1
|
He B, Hu Y, Qin Y, Zhang Y, Luo X, Wang Z, Xue W. Design, synthesis and antiviral activity of indole derivatives containing quinoline moiety. Mol Divers 2025; 29:1091-1107. [PMID: 39046564 DOI: 10.1007/s11030-024-10894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/09/2024] [Indexed: 07/25/2024]
Abstract
A series of indole derivatives containing quinoline structures were designed and synthesized. The synthesized compounds were characterized by NMR and HRMS. And W14 was performed by single crystal X-ray diffraction experiments. The antiviral activity studies showed that some of the target compounds possessed significant activity against tobacco mosaic virus (TMV). In particular, W20 had significant activity. The results of in vivo anti-TMV activity assay showed that W20 possessed the best curative and protective activities with EC50 values of 84.4 and 65.7 μg/mL, which were better than ningnanmycin (NNM) 205.1 and 162.0 μg/mL, respectively. The results of Microscale thermophoresis (MST) showed that W20 had a strong binding affinity for the tobacco mosaic virus coat protein (TMV-CP) with a dissociation constant (Kd) of 0.00519 μmol/L, which was superior to that of NNM (1. 65320 μmol/L). The molecular docking studies were in accordance with the experimental results. In addition, the determination of malondialdehyde (MDA) content in tobacco leaves showed that W20 improved the disease resistance of tobacco. Overall, this study shows that indole derivatives containing quinoline can be used as new antiviral agents for plant viruses for further research.
Collapse
Affiliation(s)
- Bangcan He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yuzhi Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yishan Qin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yufang Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xingping Luo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhenchao Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Pan W, Chen Z, Wang X, Wang F, Liu J, Li L. Occurrence, dissipation and processing factors of multi-pesticides in goji berry. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134696. [PMID: 38788586 DOI: 10.1016/j.jhazmat.2024.134696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
As medicine and food homology substance, goji berry is consumed worldwide in the form of fresh, dried and juice; however, pesticide residues have become one of the problems that essentially threaten its quality during cultivation and processing. In this study, a total of 75 dried goji berries were sampled from markets across China, and for the determination of 62 analytes, 28 pesticides were identified. Nine pesticides with high detectable rates and residual levels were selected for folia spraying, and their half-lives were found to range from 1.04 to 2.21 d. The processing factors (PFs) of juice were between 0.25 and 1.02, and this was mainly related with their octanol-water partition coefficient (logKow values). Washing could reduce pesticides residues to varying degrees with the removal rates between 17.00% and 74.05%. Sun drying with higher PF values in the range of 0.61-5.91 exhibited more obvious enrichment effect compared to oven drying. Commercial goji berry had cumulative chronic dietary risks with the hazard index (HI) values of 1.61%-4.97%. Its acute risk quotients (HQas) for consumers were 543.32%-585.92% and were mainly due to insecticides. These results provide important references for rationalizing pesticide application during goji berry cultivation and for the improvement of process to ensure food safety.
Collapse
Affiliation(s)
- Wei Pan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuyun Wang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jin Liu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Li Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
3
|
Li K, Chen T, Shi X, Chen W, Luo X, Xiong H, Tan X, Liu Y, Zhang D. Residue behavior and processing factors of thirteen field-applied pesticides during the production of Chinese traditional fermented chopped pepper and chili powder. Food Chem X 2023; 19:100854. [PMID: 37780331 PMCID: PMC10534233 DOI: 10.1016/j.fochx.2023.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
In this study, the fate, processing factors and relationship with physicochemical properties of thirteen pesticides in field-collected pepper samples during Chinese chopped pepper and chili powder production was systematically studied. The washing, air-drying, chopping and salting and fermentation processes reduced 24.8%-62.8%, 0.9%-26.4%, 25.1%-50.3% and 16.3%-90.0% of thirteen pesticide residues, respectively, while the sun-drying processing increased the residues of eleven pesticides by 1.27-5.19 fold. The PFs of thirteen pesticides were < 1 in chopped pepper production and the PFs of eleven pesticides were more than 1 for chili powder production. The chopped pepper processing efficiency have most negative correlation with octanol-water partition coefficient. In contrast, the chili powder processing efficiency have most positive correlation with vapour pressure. Thus, this study can offer important references for assessment the pesticide residue levels in Chinese traditional fermented chopped pepper and chili powder production from fresh peppers.
