1
|
Yuan Z, Pan H, Chen J, Zhang Y, Luo Q, Yang R, Zhang P, Wang T, Chen H. Metabolomic analysis of umami taste variation in Pyropia haitanensis throughout the harvest cycle. Food Chem 2024; 460:140468. [PMID: 39053276 DOI: 10.1016/j.foodchem.2024.140468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/20/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Porphyra sensu lato, a highly valuable edible seaweed renowned for its distinctive umami taste, undergoes significant taste variations during the harvest cycle, affecting product quality and pricing. In this study, umami-related metabolites in Pyropia haitanensis were investigated at different harvesting times using GC-MS metabolomic, targeted LC-MS analysis, and an electronic tongue taste evaluation. High concentrations of compounds, including glutamic acid, aspartic acid, and inosine 5'-monophosphate, were identified as the main contributors to the overall umami profile. The concentrations of the compounds and umami-enhancing substances, such as sugars, were negatively correlated as the harvesting period extended. The early harvested P. haitanensis exhibited a superior umami taste, which gradually decreased with subsequent harvest time. Proline, a known cold-resistance metabolite, accumulated as the seawater temperature decreased and the harvest period progressed. These findings provide insights into the optimal cultivation and harvesting practices for maintaining umami quality in P. haitanensis products.
Collapse
Affiliation(s)
- Zihan Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Haibin Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yuting Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qijun Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Rui Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Peng Zhang
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Tiegan Wang
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Haimin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
2
|
Xu N, Xu K, Xu Y, Ji D, Wang W, Xie C. Interactions between nitrogen and phosphorus modulate the food quality of the marine crop Pyropia haitanensis (T. J. Chang & B. F. Zheng) N. Kikuchi & M. Miyata (Porphyra haitanensis). Food Chem 2024; 448:138973. [PMID: 38522292 DOI: 10.1016/j.foodchem.2024.138973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
The quality of Pyropia haitanensis (T. J. Chang & B. F. Zheng) N. Kikuchi & M. Miyata (Porphyra haitanensis) is directly affected by nutrient availability. However, the molecular mechanism underlying the synergistic regulatory effects of nitrogen (N) and phosphorus (P) availability on P. haitanensis quality is unknown. Here, we performed physiological and multi-omics analyses to reveal the combined effects of N and P on P. haitanensis quality. The pigments accumulated under high N because of increases in N metabolism and porphyrin metabolism, ultimately resulting in intensely colored thalli. High N also promoted amino acid metabolism and inosine 5'-mononucleotide (IMP) synthesis, but inhibited carbohydrates accumulation. This resulted in increased amino acid, IMP and decreased agaro-carrageenan and cellulose contents, thereby improving the nutritional value and taste. Furthermore, high P promoted carbon metabolism and amino acid metabolism.This study provided the basis for elucidating the mechanism behind N and P regulating the seaweed quality.
Collapse
Affiliation(s)
- Ningning Xu
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China
| | - Kai Xu
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| | - Wenlei Wang
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| |
Collapse
|
3
|
Gao L, Xiong Y, Fu FX, Hutchins DA, Gao K, Gao G. Marine heatwaves alter competition between the cultured macroalga Gracilariopsis lemaneiformis and the harmful bloom alga Skeletonema costatum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174345. [PMID: 38960174 DOI: 10.1016/j.scitotenv.2024.174345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Seaweed cultivation can inhibit the occurrence of red tides. However, how seaweed aquaculture interactions with harmful algal blooms will be affected by the increasing occurrence and intensity of marine heatwaves (MHWs) is unknown. In this study, we run both monoculture and coculture systems to investigate the effects of a simulated heatwave on the competition of the economically important macroalga Gracilariopsis lemaneiformis against the harmful bloom diatom Skeletonema costatum. Coculture with G. lemaneiformis led to a growth decrease in S. costatum. Growth and photosynthetic activity (Fv/Fm) of G. lemaneiformis was greatly reduced by the heatwave treatment, and did not recover even after one week. Growth and photosynthetic activity of S. costatum was also reduced by the heatwave in coculture, but returned to normal during the recovery period. S. costatum also responded to the stressful environment by forming aggregates. Metabolomic analysis suggests that the negative effects on S. costatum were related to an allelochemical release from G. lemaneiformis. These findings show that MHWs may enhance the competitive advantages of S. costatum against G. lemaneiformis, leading to more severe harmful algal blooms in future extreme weather scenarios.
