans J. Could Global Intensification of Nitrogen Fertilisation Increase Immunogenic Proteins and Favour the Spread of Coeliac Pathology? Foods 2020; 9:E1602. [PMID: 33158083 PMCID: PMC7694225 DOI: 10.3390/foods9111602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Fertilisation of cereal crops with nitrogen (N) has increased in the last five decades. In particular, the fertilisation of wheat crops increased by nearly one order of magnitude from 1961 to 2010, from 9.84 to 93.8 kg N ha-1 y-1. We hypothesized that this intensification of N fertilisation would increase the content of allergenic proteins in wheat which could likely be associated with the increased pathology of coeliac disease in human populations. An increase in the per capita intake of gliadin proteins, the group of gluten proteins principally responsible for the development of coeliac disease, would be the responsible factor. We conducted a global meta-analysis of available reports that supported our hypothesis: wheat plants growing in soils receiving higher doses of N fertilizer have higher total gluten, total gliadin, α/β-gliadin, γ-gliadin and ω-gliadin contents and higher gliadin transcription in their grain. We thereafter calculated the per capita annual average intake of gliadins from wheat and derived foods and found that it increased from 1961 to 2010 from approximately 2.4 to 3.8 kg y-1 per capita (+1.4 ± 0.18 kg y-1 per capita, mean ± SE), i.e., increased by 58 ± 7.5%. Finally, we found that this increase was positively correlated with the increase in the rates of coeliac disease in all the available studies with temporal series of coeliac disease. The impacts and damage of over-fertilisation have been observed at an environmental scale (e.g., eutrophication and acid rain), but a potential direct effect of over-fertilisation is thus also possible on human health (coeliac disease).
Collapse
Affiliation(s)
- Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193 Catalonia, Spain; (A.G.-G.); (J.S.)
- CREAF, Cerdanyola del Valles, 08193 Catalonia, Spain
- Global Change Research Institute, Czech Academy of Sciences, CZ-60300 Brno, Czech Republic; (K.K.); (O.U.)
| | - Albert Gargallo-Garriga
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193 Catalonia, Spain; (A.G.-G.); (J.S.)
- CREAF, Cerdanyola del Valles, 08193 Catalonia, Spain
- Global Change Research Institute, Czech Academy of Sciences, CZ-60300 Brno, Czech Republic; (K.K.); (O.U.)
| | - Ivan A. Janssens
- Research Group Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, B-2610 Wilrijk, Belgium;
| | - Philippe Ciais
- Laboratory of Climate and Environmental Sciences, Institute Pierre Simon Laplace (PSL), 91191 Gif-sur-Yvette, France;
| | - Michael Obersteiner
- Ecosystems Services and Management, International Institute for Applied Systems Analysis (IIASA), A-2361 Laxenburg, Austria;
| | - Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, CZ-60300 Brno, Czech Republic; (K.K.); (O.U.)
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, CZ-60300 Brno, Czech Republic; (K.K.); (O.U.)
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Chinese Academy of Sciences, Xiamen 361021, China;
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193 Catalonia, Spain; (A.G.-G.); (J.S.)
- CREAF, Cerdanyola del Valles, 08193 Catalonia, Spain
- Global Change Research Institute, Czech Academy of Sciences, CZ-60300 Brno, Czech Republic; (K.K.); (O.U.)
| |
Collapse
|
13
|
Abstract
Wheat-based foods have been staple foods since about 10,000 years and constitute a major source of energy, dietary fiber, and micronutrients for the world population. The role of wheat in our diet, however, has recently been scrutinized by pseudoscientific books and media reports promoting the overall impression that wheat consumption makes people sick, stupid, fat, and addicted. Consequently, numerous consumers in Western countries have started to question their dietary habits related to wheat consumption and voluntarily decided to adopt a wheat-free diet without a medical diagnosis of any wheat-related disorder (WRD), such as celiac disease, wheat allergy, or non-celiac gluten sensitivity. The aim of this review is to achieve an objective judgment of the positive aspects of wheat consumption as well as adverse effects for individuals suffering from WRDs. The first part presents wheat constituents and their positive nutritional value, in particular, the consumption of products from whole-grain flours. The second part is focused on WRDs that affect predisposed individuals and can be treated with a gluten-free or -reduced diet. Based on all available scientific knowledge, wheat consumption is safe and healthy for the vast majority of people. There is no scientific evidence to support that the general population would benefit from a wheat-free diet.