Collapse
Affiliation(s)
- Kailong Li
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Tongqiang Chen
- Hunan Provincial institute of product and goods quality inspection, Changsha 410007, China
| | - Xiaobin Shi
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Wuying Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xiangwen Luo
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Hao Xiong
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xinqiu Tan
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yong Liu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Deyong Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| |
Collapse
|
4
|
Concha C, Manzano CA. Priority pesticides in Chile: Predicting their environmental distribution, bioaccumulation, and transport potential. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:676-683. [PMID: 36069150 DOI: 10.1002/ieam.4680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/05/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Agriculture is one of the main economic activities in Chile and is associated with extensive use of pesticides, which can represent a risk to the environment and to human health. Currently, there are over 400 pesticides approved for commerce in Chile, including chemicals banned in other countries (e.g., flocoumafen and chlorfenapyr). An empirical analysis of their potential environmental effects is difficult due to this large number, thus opening the doors for the use of computational tools for prioritization efforts based on their persistence, bioaccumulation, and transport potential in the environment. The main objectives of this study were to estimate the properties and environmental distribution of pesticides approved for commerce in Chile and to generate a priority list for further evaluation in local environments. We used the Estimation Program Interface Suite interface to estimate the distribution coefficients, half-lives, and bioaccumulation potential of all pesticides registered in the Chilean Agriculture and Livestock Services. Additionally, the Pov & LRTP Screening Tool was used to estimate their overall persistence and long-range transport potential in the environment. The results were used to develop a P-B-lon range transport (LRT) score, which considered persistence, bioaccumulation, and long-range transport potential. All pesticides were compared to a group of polychlorinated biphenyls (PCBs), used as reference compounds, to generate a list of priority pesticides with persistent organic pollutants characteristics. The results showed that most pesticides were distributed between the organic phase and water, where they also showed the longest half-lives and bioaccumulation potential. A group of 21 pesticides showed relatively high P-B-LRT scores, compared to PCBs, and were classified as priority compounds. The list was further refined based on the volume of sales for each pesticide. Integr Environ Assess Manag 2023;19:676-683. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Carolina Concha
- Department of Chemistry, Faculty of Science, Universidad de Chile, Nunoa, Chile
| | - Carlos A Manzano
- Department of Chemistry, Faculty of Science, Universidad de Chile, Nunoa, Chile
- School of Public Health, San Diego State University, San Diego, California, USA
| |
Collapse
|
5
|
Corrias F, Arru N, Atzei A, Milia M, Scano E, Angioni A. Determination of Pesticide Residues in IV Range Artichoke ( Cynara cardunculus L.) and Its Industrial Wastes. Foods 2023; 12:foods12091807. [PMID: 37174345 PMCID: PMC10178484 DOI: 10.3390/foods12091807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Fourth-range products are those types of fresh fruit and vegetables that are ready for raw consumption or after cooking, and belong to organic or integrated cultivations. These products are subject to mild post-harvesting processing procedures (selection, sorting, husking, cutting, and washing), and are afterwards packaged in packets or closed food plates, with an average shelf life of 5-10 days. Artichokes are stripped of the leaves, stems and outer bracts, and the remaining heads are washed with acidifying solutions. The A LC-MS/MS analytical method was developed and validated following SANTE guidelines for the detection of 220 pesticides. This work evaluated the distribution of pesticide residues among the fraction of artichokes obtained during the industrial processing, and the residues of their wastes left on the field were also investigated. The results showed quantifiable residues of one herbicide (pendimethalin) and four fungicides (azoxystrobin, propyzamide, tebuconazole, and pyraclostrobin). Pendimethalin was found in all samples, with the higher values in leaves 0.046 ± 8.2 mg/kg and in field waste 0.30 ± 6.7 mg/kg. Azoxystrobin was the most concentrated in the outer bracts (0.18 ± 2.9 mg/kg). The outer bracts showed the highest number of residues. The industrial waste showed a significant decrease in the number of residues and their concentration.
Collapse
Affiliation(s)
- Francesco Corrias
- Department of Life and Environmental Science, Food Toxicology Unit, University of Cagliari, University Campus of Monserrato, SS 554, 09042 Cagliari, Italy
| | - Nicola Arru
- Department of Life and Environmental Science, Food Toxicology Unit, University of Cagliari, University Campus of Monserrato, SS 554, 09042 Cagliari, Italy
| | - Alessandro Atzei
- Department of Life and Environmental Science, Food Toxicology Unit, University of Cagliari, University Campus of Monserrato, SS 554, 09042 Cagliari, Italy
| | - Massimo Milia
- Department of Life and Environmental Science, Food Toxicology Unit, University of Cagliari, University Campus of Monserrato, SS 554, 09042 Cagliari, Italy
| | - Efisio Scano
- Faculty of Agraria, University of Sassari, 07100 Sassari, Italy
| | - Alberto Angioni
- Department of Life and Environmental Science, Food Toxicology Unit, University of Cagliari, University Campus of Monserrato, SS 554, 09042 Cagliari, Italy
| |
Collapse
|
6
|
Bae JY, Lee DY, Oh KY, Jeong DK, Lee DY, Kim JH. Photochemical advanced oxidative process treatment effect on the pesticide residues reduction and quality changes in dried red peppers. Sci Rep 2023; 13:4444. [PMID: 36932134 PMCID: PMC10023666 DOI: 10.1038/s41598-023-31650-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Pesticide residues in crops are widely monitored, and the residue reduction techniques at the post-harvest stage are important to maintain food safety. In dried crops, pesticide residues can be concentrated after dehydration, which increases concerns regarding residue risk. Therefore, the residue reduction effects of ultraviolet (UV), ozone, and photochemical advanced oxidative process (pAOP) were investigated for dried peppers at the post-harvest stage. UV254 treatment reduced 59.7% of the residue concentration on average, while UV360 showed a reduction of only 13.3% under 9.6 W m-2 of UV exposure for 24 h. Gaseous ozone treatments reduced the residue concentrations up to 57.9% on average. In contrast, the pAOP treatment reduced the concentration up to 97% and was superior to UV or ozone treatment alone. Increased drying temperature under pAOP condition resulted in higher reduction ratios at 40-80 °C. The pAOP conditions with 12 and 24 µmol/mol of ozone and UV254 irradiation for 24-48 h reduced the residue concentrations to 39-67%. Particularly, difenoconazole, fludioxonil, imidacloprid, and thiamethoxam residue concentrations were drastically reduced by over 50% under 12 µmol/mol ozone of the pAOP condition, while carbendazim, fluquinconazole, and pyrimethanil were relatively stable and their concentrations reduced below 50% under 24 µmol/mol ozone of the pAOP treatment. Various drying-related quality parameters of drying peppers such as water-soluble color, capsanthin, capsaicinoids, acid value, peroxide value, and thiobarbituric acid value were slightly altered, but not significantly, under 12 µmol/mol ozone of the pAOP condition, while the peroxide value was significantly altered under the higher ozone conditions. Therefore, pAOP treatment combined with gaseous ozone can be used for reducing residual pesticides in peppers without greatly reducing quality.