Collapse
Affiliation(s)
- Lin Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Yonglong Xiong
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Fei-Xue Fu
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - David A Hutchins
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Guang Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
4
|
Li X, Ren X, Su Y, Zhou X, Wang Y, Ruan S, Yan J, Li B, Guo K. Differential effects of winter cold stress on soil bacterial communities, metabolites, and physicochemical properties in two varieties of Tetrastigma hemsleyanum Diels & Gilg in reclaimed land. Microbiol Spectr 2024; 12:e0242523. [PMID: 38470484 PMCID: PMC10994721 DOI: 10.1128/spectrum.02425-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Tetrastigma hemsleyanum Diels & Gilg (TDG) has been recently planted in reclaimed lands in Zhejiang Province, China, to increase reclaimed land use. Winter cold stress seriously limits the growth and development of TDG and has become the bottleneck limiting the TDG planting industry. To investigate the defense mechanisms of TDG toward winter cold stress when grown on reclaimed land, a combined analysis of soil bacterial communities, metabolites, and physicochemical properties was conducted in this study. Significant differences were observed in the composition of soil bacterial communities, metabolites, and properties in soils of a cold-tolerant variety (A201201) compared with a cold-intolerant variety (B201810). The fresh weight (75.8% of tubers) and dry weight (73.6%) of A201201 were significantly higher than those of B201810. The 16S rRNA gene amplicon sequencing of soil bacteria showed that Gp5 (25.3%), Gemmatimonas (19.6%), Subdivision3 (16.7%), Lacibacterium (11.9%), Gp4 (11.8%), Gp3 (10.4%), Gp6 (7.0%), and WPS-1 (1.2%) were less common, while Chryseolinea (10.6%) were more common in A201201 soils than B201810 soils. Furthermore, linear discriminant analysis of effect size identified 35 bacterial biomarker taxa for both treatments. Co-occurrence network analyses also showed that the structures of the bacterial communities were more complex and stable in A201201 soils compared to B201810 soils. In addition, ultra-high-performance liquid chromatography coupled to mass spectrometry analysis indicated the presence of significantly different metabolites in the two soil treatments, with 10 differentially expressed metabolites (DEMs) (8 significantly upregulated by 9.2%-391.3% and 2 significantly downregulated by 25.1%-73.4%) that belonged to lipids and lipid-like molecules, organic acids and derivatives, and benzenoids. The levels of those DEMs were significantly correlated with the relative abundances of nine bacterial genera. Also, redundancy discriminant analysis revealed that the main factors affecting changes in the bacterial community composition were available potassium (AK), microbial biomass nitrogen (MBN), microbial biomass carbon (MBC), alkaline hydrolysis nitrogen (AHN), total nitrogen (TN), available phosphorus (AP), and soil organic matter (SOM). The main factors affecting changes in the metabolite profiles were AK, MBC, MBN, AHN, pH, SOM, TN, and AP. Overall, this study provides new insights into the TDG defense mechanisms involved in winter cold stress responses when grown on reclaimed land and practical guidelines for achieving optimal TDG production.IMPORTANCEChina has been undergoing rapid urbanization, and land reclamation is regarded as a viable option to balance occupation and compensation. In general, the quality of reclaimed land cannot meet plant or even cultivation requirements due to poor soil fertility and high gravel content. However, Tetrastigma hemsleyanum Diels & Gilg (TDG), extensively used in Chinese herbal medicine, can grow well in stony soils with few nutrients. So, to increase reclaimed land use, TDG has been cultivated on reclaimed lands in Zhejiang Province, China, recently. However, the artificial cultivation of TDG is often limited by winter cold stress. The aim of this study was to find out how TDG on reclaimed land deal with winter cold stress by looking at the bacterial communities, metabolites, and physicochemical properties of the soil, thereby guiding production in practice.
Collapse
Affiliation(s)
- Xuqing Li
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoxu Ren
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Yao Su
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiang Zhou
- Hangzhou Agricultural and Rural Affairs Guarantee Center, Hangzhou, China
| | - Yu Wang
- Qingliangfeng Lvyuan Vegetable Professional Cooperative, Hangzhou, China
| | - Songlin Ruan
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Jianli Yan
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kai Guo
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
5
|
Zhang Y, Xiao Z, Wei Z, Long L. Increased light intensity enhances photosynthesis and biochemical components of red macroalga of commercial importance, Kappaphycus alvarezii, in response to ocean acidification. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108465. [PMID: 38422577 DOI: 10.1016/j.plaphy.2024.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
The concentration of atmospheric carbon dioxide (CO2) has increased drastically over the past several decades, resulting in the pH of the ocean decreasing by 0.44 ± 0.005 units, known as ocean acidification (OA). The Kappaphycus alvarezii (Rhodophyta, Solieriaceae), is a commercially and ecologically important red macroalga with significant CO2 absorption potential from seawater. The K. alvarezii also experienced light variations from self-shading and varied cultivation depths. Thus, the aim of present study was to investigate the effects of two pCO2 levels (450 and 1200 ppmv) and three light intensities (50, 100, and 150 μmol photons·m-2·s-1) on photosynthesis and the biochemical components in K. alvarezii. The results of the present study showed that a light intensity of 50 μmol photons·m-2·s-1 was optimal for K. alvarezii photosynthesis with 0.663 ± 0.030 of Fv/Fm and 0.672 ± 0.025 of Fv'/Fm'. Phycoerythrin contents at two pCO2 levels decreased significantly with an increase in light intensity by 57.14-87.76%, while phycocyanin contents only decreased from 0.0069 ± 0.001 mg g-1 FW to 0.0047 ± 0.001 mg g-1 FW with an increase in light intensity at 1200 ppmv of pCO2. Moreover, moderate increases in light intensity and pCO2 had certain positive effects on the physiological performance of K. alvarezii, specifically in terms of increasing soluble carbohydrate production. Although OA and high light levels promoted total organic carbon accumulation (21.730 ± 0.205% DW) in K. alvarezii, they had a negative impact on total nitrogen accumulation (0.600 ± 0.017% DW).
Collapse
Affiliation(s)
- Yating Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhiliang Xiao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhangliang Wei
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, PR China.