Collapse
Affiliation(s)
| | | | - Katharina A. Scherf
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
14
|
Pronin D, Börner A, Scherf KA. Old and modern wheat (Triticum aestivum L.) cultivars and their potential to elicit celiac disease. Food Chem 2020; 339:127952. [PMID: 33152854 DOI: 10.1016/j.foodchem.2020.127952] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022]
Abstract
One potential explanation for the increasing prevalence of celiac disease (CD) over the past decades is that breeding may have inadvertently changed the immunoreactive potential of wheat. To test this hypothesis, we quantitated four CD-active peptides, namely the 33-mer and peptides containing the DQ2.5-glia-α1a/DQ2.5-glia-α2 (P1), DQ2.5-glia-α3 (P2) and DQ2.5-glia-γ1 (P3) epitopes, in a set of 60 German hexaploid winter wheat cultivars from 1891 to 2010 and grown in three consecutive years. The contents of CD-active peptides were affected more by the harvest year than by the cultivar. The 33-mer and P1 peptides showed no tendency regarding their absolute contents in the flour, but they tended to increase slightly over time when calculated relative to the α-gliadins. No trends in relative or absolute values were observed for the P2 and P3 peptides derived from α- and γ-gliadins. Therefore, the immunoreactive potential of old and modern wheat cultivars appears to be similar.
Collapse
Affiliation(s)
- Darina Pronin
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466 Seeland, OT Gatersleben, Germany.
| | - Katharina Anne Scherf
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany.
| |
Collapse
|
15
|
Noh K, Back HM, Shin BS, Kang W. Pharmacokinetics of Shikimic Acid Following Intragastric and Intravenous Administrations in Rats. Pharmaceutics 2020; 12:pharmaceutics12090824. [PMID: 32872397 PMCID: PMC7558350 DOI: 10.3390/pharmaceutics12090824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
Shikimic acid, a critical starting material for the semi-total synthesis of oseltamivir to treat and prevent influenza, exerts many pharmacological effects. However, the optimal bioanalytical method has not been adequately defined. We used liquid chromatography-tandem mass spectrometry to quantitate shikimic acid in rat plasma and studied its pharmacokinetics after intragastric and intravenous administration. Plasma was spiked with an internal standard, and the proteins were precipitated with acetonitrile, followed by solvent evaporation and reconstitution of the mobile phase. Shikimic acid was separated on a hydrophilic reverse-phase column and showed a mass transition ([M-H]−) at m/z 173.4→136.6. Shikimic acid exhibited bi-exponential decay after intravenous dosing, with a rapid distribution (5.57 h−1) up to 1 h followed by slow elimination (0.78 h−1). The steady state distribution and clearance volumes were 5.17 and 1.79 L/h/kg, respectively. After intragastric administration, the shikimic acid level peaked at about 3 h, and the material then disappeared mono-exponentially with a half-life of 1.3 h. A double peak phenomenon was observed. The absolute oral bioavailability was about 10% in rats. We explored the relationship between the pharmacokinetics and pharmacodynamics of shikimic acid.
Collapse
Affiliation(s)
- Keumhan Noh
- Deapartment of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M55 3M2, Canada;
| | - Hyun-Moon Back
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Beom Soo Shin
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (B.S.S.); (W.K.); Tel.: +82-10-8230-2474 (B.S.S.); +82-2-820-5601 (W.K.)
| | - Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- Correspondence: (B.S.S.); (W.K.); Tel.: +82-10-8230-2474 (B.S.S.); +82-2-820-5601 (W.K.)