Collapse
Affiliation(s)
- Ji-Yeon Bae
- Department of Agricultural Chemistry, Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Deuk-Yeong Lee
- Department of Agricultural Chemistry, Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Kyeong-Yeol Oh
- Department of Agricultural Chemistry, Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Dong-Kyu Jeong
- Department of Agricultural Chemistry, Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52727, Republic of Korea
- Anti-Aging Research Group, Gyeongnam Oriental Anti-Aging Institute, Sancheong, 52215, Republic of Korea
| | - Dong-Yeol Lee
- Department of Agricultural Chemistry, Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52727, Republic of Korea
- Anti-Aging Research Group, Gyeongnam Oriental Anti-Aging Institute, Sancheong, 52215, Republic of Korea
| | - Jin-Hyo Kim
- Department of Agricultural Chemistry, Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
7
|
Hu D, Zhang N, Zhang Y, Yuan C, Gong C, Zhou Y, Xue W. Design, synthesis and biological activity of novel chalcone derivatives containing indole. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
8
|
Faisal Manzoor M, Ali M, Muhammad Aadil R, Ali A, Goksen G, Li J, Zeng XA, Proestos C. Sustainable emerging sonication processing: Impact on fungicide reduction and the overall quality characteristics of tomato juice. ULTRASONICS SONOCHEMISTRY 2023; 94:106313. [PMID: 36739785 PMCID: PMC9932565 DOI: 10.1016/j.ultsonch.2023.106313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 06/12/2023]
Abstract
Sonication is an emerging sustainable and eco-friendly technology that has been broadly explored in food processing and preservation. Sonication has the edges of low energy consumption and high efficiency than conventional decontamination methods and would not pass on secondary pollutants. In the current research, we analyzed the impact of sonication on anilazine fungicide reduction, bioactive compound, antioxidant activity, colloidal stability, and enzymatic and microbial load of tomato juice. Sonicated treatments were carried out at 40 kHz, 480 W, 30 ± 2 °C for 0, 8, 16, 24, 32, and 40 min in an ultrasonic bath cleaner. The GC-MS outcomes revealed that the anilazine maximum reduction in tomato juice attained 80.52 % at 40 min of sonication. The anilazine concentration reduced significantly (p ≤ 0.05) with increased sonication time. In contrast, sonication treatments have acquired the highest TFC, TPC, ascorbic acid, carotenoids, lycopene, ABTS, and ORAC assay than the untreated sample. The Sonication process significantly improved (p ≤ 0.05) colloidal stability by reducing particle size distribution, apparent viscosity, and sedimentation index. Sonication prolonged tomato juice's shelf life by reducing the total viable count from 6.31 to 1.91 log CFU/mL. Polygalacturonase and pectin methyl esterase of the sonication sample at 40 min were inactivated by 44.32 % and 64.2 %, respectively. Considering this issue from a future perspective, sonication processing can be used industrially to enhance fruit juice's nutritional properties and shelf life and reduce pesticides and other organic residues.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China; School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Murtaza Ali
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China; School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, China
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Jian Li
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China; School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China; School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Charalampos Proestos
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou 15784, Athens, Greece.
| |
Collapse
|
9
|
Hu D, Zhang N, Zhou Q, Zhou Y, Gong C, Zhang Y, Xue W. Synthesis and biological activities of novel chalcone derivatives containing pyrazole oxime ethers. Fitoterapia 2023; 166:105458. [PMID: 36796458 DOI: 10.1016/j.fitote.2023.105458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
A series of novel chalcone derivatives containing pyrazole oxime ethers were designed and synthesized. The structures of all the target compounds were determined by NMR and HRMS. The structure of H5 was further confirmed via single-crystal X-ray diffraction analysis. The results of biological activity test showed that some of the target compounds exhibited significant antiviral and antibacterial activities. The test results of EC50 value against tobacco mosaic virus showed that H9 had the best curative and protective effect, and the EC50 value of curative activity of H9 was 166.9 μg/mL, which was superior to ningnanmycin (NNM) 280.4 μg/mL, the EC50 value of protective activity of H9 was 126.5 μg/mL, which was superior to ningnanmycin 227.7 μg/mL. Microscale thermophoresis (MST) experiments demonstrated that H9 (Kd = 0.0096 ± 0.0045 μmol/L) exhibited a strong binding ability with tobacco mosaic virus capsid protein (TMV-CP), which was far superior to ningnanmycin (Kd = 1.2987 ± 0.4577 μmol/L). In addition, molecular docking results showed that the affinity of H9 to TMV protein was significantly higher than ningnanmycin. The results of against bacterial activity showed that H17 has a good inhibiting effect against Xanthomonas oryzae pv. oryzae (Xoo), the EC50 value of H17 was 33.0 μg/mL, which was superior to the commercial drugs thiodiazole copper (68.1 μg/mL) and bismerthiazol (81.6 μg/mL), and the antibacterial activity of H17 was verified by scanning electron microscopy (SEM).