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, PR China.
| |
Collapse
|
6
|
Ji L, Qiu S, Wang Z, Zhao C, Tang B, Gao Z, Fan J. Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. Food Res Int 2023; 167:112737. [PMID: 37087221 DOI: 10.1016/j.foodres.2023.112737] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Phycobiliproteins are light-harvesting complexes found mainly in cyanobacteria and red algae, playing a key role in photosynthesis. They are extensively applied in food, cosmetics, and biomedical industry due to bright color, unique fluorescence characteristics and diverse physiological activities. They have received much attention in the past few decades because of their green and sustainable production, safe application, and functional diversity. This work aimed to provide a comprehensive summary of parameters affecting the whole bioprocess with a special focus on the extraction and purification, which directly determines the application of phycobiliproteins. Food grade phycobiliproteins are easy to prepare, whereas analytical grade phycobiliproteins are extremely complex and costly to produce. Most phycobiliproteins are denatured and inactivated at high temperatures, severely limiting their application. Inspired by recent advances, future perspectives are put forward, including (1) the mutagenesis and screening of algal strains for higher phycobiliprotein productivity, (2) the application of omics and genetic engineering for stronger phycobiliprotein stability, and (3) the utilization of synthetic biology and heterologous expression systems for easier phycobiliprotein isolation. This review will give a reference for exploring more phycobiliproteins for food and health application development.
Collapse
Affiliation(s)
- Liang Ji
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Sheng Qiu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhiheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Chenni Zhao
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Bo Tang
- Nantong Focusee Biotechnology Company Ltd., Nantong, Jiangsu 226133, PR China
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China; School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
7
|
Rapoo SM, Budeli P, Thaoge ML. Recovery of Potential Starter Cultures and Probiotics from Fermented Sorghum (Ting) Slurries. Microorganisms 2023; 11:microorganisms11030715. [PMID: 36985287 PMCID: PMC10054160 DOI: 10.3390/microorganisms11030715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Fermented foods are thought to provide a source of probiotics that promote gut health. Consequently, isolation and characterization of fermented food strains and their applications in a controlled fermentation process or as probiotics present a new facet in this area of research. Therefore, the current study sought to identify dominant strains in sorghum-fermented foods (ting) and characterize their probiotic potential in vitro. Recovered isolates were identified as Lactobacillus helveticus, Lactobacillus amylolyticus, Lacticaseibacillus paracasei, Lacticaseibacillus paracasei subsp paracasei, Lactiplantibacillus plantarum, Levilactobacillus brevis, Loigolactobacillus coryniformis and Loigolactobacillus coryniformis subsp torquens based on the their 16S rRNA sequences. Increased biomass was noted in seven out of nine under a low pH of 3 and a high bile concentration of 2% in vitro. Bactericidal activities of isolated LABs presented varying degrees of resistance against selected pathogenic bacteria ranging between (1.57 to 41 mm), (10 to 41 mm), and (11.26 to 42 mm) for Salmonella typhimurium ATTC 14028, Staphylococcus aureus ATTC 6538 and Escherichia coli ATTC8739, respectively. Ampicillin, erythromycin, mupirocin, tetracycline and chloramphenicol were able to inhibit growth of all selected LABs. Thus, isolates recovered from ting partially satisfy the potential candidacy for probiotics by virtue of being more tolerant to acid and bile, antibacterial activity and antibiotic resistance.
Collapse
|
8
|
Mikami K, Takahashi M. Life cycle and reproduction dynamics of Bangiales in response to environmental stresses. Semin Cell Dev Biol 2023; 134:14-26. [PMID: 35428563 DOI: 10.1016/j.semcdb.2022.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022]
Abstract
Red algae of the order Bangiales are notable for exhibiting flexible promotion of sexual and asexual reproductive processes by environmental stresses. This flexibility indicates that a trade-off between vegetative growth and reproduction occurs in response to environmental stresses that influence the timing of phase transition within the life cycle. Despite their high phylogenetic divergence, both filamentous and foliose red alga in the order Bangiales exhibit a haploid-diploid life cycle, with a haploid leafy or filamentous gametophyte (thallus) and a diploid filamentous sporophyte (conchocelis). Unlike haploid-diploid life cycles in other orders, the gametophyte in Bangiales is generated independently of meiosis; the regulation of this generation transition is not fully understood. Based on transcriptome and gene expression analyses, the originally proposed biphasic model for alternation of generations in Bangiales was recently updated to include a third stage. Along with the haploid gametophyte and diploid sporophyte, the triphasic framework recognizes a diploid conchosporophyte-a conchosporangium generated on the conchocelis-phase and previously considered to be part of the sporophyte. In addition to this sexual life cycle, some Bangiales species have an asexual life cycle in which vegetative cells of the thallus develop into haploid asexual spores, which are then released from the thallus to produce clonal thalli. Here, we summarize the current knowledge of the triphasic life cycle and life cycle trade-off in Neopyropia yezoensis and 'Bangia' sp. as model organisms for the Bangiales.