| |
Collapse
|
16
|
Ancestral Wheat Types Release Fewer Celiac Disease Related T Cell Epitopes than Common Wheat upon Ex Vivo Human Gastrointestinal Digestion. Foods 2020; 9:foods9091173. [PMID: 32854283 PMCID: PMC7555168 DOI: 10.3390/foods9091173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
Celiac disease (CeD) is an autoimmune enteropathy triggered by immunogenic gluten peptides released during the gastrointestinal digestion of wheat. Our aim was to identify T cell epitope-containing peptides after ex vivo digestion of ancestral (einkorn, spelt and emmer) and common (hexaploid) wheat (Fram, Bastian, Børsum and Mirakel) using human gastrointestinal juices. Wheat porridge was digested using a static ex vivo model. Peptides released after 240 min of digestion were analyzed by liquid chromatography coupled to high-resolution mass spectrometry (HPLC-ESI MS/MS). Ex vivo digestion released fewer T cell epitope-containing peptides from the ancestral wheat varieties (einkorn (n = 38), spelt (n = 45) and emmer (n = 68)) compared to the common wheat varieties (Fram (n = 72), Børsum (n = 99), Bastian (n = 155) and Mirakel (n = 144)). Neither the immunodominant 33mer and 25mer α-gliadin peptides, nor the 26mer γ-gliadin peptide, were found in any of the digested wheat types. In conclusion, human digestive juice was able to digest the 33mer and 25mer α-gliadin, and the 26mer γ-gliadin derived peptides, while their fragments still contained naive T cell reactive epitopes. Although ancestral wheat released fewer immunogenic peptides after human digestion ex vivo, they are still highly toxic to celiac patients. More general use of these ancient wheat variants may, nevertheless, reduce CeD incidence.
Collapse
|
17
|
Lakhneko O, Danchenko M, Morgun B, Kováč A, Majerová P, Škultéty Ľ. Comprehensive Comparison of Clinically Relevant Grain Proteins in Modern and Traditional Bread Wheat Cultivars. Int J Mol Sci 2020; 21:E3445. [PMID: 32414116 PMCID: PMC7279209 DOI: 10.3390/ijms21103445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Bread wheat (Triticum aestivum L.) is one of the most valuable cereal crops for human consumption. Its grain storage proteins define bread quality, though they may cause food intolerances or allergies in susceptible individuals. Herein, we discovered a diversity of grain proteins in three Ukrainian wheat cultivars: Sotnytsia, Panna (both modern selection), and Ukrainka (landrace). Firstly, proteins were isolated with a detergent-containing buffer that allowed extraction of various groups of storage proteins (glutenins, gliadins, globulins, and albumins); secondly, the proteome was profiled by the two-dimensional gel electrophoresis. Using multi-enzymatic digestion, we identified 49 differentially accumulated proteins. Parallel ultrahigh-performance liquid chromatography separation followed by direct mass spectrometry quantification complemented the results. Principal component analysis confirmed that differences among genotypes were a major source of variation. Non-gluten fraction better discriminated bread wheat cultivars. Various accumulation of clinically relevant plant proteins highlighted one of the modern genotypes as a promising donor for the breeding of hypoallergenic cereals.
Collapse
Affiliation(s)
- Olha Lakhneko
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska 9, 84505 Bratislava, Slovak Republic; (O.L.); (Ľ.Š.)
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Akademika Zabolotnoho 148, 03143 Kyiv, Ukraine;
| | - Maksym Danchenko
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska 9, 84505 Bratislava, Slovak Republic; (O.L.); (Ľ.Š.)
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, 95007 Nitra, Slovak Republic
| | - Bogdan Morgun
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Akademika Zabolotnoho 148, 03143 Kyiv, Ukraine;
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska 9, 84510 Bratislava, Slovak Republic; (A.K.); (P.M.)
| | - Petra Majerová
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska 9, 84510 Bratislava, Slovak Republic; (A.K.); (P.M.)
| | - Ľudovit Škultéty
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska 9, 84505 Bratislava, Slovak Republic; (O.L.); (Ľ.Š.)