Collapse
Affiliation(s)
- Die Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Nian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Qing Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yuanxiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chenyu Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yuanquan Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
10
|
Gu J, Guo L, Zhu Y, Qian L, Shi L, Zhang H, Ji G. Neurodevelopmental Toxicity of Emamectin Benzoate to the Early Life Stage of Zebrafish Larvae ( Danio rerio). Int J Mol Sci 2023; 24:ijms24043757. [PMID: 36835165 PMCID: PMC9964762 DOI: 10.3390/ijms24043757] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Emamectin benzoate (EMB) is a widely used pesticide and feed additive in agriculture and aquaculture. It easily enters the aquatic environment through various pathways, thus causing adverse effects on aquatic organisms. However, there are no systematic studies regarding the effects of EMB on the developmental neurotoxicity of aquatic organisms. Therefore, the aim of this study was to evaluate the neurotoxic effects and mechanisms of EMB at different concentrations (0.1, 0.25, 0.5, 1, 2, 4 and 8 μg/mL) using zebrafish as a model. The results showed that EMB significantly inhibited the hatching rate, spontaneous movement, body length, and swim bladder development of zebrafish embryos, as well as significantly increased the malformation rate of zebrafish larvae. In addition, EMB adversely affected the axon length of motor neurons in Tg (hb9: eGFP) zebrafish and central nervous system (CNS) neurons in Tg (HuC: eGFP) zebrafish and significantly inhibited the locomotor behavior of zebrafish larvae. Meanwhile, EMB induced oxidative damage and was accompanied by increasing reactive oxygen species in the brains of zebrafish larvae. In addition, gene expression involvement in oxidative stress-related (cat, sod and Cu/Zn-sod), GABA neural pathway-related (gat1, gabra1, gad1b, abat and glsa), neurodevelopmental-related (syn2a, gfap, elavl3, shha, gap43 and Nrd) and swim bladder development-related (foxa3, pbxla, mnx1, has2 and elovlla) genes was significantly affected by EMB exposure. In conclusion, our study shows that exposure to EMB during the early life stages of zebrafish significantly increases oxidative damage and inhibits early central neuronal development, motor neuron axon growth and swim bladder development, ultimately leading to neurobehavioral changes in juvenile zebrafish.
Collapse
Affiliation(s)
- Jie Gu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Liguo Guo
- Innovation Center for Sustainable Forestry in Southen China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanhui Zhu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Lingling Qian
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lili Shi
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Huanchao Zhang
- Innovation Center for Sustainable Forestry in Southen China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (H.Z.); (G.J.)
| | - Guixiang Ji
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- Correspondence: (H.Z.); (G.J.)
| |
Collapse
|
11
|
Dissipation, Processing Factors and Dietary Risk Assessment for Flupyradifurone Residues in Ginseng. Molecules 2022; 27:molecules27175473. [PMID: 36080241 PMCID: PMC9457792 DOI: 10.3390/molecules27175473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The massive use of pesticides has brought great risks to food and environmental safety. It is necessary to develop reliable analytical methods and evaluate risks through monitoring studies. Here, a method was used for the simultaneous determination of flupyradifurone (FPF) and its two metabolites in fresh ginseng, dried ginseng, ginseng plants, and soil. The method exhibited good accuracy (recoveries of 72.8–97.5%) and precision (relative standard deviations of 1.1–8.5%). The field experiments demonstrated that FPF had half-lives of 4.5–7.9 d and 10.0–16.9 d in ginseng plants and soil, respectively. The concentrations of total terminal residues in soil, ginseng plants, dried ginseng, and ginseng were less than 0.516, 2.623, 2.363, and 0.641 mg/kg, respectively. Based on these results, the soil environmental risk assessment shows that the environmental risk of FPF to soil organisms is acceptable. The processing factors for FPF residues in ginseng were 3.82–4.59, indicating that the concentration of residues increased in ginseng after drying. A dietary risk assessment showed that the risk of FPF residues from long-term and short-term dietary exposures to global consumers were 0.1–0.4% and 12.07–13.16%, respectively, indicating that the application of FPF to ginseng at the recommended dose does not pose a significant risk to consumers.