Collapse
Affiliation(s)
- Koji Mikami
- Department of Integrative Studies of Plant and Animal Production, School of Food Industrial Sciences, Miyagi University, Sendai, Japan.
| | - Megumu Takahashi
- Department of Ocean and Fisheries Sciences, Faculty of Bio-Industry, Tokyo University of Agriculture, Abashiri, Japan
| |
Collapse
|
9
|
Che S, Du G, Zhong X, Mo Z, Wang Z, Mao Y. Quantification of Photosynthetic Pigments in Neopyropia yezoensis Using Hyperspectral Imagery. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0012. [PMID: 37040513 PMCID: PMC10076050 DOI: 10.34133/plantphenomics.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/17/2022] [Indexed: 06/19/2023]
Abstract
Phycobilisomes and chlorophyll-a (Chla) play important roles in the photosynthetic physiology of red macroalgae and serve as the primary light-harvesting antennae and reaction center for photosystem II. Neopyropia is an economically important red macroalga widely cultivated in East Asian countries. The contents and ratios of 3 main phycobiliproteins and Chla are visible traits to evaluate its commercial quality. The traditional analytical methods used for measuring these components have several limitations. Therefore, a high-throughput, nondestructive, optical method based on hyperspectral imaging technology was developed for phenotyping the pigments phycoerythrin (PE), phycocyanin (PC), allophycocyanin (APC), and Chla in Neopyropia thalli in this study. The average spectra from the region of interest were collected at wavelengths ranging from 400 to 1000 nm using a hyperspectral camera. Following different preprocessing methods, 2 machine learning methods, partial least squares regression (PLSR) and support vector machine regression (SVR), were performed to establish the best prediction models for PE, PC, APC, and Chla contents. The prediction results showed that the PLSR model performed the best for PE (R Test 2 = 0.96, MAPE = 8.31%, RPD = 5.21) and the SVR model performed the best for PC (R Test 2 = 0.94, MAPE = 7.18%, RPD = 4.16) and APC (R Test 2 = 0.84, MAPE = 18.25%, RPD = 2.53). Two models (PLSR and SVR) performed almost the same for Chla (PLSR: R Test 2 = 0.92, MAPE = 12.77%, RPD = 3.61; SVR: R Test 2 = 0.93, MAPE = 13.51%, RPD =3.60). Further validation of the optimal models was performed using field-collected samples, and the result demonstrated satisfactory robustness and accuracy. The distribution of PE, PC, APC, and Chla contents within a thallus was visualized according to the optimal prediction models. The results showed that hyperspectral imaging technology was effective for fast, accurate, and noninvasive phenotyping of the PE, PC, APC, and Chla contents of Neopyropia in situ. This could benefit the efficiency of macroalgae breeding, phenomics research, and other related applications.
Collapse
Affiliation(s)
- Shuai Che
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Guoying Du
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xuefeng Zhong
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhaolan Mo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhendong Wang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Ministry of Education), College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572002, China
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, 572025, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266073, China
| |
Collapse
|
10
|
Zhang W, Shi Y, He L, Chen X, Hu F, Chen Y, Pang Y, Li S, Chu Y. Decreased Salinity Offsets the Stimulation of Elevated pCO 2 on Photosynthesis and Synergistically Inhibits the Growth of Juvenile Sporophyte of Saccharina japonica (Laminariaceae, Phaeophyta). PLANTS (BASEL, SWITZERLAND) 2022; 11:2978. [PMID: 36365430 PMCID: PMC9656199 DOI: 10.3390/plants11212978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The combined effect of elevated pCO2 (Partial Pressure of Carbon Dioxide) and decreased salinity, which is mainly caused by freshwater input, on the growth and physiological traits of algae has been poorly assessed. In order to investigate their individual and interactive effects on the development of commercially farmed algae, the juvenile sporophytes of Saccharina japonica were cultivated under different levels of salinity (30, 25 and 20 psu) and pCO2 (400 and 1000 µatm). Individually, decreased salinity significantly reduced the growth rate and pigments of S. japonica, indicating that the alga was low-salinity stressed. The maximum quantum yield, Fv/Fm, declined at low salinities independent of pCO2, suggesting that the hyposalinity showed the main effect. Unexpectedly, the higher pCO2 enhanced the maximum relative electron transport rate (rETRmax) but decreased the growth rate, pigments and soluble carbohydrates contents. This implies a decoupling between the photosynthesis and growth of this alga, which may be linked to an energetic reallocation among the different metabolic processes. Interactively and previously untested, the decreased salinity offset the improvement of rETRmax and aggravated the declines of growth rate and pigment content caused by the elevated pCO2. These behaviors could be associated with the additionally decreased pH that was induced by the low salinity. Our data, therefore, unveils that the decreased salinity may increase the risks of future CO2-induced ocean acidification on the production of S. japonica.
Collapse
Affiliation(s)
- Wenze Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Aquaculture and Aquatic Sciences, Kunsan National University, Gunsan 54150, Korea
| | - Yunyun Shi
- Department of Aquaculture and Aquatic Sciences, Kunsan National University, Gunsan 54150, Korea
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianghua He
- Department of Aquaculture and Aquatic Sciences, Kunsan National University, Gunsan 54150, Korea
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinhua Chen
- Department of Aquaculture and Aquatic Sciences, Kunsan National University, Gunsan 54150, Korea
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengxiao Hu
- Department of Aquaculture and Aquatic Sciences, Kunsan National University, Gunsan 54150, Korea
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yinrong Chen
- Department of Aquaculture and Aquatic Sciences, Kunsan National University, Gunsan 54150, Korea
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yun Pang
- Department of Aquaculture and Aquatic Sciences, Kunsan National University, Gunsan 54150, Korea
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sufang Li
- Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Yaoyao Chu
- Department of Aquaculture and Aquatic Sciences, Kunsan National University, Gunsan 54150, Korea
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
López-Rosales A, Andrade JM, López-Mahía P, Muniategui-Lorenzo S. Development of an analytical procedure to analyze microplastics in edible macroalgae using an enzymatic-oxidative digestion. MARINE POLLUTION BULLETIN 2022; 183:114061. [PMID: 36055080 DOI: 10.1016/j.marpolbul.2022.114061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/20/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Besides being food and a refuge to marine species, macroalgae are a powerful and renewable economic resource. However, they may introduce microplastics (MPs) in the trophic chain. We developed a reliable analytical method to characterize and quantify MPs in common and edible macroalgae. Several digestion methods and filters, along with various measurement options, were studied. A new enzymatic-oxidative protocol with a unique final filtration was selected and validated with a mixture of 5 commercial macroalgae (Undaria pinnatifida spp, Porphyra spp, Ulva spp, Laminaria ochroleuca and Himanthalia elongate). Further, it was shown that washing the macroalgae to release MPs is suboptimal and the potential adhesion of MPs to macroalgae was evaluated. A filter subsampling strategy that scans 33.64 % of its surface reduced the time required to characterize <70 μm particles and fibres directly on the 47 mm diameter filter using an IR microscope (1 sample/day).