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
18
|
Gulati P, Brahma S, Graybosch RA, Chen Y, Rose DJ. In vitro digestibility of proteins from historical and modern wheat cultivars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2579-2584. [PMID: 31975391 DOI: 10.1002/jsfa.10283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Previous research has suggested that proteins and other quality parameters of wheats may have changed over a century of wheat breeding. These changes may affect protein digestibility. The in vitro protein digestibility of breads made with 21 cultivars of wheat introduced or released in the USA between 1870 and 2013 was therefore evaluated. RESULTS Protein digestibility increased with release year, but was not normally distributed; three older cultivars had significantly lower digestibility than the other cultivars: 42.0 ± 0.3 mol% (primary amino N/total N) versus 34.7 ± 0.7 mol%; P < 0.001. High molecular weight (MW) protein fractions increased and low MW protein fractions decreased with release year, but these changes were not related to protein digestibility. Thus, other differences in protein composition or other flour components may contribute to diminished digestibility of the three older cultivars. CONCLUSIONS This study identified differences in protein digestibility among wheat cultivars that may have important implications for human nutrition. Further investigation is required to determine the specific characteristics that differentiate high- and low-digestibility wheat cultivars. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Paridhi Gulati
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sandrayee Brahma
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Robert A Graybosch
- Wheat, Sorghum and Forage Research Unit, US Department of Agriculture-Agriculture Research Service, Lincoln, NE, USA
| | - Yuanhong Chen
- Center for Grain and Animal Health Research, US Department of Agriculture-Agriculture Research Service, Manhattan, KS, USA
| | - Devin J Rose
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
19
|
Scherf KA, Catassi C, Chirdo F, Ciclitira PJ, Feighery C, Gianfrani C, Koning F, Lundin KEA, Schuppan D, Smulders MJM, Tranquet O, Troncone R, Koehler P. Recent Progress and Recommendations on Celiac Disease From the Working Group on Prolamin Analysis and Toxicity. Front Nutr 2020; 7:29. [PMID: 32258047 PMCID: PMC7090026 DOI: 10.3389/fnut.2020.00029] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Celiac disease (CD) affects a growing number of individuals worldwide. To elucidate the causes for this increase, future multidisciplinary collaboration is key to understanding the interactions between immunoreactive components in gluten-containing cereals and the human gastrointestinal tract and immune system and to devise strategies for CD prevention and treatment beyond the gluten-free diet. During the last meetings, the Working Group on Prolamin Analysis and Toxicity (Prolamin Working Group, PWG) discussed recent progress in the field together with key stakeholders from celiac disease societies, academia, industry and regulatory bodies. Based on the current state of knowledge, this perspective from the PWG members provides recommendations regarding clinical, analytical and legal aspects of CD. The selected key topics that require future multidisciplinary collaborative efforts in the clinical field are to collect robust data on the increasing prevalence of CD, to evaluate what is special about gluten-specific T cells, to study their kinetics and transcriptomics and to put some attention to the identification of the environmental agents that facilitate the breaking of tolerance to gluten. In the field of gluten analysis, the key topics are the precise assessment of gluten immunoreactive components in wheat, rye and barley to understand how these are affected by genetic and environmental factors, the comparison of different methods for compliance monitoring of gluten-free products and the development of improved reference materials for gluten analysis.
Collapse
Affiliation(s)
- Katharina A. Scherf
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Carlo Catassi
- Department of Pediatrics, Polytechnic University of Marche, Ancona, Italy
| | - Fernando Chirdo
- Instituto de Estudios Inmunologicos y Fisiopatologicos- IIFP (UNLP-CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Paul J. Ciclitira
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | | | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, Italian National Council of Research, Naples, Italy
| | - Frits Koning
- Leiden University Medical Centre, Leiden, Netherlands
| | - Knut E. A. Lundin
- Department of Gastroenterology, Oslo University Hospital Rikshospitalet and Stiftelsen KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Detlef Schuppan
- Institute for Translational Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Riccardo Troncone
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), Department of Medical Translational Sciences, University Federico II, Naples, Italy
| | | |
Collapse
|
20
|
Sharma N, Bhatia S, Chunduri V, Kaur S, Sharma S, Kapoor P, Kumari A, Garg M. Pathogenesis of Celiac Disease and Other Gluten Related Disorders in Wheat and Strategies for Mitigating Them. Front Nutr 2020; 7:6. [PMID: 32118025 PMCID: PMC7020197 DOI: 10.3389/fnut.2020.00006] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Wheat is a major cereal crop providing energy and nutrients to the billions of people around the world. Gluten is a structural protein in wheat, that is necessary for its dough making properties, but it is responsible for imparting certain intolerances among some individuals, which are part of this review. Most important among these intolerances is celiac disease, that is gluten triggered T-cell mediated autoimmune enteropathy and results in villous atrophy, inflammation and damage to intestinal lining in genetically liable individuals containing human leukocyte antigen DQ2/DQ8 molecules on antigen presenting cells. Celiac disease occurs due to presence of celiac disease eliciting epitopes in gluten, particularly highly immunogenic alpha-gliadins. Another gluten related disorder is non-celiac gluten-sensitivity in which innate immune-response occurs in patients along with gastrointestinal and non-gastrointestinal symptoms, that disappear upon removal of gluten from the diet. In wheat allergy, either IgE or non-IgE mediated immune response occurs in individuals after inhalation or ingestion of wheat. Following a life-long gluten-free diet by celiac disease and non-celiac gluten-sensitivity patients is very challenging as none of wheat cultivar or related species stands safe for consumption. Hence, different molecular biology, genetic engineering, breeding, microbial, enzymatic, and chemical strategies have been worked upon to reduce the celiac disease epitopes and the gluten content in wheat. Currently, only 8.4% of total population is affected by wheat-related issues, while rest of population remains safe and should not remove wheat from the diet, based on false media coverage.