Collapse
|
12
|
Pang X, Li C, Zang C, Guan L, Zhang P, Di C, Zou N, Li B, Mu W, Lin J. Simultaneous detection of ten kinds of insecticide residues in honey and pollen using UPLC-MS/MS with graphene and carbon nanotubes as adsorption and purification materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21826-21838. [PMID: 34767177 DOI: 10.1007/s11356-021-17196-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
An analytical method of simultaneous detection of ten insecticide residues in honey and pollen was established. The samples were purified with QuEChERS approach using new adsorbents and analyzed with UPLC-MS/MS. The results showed that both of graphene and carbon nanotubes were highly efficient adsorbents for the dSPE clean up to eliminate coextractives in the samples, and graphene was superior to carbon nanotubes for the detection of pesticide residues in honey and pollen samples. The proposed method was used to detect pesticide residues in 25 honey samples and 30 pollen samples which were randomly collected from more than ten provinces in China. All honey samples contain 1-27 μg/kg of chlorpyrifos residues. Only 4% of the honey samples were detected containing acetamiprid and imidacloprid, while the other seven pesticides were not detected. Chlorpyrifos residues were found in all pollen samples (5-66 μg/kg), among which twenty percent exceeded the maximum residue limits (MRLs, 50 μg/kg, European Commission Regulation). Most of the pollen samples containing pesticide concentrations higher than MRLs were collected from rape, followed by lotus, camellia, and rose. Besides, 36.7% and 33.3% of the pollen samples had imidacloprid and flupyradifurone higher than 5 μg/kg. A total of 26.7% pollen samples were detected containing bifenthrin, while none of the other six pesticides were detected in pollen samples.
Collapse
Affiliation(s)
- Xiuyu Pang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, China
| | - Chenyu Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chuanjiang Zang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Lei Guan
- Rural Economy and Agricultural Technology Service Center of Banpu town in Haizhou district, Lianyungang, 222000, Jiangsu, China
| | - Peng Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chunxiang Di
- The Rural Economy Management Main Station of Shandong Province, Jinan, 250013, Shandong, China
| | - Nan Zou
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Beixing Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wei Mu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jin Lin
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
13
|
Hitabatuma A, Wang P, Su X, Ma M. Metal-Organic Frameworks-Based Sensors for Food Safety. Foods 2022; 11:382. [PMID: 35159532 PMCID: PMC8833942 DOI: 10.3390/foods11030382] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 01/07/2023] Open
Abstract
Food contains a variety of poisonous and harmful substances that have an impact on human health. Therefore, food safety is a worldwide public concern. Food detection approaches must ensure the safety of food at every step of the food supply chain by monitoring and evaluating all hazards from every single step of food production. Therefore, early detection and determination of trace-level contaminants in food are one of the most crucial measures for ensuring food safety and safeguarding consumers' health. In recent years, various methods have been introduced for food safety analysis, including classical methods and biomolecules-based sensing methods. However, most of these methods are laboratory-dependent, time-consuming, costly, and require well-trained technicians. To overcome such problems, developing rapid, simple, accurate, low-cost, and portable food sensing techniques is essential. Metal-organic frameworks (MOFs), a type of porous materials that present high porosity, abundant functional groups, and tunable physical and chemical properties, demonstrates promise in large-number applications. In this regard, MOF-based sensing techniques provide a novel approach in rapid and efficient sensing of pathogenic bacteria, heavy metals, food illegal additives, toxins, persistent organic pollutants (POPs), veterinary drugs, and pesticide residues. This review focused on the rapid screening of MOF-based sensors for food safety analysis. Challenges and future perspectives of MOF-based sensors were discussed. MOF-based sensing techniques would be useful tools for food safety evaluation owing to their portability, affordability, reliability, sensibility, and stability. The present review focused on research published up to 7 years ago. We believe that this work will help readers understand the effects of food hazard exposure, the effects on humans, and the use of MOFs in the detection and sensing of food hazards.
Collapse
Affiliation(s)
| | | | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.H.); (P.W.); (M.M.)
| | | |
Collapse
|
14
|
Fang B, Li J, Zhao Q, Liang Y, Yu J. Assembly of the Complete Mitochondrial Genome of Chinese Plum ( Prunus salicina): Characterization of Genome Recombination and RNA Editing Sites. Genes (Basel) 2021; 12:genes12121970. [PMID: 34946920 PMCID: PMC8701122 DOI: 10.3390/genes12121970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Despite the significant progress that has been made in the genome sequencing of Prunus, this area of research has been lacking a systematic description of the mitochondrial genome of this genus for a long time. In this study, we assembled the mitochondrial genome of the Chinese plum (Prunus salicina) using Illumina and Oxford Nanopore sequencing data. The mitochondrial genome size of P. salicina was found to be 508,035 base pair (bp), which is the largest reported in the Rosaceae family to date, and P. salicina was shown to be 63,453 bp longer than sweet cherry (P. avium). The P. salicina mitochondrial genome contained 37 protein-coding genes (PCGs), 3 ribosomal RNA (rRNA) genes, and 16 transfer RNA (tRNA) genes. Two plastid-derived tRNA were identified. We also found two short repeats that captured the nad3 and nad6 genes and resulted in two copies. In addition, nine pairs of repeat sequences were identified as being involved in the mediation of genome recombination. This is crucial for the formation of subgenomic configurations. To characterize RNA editing sites, transcriptome data were used, and we identified 480 RNA editing sites in protein-coding sequences. Among them, the initiation codon of the nad1 gene confirmed that an RNA editing event occurred, and the genomic encoded ACG was edited as AUG in the transcript. Combined with previous reports on the chloroplast genome, our data complemented our understanding of the last part of the organelle genome of plum, which will facilitate our understanding of the evolution of organelle genomes.