Collapse
Affiliation(s)
- Adrián López-Rosales
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña, Campus da Zapateira, E-15071 A Coruña, Spain
| | - Jose M Andrade
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña, Campus da Zapateira, E-15071 A Coruña, Spain.
| | - Purificación López-Mahía
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña, Campus da Zapateira, E-15071 A Coruña, Spain
| | - Soledad Muniategui-Lorenzo
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña, Campus da Zapateira, E-15071 A Coruña, Spain
| |
Collapse
|
12
|
Jiang M, Gao L, Huang R, Lin X, Gao G. Differential responses of bloom-forming Ulva intestinalis and economically important Gracilariopsis lemaneiformis to marine heatwaves under changing nitrate conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156591. [PMID: 35688236 DOI: 10.1016/j.scitotenv.2022.156591] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/07/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Marine heatwaves (MHWs) are affecting the survival of macroalgae. However, little is known regarding how the impacts of MHWs are regulated by nitrogen availability. In this study, we investigated the physiological and genetic responses of a green-tide macroalga Ulva intestinalis Linnaeus and a commercially cultivated macroalga Gracilariopsis lemaneiformis (Bory) E.Y. Dawson, Acleto & Foldvik under different nitrate conditions to simulated MHWs. Under nitrogen limited conditions (LN), heatwaves did not significantly affect biomass or Fv/Fm of U. intestinalis although it led to an earlier biomass decline due to more reproduction events, and meanwhile an upregulation in genes related to TCA cycle and oxidative phosphorylation was detected, supporting sporulation. Under nitrogen replete conditions (HN), heatwaves did not change biomass, Fv/Fm or photosynthetic pigments but reduced reproduction rate along with insignificant change of oxidative phosphorylation and TCA cycle related genes. Meanwhile, genes related to photosynthesis and glutathione metabolism were upregulated. Regarding G. lemaneiformis, heatwaves reduced its Fv/Fm and photosynthetic pigments content, leading to bleaching and death, and photosynthesis-related genes were also downregulated at LN. Fv/Fm was improved and photosynthesis-related genes were up-regulated by the combination of nitrogen enrichment and heatwaves, whereas G. lemaneiformis remained bleached and died by day 12. Therefore, U. intestinalis could survive heatwaves through shifting to micropropagules at LN and protecting its photosynthesis at HN. In contrast, G. lemaneiformis died of bleaching when suffering heatwaves regardless of nitrogen availability. These findings suggest that in future oceans with eutrophication and MHWs, the harmful alga U. intestinalis may have more advantages over the economic alga G. lemaneiformis.
Collapse
Affiliation(s)
- Meijia Jiang
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Lin Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Ruiping Huang
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Guang Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
13
|
Life cycle assessment of a seaweed-based biorefinery concept for production of food, materials, and energy. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Nitrogen assimilation-associated enzymes and nitrogen use efficiency of Pyropia yezoensis (Rhodophyta) in nitrate-sufficient conditions. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Vinuganesh A, Kumar A, Prakash S, Alotaibi MO, Saleh AM, Mohammed AE, Beemster GTS, AbdElgawad H. Influence of seawater acidification on biochemical composition and oxidative status of green algae Ulva compressa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150445. [PMID: 34844304 DOI: 10.1016/j.scitotenv.2021.150445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
The sequestration of elevated atmospheric CO2 levels in seawater results in increasing acidification of oceans and it is unclear what the consequences of this will be on seaweed ecophysiology and ecological services they provide in the coastal ecosystem. In the present study, we examined the physiological and biochemical response of intertidal green seaweed Ulva compressa to elevated pCO2 induced acidification. The green seaweed was exposed to control (pH 8.1) and acidified (pH 7.7) conditions for 2 weeks following which net primary productivity, pigment content, oxidative status and antioxidant enzymes, primary and secondary metabolites, and mineral content were assessed. We observed an increase in primary productivity of the acidified samples, which was associated with increased levels of photosynthetic pigments. Consequently, primary metabolites levels were increased in the thalli grown under lowered pH conditions. There was also richness in various minerals and polyunsaturated fatty acids, indicating that the low pH elevated the nutritional quality of U. compressa. We found that low pH reduced malondialdehyde (MDA) content, suggesting reduced oxidative stress. Consistently we found reduced total antioxidant capacity and a general reduction in the majority of enzymatic and non-enzymatic antioxidants in the thalli grown under acidified conditions. Our results indicate that U. compressa will benefit from seawater acidification by improving productivity. Biochemical changes will affect its nutritional qualities, which may impact the food chain/food web under future acidified ocean conditions.