Collapse
Affiliation(s)
- Natasha Sharma
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Simran Bhatia
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Venkatesh Chunduri
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Satveer Kaur
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Saloni Sharma
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Payal Kapoor
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Anita Kumari
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Monika Garg
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
21
|
Altenbach SB, Chang HC, Rowe MH, Yu XB, Simon-Buss A, Seabourn BW, Green PH, Alaedini A. Reducing the Immunogenic Potential of Wheat Flour: Silencing of Alpha Gliadin Genes in a U.S. Wheat Cultivar. FRONTIERS IN PLANT SCIENCE 2020; 11:20. [PMID: 32161604 PMCID: PMC7052357 DOI: 10.3389/fpls.2020.00020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/10/2020] [Indexed: 05/03/2023]
Abstract
The alpha gliadins are a group of more than 20 proteins with very similar sequences that comprise about 15%-20% of the total flour protein and contribute to the functional properties of wheat flour dough. Some alpha gliadins also contain immunodominant epitopes that trigger celiac disease, a chronic autoimmune disease that affects approximately 1% of the worldwide population. In an attempt to reduce the immunogenic potential of wheat flour from the U.S. spring wheat cultivar Butte 86, RNA interference was used to silence a subset of alpha gliadin genes encoding proteins containing celiac disease epitopes. Two of the resulting transgenic lines were analyzed in detail by quantitative two-dimensional gel electrophoresis combined with tandem mass spectrometry. Although the RNA interference construct was designed to target only some alpha gliadin genes, all alpha gliadins were effectively silenced in the transgenic plants. In addition, some off-target silencing of high molecular weight glutenin subunits was detected in both transgenic lines. Compensatory effects were not observed within other gluten protein classes. Reactivities of IgG and IgA antibodies from a cohort of patients with celiac disease toward proteins from the transgenic lines were reduced significantly relative to the nontransgenic line. Both mixing properties and SDS sedimentation volumes suggested a decrease in dough strength in the transgenic lines when compared to the control. The data suggest that it will be difficult to selectively silence specific genes within families as complex as the wheat alpha gliadins. Nonetheless, it may be possible to reduce the immunogenic potential of the flour and still retain many of the functional properties essential for the utilization of wheat.
Collapse
Affiliation(s)
- Susan B. Altenbach
- Western Regional Research Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
- *Correspondence: Susan B. Altenbach, ; Armin Alaedini,
| | - Han-Chang Chang
- Western Regional Research Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Matthew H. Rowe
- Western Regional Research Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
- Takara Bio USA, Inc., Mountain View, CA, United States
| | - Xuechen B. Yu
- Department of Medicine, Columbia University, New York, NY, United States
- Institute of Human Nutrition, Columbia University, New York, NY, United States
| | - Annamaria Simon-Buss
- Western Regional Research Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| | - Bradford W. Seabourn
- Hard Winter Wheat Quality Laboratory, Center for Grain and Animal Health Research, United States Department of Agriculture-Agricultural Research Service, Manhattan, KS, United States
| | - Peter H. Green
- Department of Medicine, Columbia University, New York, NY, United States
- Celiac Disease Center, Columbia University, New York, NY, United States
| | - Armin Alaedini
- Department of Medicine, Columbia University, New York, NY, United States
- Institute of Human Nutrition, Columbia University, New York, NY, United States
- Celiac Disease Center, Columbia University, New York, NY, United States
- Department of Medicine, New York Medical College, Valhalla, NY, United States
- *Correspondence: Susan B. Altenbach, ; Armin Alaedini,
| |
Collapse
|
22
|
Lexhaller B, Colgrave ML, Scherf KA. Characterization and Relative Quantitation of Wheat, Rye, and Barley Gluten Protein Types by Liquid Chromatography-Tandem Mass Spectrometry. FRONTIERS IN PLANT SCIENCE 2019; 10:1530. [PMID: 31921226 PMCID: PMC6923249 DOI: 10.3389/fpls.2019.01530] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/01/2019] [Indexed: 05/24/2023]
Abstract