Collapse
Affiliation(s)
- Bo Fang
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (B.F.); (Q.Z.)
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China;
- Key Laboratory of Horticulture Science for Southern Mountainous Regions from Ministry of Education, Chongqing 400716, China
| | - Qian Zhao
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (B.F.); (Q.Z.)
| | - Yuping Liang
- College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China;
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China;
- Key Laboratory of Horticulture Science for Southern Mountainous Regions from Ministry of Education, Chongqing 400716, China
- Correspondence:
| |
Collapse
|
15
|
Effectiveness of different type of washing agents on reduction of pesticide residues in orange (Citrus sinensis). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Marques JMG, da Silva MV. Estimation of chronic dietary intake of pesticide residues. Rev Saude Publica 2021; 55:36. [PMID: 34190889 PMCID: PMC8225320 DOI: 10.11606/s1518-8787.2021055002197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To estimate the maximum theoretical daily intake of pesticides potentially consumed, chronically, by the Brazilian population. METHOD By using data from the food consumption section of the 2008-2009 Household Budget Survey to characterize the population diet, a database was built to group the foods based on the NOVA classification. Considering the maximum residue limit values of each pesticide authorized in the country until 2016, the limits of all consumed foods were added and multiplied by the amount consumed, resulting in the maximum theoretical intake index, which was compared with the acceptable daily intake. RESULTS The results show that, of the 283 pesticides considered in the database, 71 (25%) compounds had estimates of zero intake, 144 compounds (50.8%) reached acceptable daily intake values and 68 compounds (24%) showed median intake that exceeded the acceptable daily value. The pesticide intake estimation according to the different regions of the country showed a variation in the amount of compounds that exceeded the acceptable daily intake (48 to 69 substances) due to the different consumption patterns. The categories of products that most exceeded the limits were the insecticides, herbicides and fungicides. CONCLUSION The application of this methodology is valid for the first step in risk assessment, but the resulting values may be different from the actual exposure since they do not include other factors, such as the combined use of pesticides or unauthorized products. The importance of developing research on specific national food consumption data in a systematic way is emphasized, which generates data and analyses that allow a detailed risk assessment.
Collapse
Affiliation(s)
- Jacqueline Mary Gerage Marques
- Universidade de São PauloEscola Superior de Agricultura Luiz de QueirozPrograma de Pós-Graduação em ciência e tecnologia de alimentosPiracicabaSPBrasilUniversidade de São Paulo. Escola Superior de Agricultura Luiz de Queiroz. Programa de Pós-Graduação em ciência e tecnologia de alimentos. Piracicaba, SP, Brasil
| | - Marina Vieira da Silva
- Universidade de São PauloEscola Superior de Agricultura Luiz de QueirozDepartamento de Agroindústria, Alimentos e NutriçãoPiracicabaSPBrasilUniversidade de São Paulo. Escola Superior de Agricultura Luiz de Queiroz. Departamento de Agroindústria, Alimentos e Nutrição. Piracicaba, SP, Brasil
| |
Collapse
|
17
|
Mohapatra S, Siddamallaiah L, Matadha NY. Behavior of acetamiprid, azoxystrobin, pyraclostrobin, and lambda-cyhalothrin in/on pomegranate tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27481-27492. [PMID: 33506422 DOI: 10.1007/s11356-021-12490-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Pomegranate crop is affected by several insect pests and requires usage of a large number of pesticides, but the information on their behavior in pomegranate tissues is limited. A study was conducted to assess the behavior of acetamiprid, azoxystrobin, pyraclostrobin, and lambda-cyhalothrin in pomegranate fruits and leaves. The QuEChERS analytical method and LC-MS/MS and GC-MS were used for quantification of the analytes. The LOD (limit of detection) of acetamiprid, azoxystrobin, and pyraclostrobin was 0.0015 mg kg-1 and lambda-cyhalothrin was 0.003 mg kg-1. The respective LOQ (limit of quantification) was 0.005 and 0.01 mg kg-1. The dissipation of the analytes best fitted into first-order rate kinetics and the half-lives of the chemicals in pomegranate fruits were 9.2-13 days and in the leaves were 13.5-17 days. In the pomegranate aril, the residue levels of acetamiprid, lambda-cyhalothrin, and pyraclostrobin were always < LOQ of these chemicals. Azoxystrobin was detected in pomegranate aril, and its residue was highest at 0.04 mg kg-1 on the 10th day and reached < LOQ by the 25th day. The pre-harvest interval (PHI) required for acetamiprid, azoxystrobin, pyraclostrobin, and lambda-cyhalothrin at standard-dose treatment was 50, 58, 44, and 40 days, respectively. From double-dose treatment, the PHIs were 70, 75, 58, and 54 days, respectively. The pesticides used in this study were more persistent in the pomegranate leaves compared to the fruits. The outcome of this study can be incorporated into production of pomegranate fruits safe for consumption and to meet the domestic and export quality control requirements.