Collapse
Affiliation(s)
- A Vinuganesh
- Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India
| | - Amit Kumar
- Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India; Sathyabama Marine Research Station, Sallimalai Street, Rameswaram, Tamil Nadu, India.
| | - S Prakash
- Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India; Sathyabama Marine Research Station, Sallimalai Street, Rameswaram, Tamil Nadu, India
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Gerrit T S Beemster
- University of Antwerp, Department of Biology, Integrated Molecular Plant Physiology Research Group, Antwerp, Belgium
| | - Hamada AbdElgawad
- University of Antwerp, Department of Biology, Integrated Molecular Plant Physiology Research Group, Antwerp, Belgium; Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
16
|
Du G, Li X, Wang J, Che S, Zhong X, Mao Y. Discrepancy in photosynthetic responses of the red alga Pyropia yezoensis to dehydration stresses under exposure to desiccation, high salinity, and high mannitol concentration. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:10-17. [PMID: 37073361 PMCID: PMC10077162 DOI: 10.1007/s42995-021-00115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/01/2021] [Indexed: 05/03/2023]
Abstract
Macroalgae that inhabit intertidal zones are exposed to the air for several hours during low tide and must endure desiccation and high variations in temperature, light intensity, and salinity. Pyropia yezoensis (Rhodophyta, Bangiales), a typical intertidal red macroalga that is commercially cultivated in the northwestern Pacific Ocean, was investigated under different dehydration stresses of desiccation, high salinity, and high mannitol concentration. Using chlorophyll fluorescence imaging, photosynthetic activities of P. yezoensis thalli were analyzed using six parameters derived from quenching curves and rapid light curves. A distinct discrepancy was revealed in photosynthetic responses to different dehydration stresses. Dehydration caused by exposure to air resulted in rapid decreases in photosynthetic activities, which were always lower than two other stresses at the same water loss (WL) level. High salinity only reduced photosynthesis significantly at its maximum WL of 40% but maintained a relatively stable maximum quantum yield of photosystem II (PSII) (Fv/Fm). High mannitol concentration induced maximum WL of 20% for a longer time (60 min) than the other two treatments and caused no adverse influences on the six parameters at different WL except for a significant decrease in non-photochemical quenching (NPQ) at 20% WL. Illustrated by chlorophyll fluorescence images, severe spatial heterogeneities were induced by desiccation with lower values in the upper parts than the middle or basal parts of the thalli. The NPQ and rETRmax (maximum relative electron transport rate) demonstrated clear distinctions for evaluating photosynthetic responses, indicating their sensitivity and applicability. The findings of this study indicated that the natural dehydration of exposure to air results in stronger and more heterogeneous effects than those of high salinity or high mannitol concentration.
Collapse
Affiliation(s)
- Guoying Du
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Xiaojiao Li
- Qingdao West Coast New Area Marine Development Bureau, Qingdao, 266003 China
| | - Junhao Wang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Shuai Che
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Xuefeng Zhong
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Ministry of Education), College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022 China
| |
Collapse
|
17
|
Simovic A, Combet S, Cirkovic Velickovic T, Nikolic M, Minic S. Probing the stability of the food colourant R-phycoerythrin from dried Nori flakes. Food Chem 2021; 374:131780. [PMID: 34894468 DOI: 10.1016/j.foodchem.2021.131780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023]
Abstract
This study aimed to characterise the stability of R-phycoerythrin (R-PE), a vivid natural colourant with emerging potential for application in the food industry. High-quality (A560/A280 ≥ 5), native (α-helix content 75%) R-PE was purified from commercial dried Nori (Porphyra sp.) flakes. Thermal unfolding revealed two transitions (at 56 and 72 °C), ascribed to different protein subunits. Contrary to elevated temperature, high-pressure (HP) treatment showed significant advantages: The R-PE unfolding was partly reversible and the colour bleaching was minimal. Binding of Cu2+ (6.3 × 105 M-1) and Zn2+ (1.7 × 103 M-1) influenced conformational changes in the protein tetrapyrrole chromophore without affecting R-PE structure and stability (colour). The results give new insights into the stability of R-PE suggesting its usefulness for the replacement of toxic synthetic dyes. Preservation of the red colour of R-PE could be considered in fortified food and beverages by HP processing. R-PE may act as a biosensor for Cu2+ in aquatic systems.
Collapse
Affiliation(s)
- Ana Simovic
- Centre of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade, Faculty of Chemistry, Belgrade, Serbia
| | - Sophie Combet
- Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR12 CEA-CNRS, CEA-Saclay, Gif-sur-Yvette CEDEX, France
| | - Tanja Cirkovic Velickovic
- Centre of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade, Faculty of Chemistry, Belgrade, Serbia; Ghent University Global Campus, Yeonsu-gu, Incheon, South Korea; Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Milan Nikolic
- Centre of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade, Faculty of Chemistry, Belgrade, Serbia.
| | - Simeon Minic
- Centre of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade, Faculty of Chemistry, Belgrade, Serbia; Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR12 CEA-CNRS, CEA-Saclay, Gif-sur-Yvette CEDEX, France.