The consumption of wheat, rye, and barley may cause adverse reactions to wheat such as celiac disease, non-celiac gluten/wheat sensitivity, or wheat allergy. The storage proteins (gluten) are known as major triggers, but also other functional protein groups such as α-amylase/trypsin-inhibitors or enzymes are possibly harmful for people suffering of adverse reactions to wheat. Gluten is widely used as a collective term for the complex protein mixture of wheat, rye or barley and can be subdivided into the following gluten protein types (GPTs): α-gliadins, γ-gliadins, ω5-gliadins, ω1,2-gliadins, high- and low-molecular-weight glutenin subunits of wheat, ω-secalins, high-molecular-weight secalins, γ-75k-secalins and γ-40k-secalins of rye, and C-hordeins, γ-hordeins, B-hordeins, and D-hordeins of barley. GPTs isolated from the flours are useful as reference materials for clinical studies, diagnostics or in food analyses and to elucidate disease mechanisms. A combined strategy of protein separation according to solubility followed by preparative reversed-phase high-performance liquid chromatography was employed to purify the GPTs according to hydrophobicity. Due to the heterogeneity of gluten proteins and their partly polymeric nature, it is a challenge to obtain highly purified GPTs with only one protein group. Therefore, it is essential to characterize and identify the proteins and their proportions in each GPT. In this study, the complexity of gluten from wheat, rye, and barley was demonstrated by identification of the individual proteins employing an undirected proteomics strategy involving liquid chromatography-tandem mass spectrometry of tryptic and chymotryptic hydrolysates of the GPTs. Different protein groups were obtained and the relative composition of the GPTs was revealed. Multiple reaction monitoring liquid chromatography-tandem mass spectrometry was used for the relative quantitation of the most abundant gluten proteins. These analyses also allowed the identification of known wheat allergens and celiac disease-active peptides. Combined with functional assays, these findings may shed light on the mechanisms of gluten/wheat-related disorders and may be useful to characterize reference materials for analytical or diagnostic assays more precisely.
Collapse
Affiliation(s)
- Barbara Lexhaller
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Michelle L. Colgrave
- CSIRO Agriculture and Food, St Lucia, QLD, Australia
- School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Katharina A. Scherf
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
23
|
Celiac Antigenicity of Ancient Wheat Species. Foods 2019; 8:foods8120675. [PMID: 31842464 PMCID: PMC6963764 DOI: 10.3390/foods8120675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/30/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023] Open
Abstract
Ancient grains have gained renewed interest in the last few years due to their perceived nutritional benefits. The goal of this study was to examine the presence of celiac epitopes in different ancient grains and determine differences in the gliadin protein profile of such grains. To investigate celiac epitopes, an untargeted mass spectrometric method was used, and the gliadin protein profile was studied using reverse phase-HPLC. Our findings show that celiac epitopes can be detected in wheat-related ancient grains, such as einkorn, emmer, and Kamut, indicating that these ancient grains have the potential to elicit the immune response associated with celiac disease. Additionally, the results showed that the gliadin protein composition is significantly different between ancient grain species, which could result in varying functional properties in end-use applications.
Collapse
|
24
|
Simsek S, Budak B, Schwebach CS, Ovando‐Martínez M. Historical vs. modern hard red spring wheat: Analysis of the chemical composition. Cereal Chem 2019. [DOI: 10.1002/cche.10198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Senay Simsek
- Department of Plant Sciences North Dakota State University Fargo ND USA
| | - Bilge Budak
- Department of Chemistry, School of Science Kocaeli University, Umuttepe Campus Kocaeli Turkey
| | | | - Maribel Ovando‐Martínez
- Department of Plant Sciences North Dakota State University Fargo ND USA
- Departamento de Investigaciones Científicas y Tecnológicas Universidad de Sonora Hermosillo Mexico
| |
Collapse
|
25
|
Joye I. Protein Digestibility of Cereal Products. Foods 2019; 8:E199. [PMID: 31181787 PMCID: PMC6617089 DOI: 10.3390/foods8060199] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022] Open
Abstract
Protein digestibility is currently a hot research topic and is of big interest to the food industry. Different scoring methods have been developed to describe protein quality. Cereal protein scores are typically low due to a suboptimal amino acid profile and low protein digestibility. Protein digestibility is a result of both external and internal factors. Examples of external factors are physical inaccessibility due to entrapment in e.g., intact cell structures and the presence of antinutritional factors. The main internal factors are the amino acid sequence of the proteins and protein folding and crosslinking. Processing of food is generally designed to increase the overall digestibility through affecting these external and internal factors. However, with proteins, processing may eventually also lead to a decrease in digestibility. In this review, protein digestion and digestibility are discussed with emphasis on the proteins of (pseudo)cereals.