Collapse
Affiliation(s)
- Soudamini Mohapatra
- Pesticide Residue Laboratory, Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake P.O, Bangalore, 560089, India.
| | - Lekha Siddamallaiah
- Pesticide Residue Laboratory, Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake P.O, Bangalore, 560089, India
| | - Nagapooja Yogendraiah Matadha
- Pesticide Residue Laboratory, Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake P.O, Bangalore, 560089, India
| |
Collapse
|
18
|
Medina MB, Munitz MS, Resnik SL. Fate and health risks assessment of some pesticides residues during industrial rice processing in Argentina. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
19
|
Li C, Zhu H, Li C, Qian H, Yao W, Guo Y. The present situation of pesticide residues in China and their removal and transformation during food processing. Food Chem 2021; 354:129552. [PMID: 33756332 DOI: 10.1016/j.foodchem.2021.129552] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/03/2023]
Abstract
Pesticide residues are one of the most important issues affecting food safety. In this review, the general situation of pesticide residues in fruits and vegetables based on the background of the Chinese fruit and vegetable industry is first described. On the basis of primary processing of agricultural products, the effects of processing methods on the removal and metabolism of pesticide residues are reviewed in this paper. In addition, the transformation mechanism of pesticides in crops and in the environment is discussed. Finally, this study summarizes the development trend of pesticide-residue monitoring methods. With the prohibition of a large number of pesticides in China, the risk of pesticide residues is gradually reduced. However, some highly toxic pesticides can still be detected. Furthermore, the development of high-resolution mass spectrometry screening methods and rapid and intelligent detection instruments is the development trend for pesticide monitoring in the future.
Collapse
Affiliation(s)
- Changjian Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Huimin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Changyan Li
- YanTai Institute, China Agricultural University, Yantai 264670, Shandong Province, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
20
|
Ultrasound as an emerging technology for the elimination of chemical contaminants in food: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Nieradko-Iwanicka B, Konopelko M. Effect of Lambdacyhalothrin on Locomotor Activity, Memory, Selected Biochemical Parameters, Tumor Necrosis Factor α, and Interleukin 1ß in a Mouse Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249240. [PMID: 33321891 PMCID: PMC7764783 DOI: 10.3390/ijerph17249240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023]
Abstract
Background: Pyrethroids are synthetic insecticides used for plant protection. They are synthetic analogues of pyrethrins. Lambdacyhalothrin (LCH) is a type II pyrethroid used for wheat, potato, corn farming, and malaria control. There are data that pyrethroids may cause neurotoxicity, nephrotoxicity, hepatotoxicity, and immunotoxicity in non-target organisms. Methods: The experiment was carried on 32 Albino Swiss mice (16 females and 16 males). The animals were divided into four groups. Controls received canola oil; the rest received LCH orally in oil at a dose of 2 mg/kg bw for 7 days. Memory retention was assessed in a passive avoidance task on day 2 and 7, and spatial memory and motor activity in a Y-maze on day 1 and 7. Blood morphology, biochemical tests, tumor necrosis factor α, and interleukin 1ß were measured. Results: Decreased white blood cell count and red blood cell count, increased creatinine, and increased kidney and liver mass were observed in groups exposed to LCH. In LCH-exposed males’ kidneys and livers, interleukin 1ß was significantly elevated, and it was correlated with creatinine concentration. Conclusions: Subacute poisoning with a low dose of LCH does not significantly affect memory nor locomotor activity but increases proinflammatory interleukin 1ß in male livers and kidneys and reduces white and red blood cell counts.
Collapse
Affiliation(s)
- Barbara Nieradko-Iwanicka
- Chair and Department of Hygiene, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland
- Correspondence:
| | - Michał Konopelko
- Department of Otolaryngology and Laryngological Oncology, Independent Public Clinical Hospital No. 4 in Lublin, 20-059 Lublin, Poland;
| |
Collapse
|
22
|
Nguyen TT, Rosello C, Bélanger R, Ratti C. Fate of Residual Pesticides in Fruit and Vegetable Waste (FVW) Processing. Foods 2020; 9:E1468. [PMID: 33076324 PMCID: PMC7602544 DOI: 10.3390/foods9101468] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022] Open
Abstract
Plants need to be protected against pests and diseases, so as to assure an adequate production, and therefore to contribute to food security. However, some of the used pesticides are harmful compounds, and thus the right balance between the need to increase food production with the need to ensure the safety of people, food and the environment must be struck. In particular, when dealing with fruit and vegetable wastes, their content in agrochemicals should be monitored, especially in peel and skins, and eventually minimized before or during further processing to separate or concentrate bioactive compounds from it. The general objective of this review is to investigate initial levels of pesticide residues and their potential reduction through further processing for some of the most contaminated fruit and vegetable wastes. Focus will be placed on extraction and drying processes being amid the main processing steps used in the recuperation of bioactive compounds from fruit and vegetable wastes.