| |
Collapse
|
18
|
Barakat KM, El-Sayed HS, Khairy HM, El-Sheikh MA, Al-Rashed SA, Arif IA, Elshobary ME. Effects of ocean acidification on the growth and biochemical composition of a green alga ( Ulva fasciata) and its associated microbiota. Saudi J Biol Sci 2021; 28:5106-5114. [PMID: 34466088 PMCID: PMC8381011 DOI: 10.1016/j.sjbs.2021.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023] Open
Abstract
In marine ecosystems, fluctuations in surface-seawater carbon dioxide (CO2), significantly influence the whole metabolism of marine algae, especially during the early stages of macroalgal development. In this study, the response of the green alga Ulva fasciata for elevating ocean acidification was investigated using four levels of pCO2 ~ 280, 550, 750 and 1050 µatm. Maximum growth rate (6.6% day-1), protein (32.43 %DW) and pigment (2.9 mg/g) accumulation were observed at pCO2-550 with an increase of ~2-fold compared to control. On the other hand, lipid and carbohydrate contents recorded their maximum production (4.23 and 46.96 %DW, respectively) at pCO2-750 while control showed 3.70 and 42.37 %DW, respectively. SDS-PAGE showed the presence of unique bands in response to pCO2, especially at 550 µatm. Dominant associated bacteria was shifted from Halomonas hydrothermalis of control to Vibrio toranzoniae at pCO2-1050. These findings suggest that ocean acidification at 550 µatm might impose noticeable effects on growth, protein, pigments, and protein profile of U. fasciata, which could be a good source for fish farming. While, pCO2-750 was recommended for energetic purpose, due to its high lipid and carbohydrate contents.
Collapse
Affiliation(s)
| | - Heba S. El-Sayed
- National Institute of Oceanography and Fisheries (NOIF), Cairo, Egypt
| | - Hanan M. Khairy
- National Institute of Oceanography and Fisheries (NOIF), Cairo, Egypt
- Corresponding authors at: National Institute of Oceanography and Fisheries, NIOF, 11516, Egypt (H.M. Khairy). Botany Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt (M.E. Elshobary).
| | - Mohamed A. El-Sheikh
- Botany & Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sarah A. Al-Rashed
- Botany & Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A. Arif
- Botany & Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mostafa E. Elshobary
- Botany Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt
- Corresponding authors at: National Institute of Oceanography and Fisheries, NIOF, 11516, Egypt (H.M. Khairy). Botany Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt (M.E. Elshobary).
| |
Collapse
|
19
|
Li X, Sun X, Gao L, Xu J, Gao G. Effects of periodical dehydration on biomass yield and biochemical composition of the edible red alga Pyropia yezoensis grown at different salinities. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Elevated CO2 influences competition for growth, photosynthetic performance and biochemical composition in Neopyropia yezoensis and Ulva prolifera. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Integrative analysis of the microbiome and metabolome in understanding the causes of sugarcane bitterness. Sci Rep 2021; 11:6024. [PMID: 33727648 PMCID: PMC7966368 DOI: 10.1038/s41598-021-85433-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/28/2021] [Indexed: 02/07/2023] Open
Abstract
Plant–microbe interactions can modulate the plant metabolome, but there is no information about how different soil microbiomes could affect the sugarcane metabolome and its quality. Here, we collected soil and stalk samples from bitter sugarcane (BS) and sweet sugarcane (SS) to conduct chemical analysis, microbiome and metabolome analysis. Our data revealed lower species diversity in the BS group than in the SS group, and 18 discriminatory OTUs (relative abundance ≥ 0.01%) were identified. Sugarcane metabolomic analysis indicated the different abundances of 247 metabolites between the two groups in which 22 distinct metabolites involved in two flavonoid biosynthesis pathways were revealed. Integrated analysis between soil microbial taxa, stalk chemical components, and soil properties showed that the flavonoid content in stalks and the nitrogen concentration in soil were highly correlated with the soil microbiome composition. Bacteria at the genus level exhibited greater associations with distinct metabolites, and six genera were independently associated with 90.9% of the sugarcane metabolites that play a major metabolic role in sugarcane. In conclusion, this study provided evidences that the interaction between plant–microbiome can change the plant metabolome.
Collapse
|
22
|
Che S, Du G, Wang N, He K, Mo Z, Sun B, Chen Y, Cao Y, Wang J, Mao Y. Biomass estimation of cultivated red algae Pyropia using unmanned aerial platform based multispectral imaging. PLANT METHODS 2021; 17:12. [PMID: 33541365 PMCID: PMC7863433 DOI: 10.1186/s13007-021-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pyropia is an economically advantageous genus of red macroalgae, which has been cultivated in the coastal areas of East Asia for over 300 years. Realizing estimation of macroalgae biomass in a high-throughput way would great benefit their cultivation management and research on breeding and phenomics. However, the conventional method is labour-intensive, time-consuming, manually destructive, and prone to human error. Nowadays, high-throughput phenotyping using unmanned aerial vehicle (UAV)-based spectral imaging is widely used for terrestrial crops, grassland, and forest, but no such application in marine aquaculture has been reported. RESULTS In this study, multispectral images of cultivated Pyropia yezoensis were taken using a UAV system in the north of Haizhou Bay in the midwestern coast of Yellow Sea. The exposure period of P. yezoensis was utilized to prevent the significant shielding effect of seawater on the reflectance spectrum. The vegetation indices of normalized difference vegetation index (NDVI), ratio vegetation index (RVI), difference vegetation index (DVI) and normalized difference of red edge (NDRE) were derived and indicated no significant difference between the time that P. yezoensis was completely exposed to the air and 1 h later. The regression models of the vegetation indices and P. yezoensis biomass per unit area were established and validated. The quadratic model of DVI (Biomass = - 5.550DVI2 + 105.410DVI + 7.530) showed more accuracy than the other index or indices combination, with the highest coefficient of determination (R2), root mean square error (RMSE), and relative estimated accuracy (Ac) values of 0.925, 8.06, and 74.93%, respectively. The regression model was further validated by consistently predicting the biomass with a high R2 value of 0.918, RMSE of 8.80, and Ac of 82.25%. CONCLUSIONS This study suggests that the biomass of Pyropia can be effectively estimated using UAV-based spectral imaging with high accuracy and consistency. It also implied that multispectral aerial imaging is potential to assist digital management and phenomics research on cultivated macroalgae in a high-throughput way.