Collapse
Affiliation(s)
- Iris Joye
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
26
|
Scherf KA. Immunoreactive cereal proteins in wheat allergy, non-celiac gluten/wheat sensitivity (NCGS) and celiac disease. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Abstract
Coeliac disease is an immune-mediated enteropathy against dietary gluten present in wheat, rye and barley and is one of the most common lifelong food-related disorders worldwide. Coeliac disease is also considered to be a systemic disorder characterized by a variable combination of gluten-related signs and symptoms and disease-specific antibodies in addition to enteropathy. The ingestion of gluten leads to the generation of harmful gluten peptides, which, in predisposed individuals, can induce adaptive and innate immune responses. The clinical presentation is extremely variable; patients may have severe gastrointestinal symptoms and malabsorption, extraintestinal symptoms or have no symptoms at all. Owing to the multifaceted clinical presentation, diagnosis remains a challenge and coeliac disease is heavily underdiagnosed. The diagnosis of coeliac disease is achieved by combining coeliac disease serology and small intestinal mucosal histology during a gluten-containing diet. Currently, the only effective treatment for coeliac disease is a lifelong strict gluten-free diet; however, the diet is restrictive and gluten is difficult to avoid. Optimizing diagnosis and care in coeliac disease requires continuous research and education of both patients and health-care professionals.
Collapse
|
28
|
Alves TO, D’Almeida CTS, Scherf KA, Ferreira MSL. Modern Approaches in the Identification and Quantification of Immunogenic Peptides in Cereals by LC-MS/MS. FRONTIERS IN PLANT SCIENCE 2019; 10:1470. [PMID: 31798614 PMCID: PMC6868032 DOI: 10.3389/fpls.2019.01470] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/22/2019] [Indexed: 05/17/2023]
Abstract
Celiac disease (CD) is an immunogenic disorder that affects the small intestine. It is caused by the ingestion of gluten, a protein network formed by prolamins and glutelins from cereals such as wheat, barley, rye and, possibly, oats. For predisposed people, gluten presents epitopes able to stimulate T-cells causing symptoms like nausea, vomiting, diarrhea, among others unrelated to the gastrointestinal system. The only treatment for CD is to maintain a gluten-free diet, not exceeding 20 mg/kg of gluten, what is generally considered the safe amount for celiacs. Due to this context, it is very important to identify and quantify the gluten content of food products. ELISA is the most commonly used method to detect gluten traces in food. However, by detecting only prolamins, the results of ELISA tests may be underestimated. For this reason, more reliable and sensitive assays are needed to improve gluten quantification. Because of high sensitivity and the ability to detect even trace amounts of peptides in complex matrices, the most promising approaches to verify the presence of gluten peptides in food are non-immunological techniques, like liquid chromatography coupled to mass spectrometry. Different methodologies using this approach have been developed and described in the last years, ranging from non-targeted and exploratory analysis to targeted and specific methods depending on the purpose of interest. Non-targeted analyses aim to define the proteomic profile of the sample, while targeted analyses allow the search for specific peptides, making it possible to quantify them. This review aims to gather and summarize the main proteomic techniques used in the identification and quantitation of gluten peptides related to CD-activity and gluten-related allergies.