Collapse
Affiliation(s)
- Tri Thanh Nguyen
- Soils and Agri-Food Engineering Dept, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Carmen Rosello
- Chemical Engineering Group, Chemistry Department, Universitat des Iles Balears, Palma, 07122 Mallorca, Spain;
- Soils and Agri-Food Engineering Dept, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Richard Bélanger
- Plant Science Dept, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Cristina Ratti
- Soils and Agri-Food Engineering Dept, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC G1V 0A6, Canada;
| |
Collapse
|
23
|
Liu T, Peng J, Pan L, Zhou D, Sun K, Tu S, Tu K. Effects of shiitakes household processing on the residues of six pesticides. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tan Liu
- College of Food Science and Technology Nanjing Agricultural University Nanjing People’s Republic of China
- College of Food Science and Light Industry Nanjing Tech University Nanjing People’s Republic of China
| | - Jing Peng
- College of Food Science and Technology Nanjing Agricultural University Nanjing People’s Republic of China
| | - Leiqing Pan
- College of Food Science and Technology Nanjing Agricultural University Nanjing People’s Republic of China
| | - Dandan Zhou
- College of Food Science and Technology Nanjing Agricultural University Nanjing People’s Republic of China
| | - Ke Sun
- College of Food Science and Technology Nanjing Agricultural University Nanjing People’s Republic of China
| | - Sicong Tu
- Medical Sciences Division University of Oxford Oxford UK
- Sydney Medical School The University of Sydney Sydney NSW Australia
| | - Kang Tu
- College of Food Science and Technology Nanjing Agricultural University Nanjing People’s Republic of China
| |
Collapse
|
24
|
Azam SMR, Ma H, Xu B, Devi S, Siddique MAB, Stanley SL, Bhandari B, Zhu J. Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Yigit N, Velioglu YS. Effects of processing and storage on pesticide residues in foods. Crit Rev Food Sci Nutr 2019; 60:3622-3641. [PMID: 31858819 DOI: 10.1080/10408398.2019.1702501] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pesticides are chemicals frequently used in agriculture to obtain maximum yield and improve product quality. Thousands of active ingredients and formulations of different pesticides are commercially available. Besides their advantages, a major disadvantage of pesticides is their residues, even though strict maximum residue limits have been set for each pesticide and permitted agricultural commodity. Permanence of pesticide residues on agricultural products depends on several factors such as the properties of pesticide, formulation, and applied concentration. Light, temperature, plant morphology, and plant growth factors are also effective in determining permanence. Degradation effects of the processing treatments rely on the dissolution of pesticides in the surrounding atmosphere, hydrolysis, microbial degradation, oxidation, penetration, and photo-degradation. Various steps applied during food processing, such as washing with water or other aqueous solutions, peeling, chopping, pickling, heat treatments, and processes such as drying, canning, fruit juice and concentrate production, malt, beer and wine production, oil production, and storage have certain effects on the presence of pesticide residues as well. Only washing with water can remove pesticide residue up to 100%, depending on the location of residue, residence time on food, water solubility of residue, washing temperature, and agents used to increase effectiveness. Besides washing, skin removal or peeling is one of the most effective treatments for residue removal, especially on non-systemic pesticides. During cooking, residues might be evaporated or hydrolyzed. Effects of storage temperature on reduction are related to volatilization, penetration, metabolism of pesticide, moisture content, and microbial growth, if any. In refrigerated or frozen storage, residues are stable or degrade slowly. Drying may increase the residue content because of the concentration, but in sun-drying reduction may occur because of photo-degradation. Clarification and filtration may eliminate residues retained in suspended particles. The degradation product, however, may be more toxic than the initial compound in some cases.
Collapse
Affiliation(s)
- Nuran Yigit
- Plant Protection Central Research Institute, Yenimahalle, Ankara, Turkey
| | - Yakup Sedat Velioglu
- Faculty of Engineering, Department of Food Engineering, Ankara University, Golbasi, Ankara, Turkey
| |
Collapse
|
26
|
Heshmati A, Hamidi M, Nili‐Ahmadabadi A. Effect of storage, washing, and cooking on the stability of five pesticides in edible fungi of Agaricus bisporus: A degradation kinetic study. Food Sci Nutr 2019; 7:3993-4000. [PMID: 31890178 PMCID: PMC6924300 DOI: 10.1002/fsn3.1261] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 01/31/2023] Open
Abstract
Pesticide residue in food products is one of the most important global health challenges. The current study sought to investigate the changes in pesticides residue levels in Agaricus bisporus under different storage conditions and during washing and cooking. Pesticides analysis was performed using gas chromatography/mass spectrometry (GC-MS). The results showed that the half-life (t1/2) of all of the studied pesticides stored at room temperature was lower than refrigerator and freezer temperature. In addition, the greatest reduction of diazinon, malathion, permethrin, propargite, and fenpropathrin was found at a pH of 12, 2, 12, 7, and 9, respectively. Although sodium chloride had no effective impact on pesticide reduction during the same washing times, the removal of pesticides increased as washing time increased. Further, the reduction of pesticides was time-dependent during the boiling, microwaving, and frying processes. Based on these findings, the stability of insecticides, such as permethrin, malathion, and diazinon, was lower than acaricides, including propargite and fenpropathrin, in various techniques. Therefore, the use of washing solutions with an appropriate pH as well as increased cooking time may reduce the risk of pesticide exposure.
Collapse
Affiliation(s)
- Ali Heshmati
- Department of Nutrition and Food SafetySchool of MedicineNutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Mina Hamidi
- Department of Nutrition and Food SafetySchool of MedicineNutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Amir Nili‐Ahmadabadi
- Medicinal Plants and Natural Products Research CenterHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and ToxicologySchool of PharmacyHamadan University of Medical SciencesHamadanIran
| |
Collapse
|