Collapse
Affiliation(s)
- Thais O. Alves
- Food and Nutrition Graduate Program (PPGAN), Laboratory of Bioactives, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Laboratory of Protein Biochemistry—Center of Innovation in Mass Spectrometry (LBP-IMasS), UNIRIO, Rio de Janeiro, Brazil
| | - Carolina T. S. D’Almeida
- Food and Nutrition Graduate Program (PPGAN), Laboratory of Bioactives, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Laboratory of Protein Biochemistry—Center of Innovation in Mass Spectrometry (LBP-IMasS), UNIRIO, Rio de Janeiro, Brazil
| | - Katharina A. Scherf
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Mariana S. L. Ferreira
- Food and Nutrition Graduate Program (PPGAN), Laboratory of Bioactives, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Laboratory of Protein Biochemistry—Center of Innovation in Mass Spectrometry (LBP-IMasS), UNIRIO, Rio de Janeiro, Brazil
- *Correspondence: Mariana S. L. Ferreira,
| |
Collapse
|
29
|
Ribeiro M, Nunes FM. We might have got it wrong: Modern wheat is not more toxic for celiac patients. Food Chem 2018; 278:820-822. [PMID: 30583448 DOI: 10.1016/j.foodchem.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/02/2018] [Accepted: 12/01/2018] [Indexed: 12/12/2022]
Abstract
If there is a disease in which many myths are part of the daily lives of both patients and clinicians as well as researchers, this must be celiac disease. Here, we discuss the possibility that modern wheat varieties used by man do not have led to the increased prevalence of celiac disease.
Collapse
Affiliation(s)
- Miguel Ribeiro
- CQ-VR, Chemistry Research Centre, Chemistry Department, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.
| | - Fernando M Nunes
- CQ-VR, Chemistry Research Centre, Chemistry Department, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
30
|
Ficco DBM, Prandi B, Amaretti A, Anfelli I, Leonardi A, Raimondi S, Pecchioni N, De Vita P, Faccini A, Sforza S, Rossi M. Comparison of gluten peptides and potential prebiotic carbohydrates in old and modern Triticum turgidum ssp. genotypes. Food Res Int 2018; 120:568-576. [PMID: 31000273 DOI: 10.1016/j.foodres.2018.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/30/2018] [Accepted: 11/03/2018] [Indexed: 01/20/2023]
Abstract
Old wheat genotypes are perceived by consumers as healthier than modern ones. The release of gluten peptides with in vitro digestion and the content of potentially prebiotic carbohydrates (i.e. resistant fraction of starch and cell-wall associated dietary fiber) were evaluated in tetraploid wheats, namely 9 old and 3 modern Triticum turgidum ssp. genotypes. Simulated digestion of wholemeal flours yielded 152 major peptides, 59 of which were attributed a sequence. Principal component analysis revealed that peptide profiles were variable in old genotypes, unlike in modern ones. Digestion of old genotypes generally yielded peptides in greater concentration. In particular, 5 peptides of γ-gliadin, known to trigger the adaptive immune reaction, and two peptides of α-gliadin, known to be toxic to celiac patients, were particularly abundant in some old varieties. Resistant starch (RS) was negligible in modern genotypes (<0.6%), but it was remarkably abundant in some old varieties, reaching the highest value in Dauno III (8.5%, P < 0.05). Dauno III also presented the highest amount of soluble fiber (4.2%, P < 0.05). Pasta was made with an old and a modern genotype (Dauno III and PR22D89, respectively) with opposite RS content. Pasta making and cooking affected starch digestibility, overtaking differences between genotypes and yielding the same amount of RS for both the varieties (approx. 1.7%). The data herein presented suggest that the wholemeal flours of old tetraploid wheat genotypes could not boast particular claims associated to a lower exposure to gluten peptides and, if cooked, to a prebiotic potential.
Collapse
Affiliation(s)
- Donatella Bianca Maria Ficco
- CREA - Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Foggia, Italy
| | - Barbara Prandi
- Department of Food and Drug, University of Parma, Italy; Department of Human Sciences and Quality of Life Promotion, Telematic University San Raffaele Roma, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy; Biogest-Siteia, Centro per il Miglioramento e la Valorizzazione delle Risorse Biologiche Agro-Alimentari, University of Modena and Reggio Emilia, Italy
| | - Igor Anfelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Alan Leonardi
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Nicola Pecchioni
- CREA - Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Foggia, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Italy; Biogest-Siteia, Centro per il Miglioramento e la Valorizzazione delle Risorse Biologiche Agro-Alimentari, University of Modena and Reggio Emilia, Italy
| | - Pasquale De Vita
- CREA - Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Foggia, Italy
| | - Andrea Faccini
- Interdepartmental Center for Measurements, University of Parma, Italy
| | | | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy; Biogest-Siteia, Centro per il Miglioramento e la Valorizzazione delle Risorse Biologiche Agro-Alimentari, University of Modena and Reggio Emilia, Italy..
| |
Collapse
|