Collapse
Affiliation(s)
- Shuai Che
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 People’s Republic of China
| | - Guoying Du
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 People’s Republic of China
| | - Ning Wang
- Xi’ an Ecotech Spectral Imaging and Eco-drone Remote Sensing Research Center Co., Ltd., Xi’ an, 710000 People’s Republic of China
| | - Kun He
- Xi’ an Ecotech Spectral Imaging and Eco-drone Remote Sensing Research Center Co., Ltd., Xi’ an, 710000 People’s Republic of China
| | - Zhaolan Mo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 People’s Republic of China
| | - Bin Sun
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 People’s Republic of China
| | - Yu Chen
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 People’s Republic of China
| | - Yifei Cao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 People’s Republic of China
| | - Junhao Wang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 People’s Republic of China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Ministry of Education), College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022 People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000 People’s Republic of China
| |
Collapse
|
23
|
Ohtake M, Kurita R, Tsunogai M, Nishihara GN, Toda T. Storage capacity for phosphorus during growth and maturation in a brown alga Sargassum macrocarpum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141221. [PMID: 32846250 DOI: 10.1016/j.scitotenv.2020.141221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Improved coastal management has decreased anthropogenic nutrient input over the past few decades, leading to phosphorus depletion. It has been hypothesized that phosphorus depletion in coastal environments leads to declines in macroalgae abundance. Perennial canopy-forming temperate macroalgae can experience the effects of limited phosphorus availability during seasonal phosphorus depletion periods. When nutrients are sufficient, they are stored in algal tissues after luxury uptake and are available to support growth during phosphorus-depleted conditions. Cultivation of mature and actively growing juvenile brown alga (Sargassum macrocarpum) under different nutrient conditions provided individuals with different tissue nutrient concentrations. The maximum photosynthetic rates of these individuals were examined under nutrient-depleted conditions to evaluate "storage capacity", which we defined as the amount of stored phosphorus that can support maximum growth. Maximum photosynthetic rate was used as a proxy for maximum growth rates. The experiments revealed that growth rates of juveniles increased when stored phosphorus content was high. In contrast, the maximum growth rates tended not to increase with an increase in stored phosphorus content in mature individuals. The phosphorus storage capacities for juvenile and mature individuals were approximately 19 and more than 16 weeks, respectively, suggesting that individual alga can endure several months of phosphorus depletion.
Collapse
Affiliation(s)
- Masahiro Ohtake
- Laboratory of Restoration Ecology, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| | - Rikuya Kurita
- Laboratory of Restoration Ecology, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Mizuki Tsunogai
- Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, 1551-7 Taira-machi, Nagasaki 851-2213, Japan
| | - Gregory N Nishihara
- Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, 1551-7 Taira-machi, Nagasaki 851-2213, Japan
| | - Tatsuki Toda
- Laboratory of Restoration Ecology, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
24
|
Feng Z, Wang R, Zhang T, Wang J, Huang W, Li J, Xu J, Gao G. Microplastics in specific tissues of wild sea urchins along the coastal areas of northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138660. [PMID: 32361354 DOI: 10.1016/j.scitotenv.2020.138660] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/19/2020] [Accepted: 04/10/2020] [Indexed: 05/21/2023]
Abstract
Sea urchins serve as an essential niche for benthic ecosystems and are valuable seafood for humans. However, little is known about the microplastics (MPs) accumulation in sea urchins. Here, we investigated the abundances and characteristics of MPs in specific tissues of wild sea urchins for 12 sites across 2, 900 km of coastlines in northern China. Sea urchins from all sites were detected to have MPs, with a total detection rate of 89.52%. The MPs abundance in sea urchins from all sites ranged from 2.20 ± 1.50 to 10.04 ± 8.46 items/individual or 0.16 ± 0.09 to 2.25 ± 1.68 items/g wet weight. The samples from Dalian were found to have the highest value by individual, and samples from Lianyungang had the highest value by gram. Furthermore, MPs were found in different tissues of sea urchins, i.e., gut, coelomic fluid and gonads. The highest abundance of MPs was found in the gut of sea urchins, followed by coelomic fluid and gonads. The size of MPs ranged from 27 to 4742 μm, and the mean size found in gut was bigger than coelomic fluid and gonads. More interestingly, the MPs abundance increased with the decrease of anus size, shell diameter and gonad index (the wet weight ratio of gonad to total soft tissues). The MPs were dominated by fiber in shape, blue-green in colour and cellophane in composition. The high MPs abundance in sea urchins indicates the potential risks to human as they are consumed in many parts of the world, particularly in Asia and Europe.
Collapse
Affiliation(s)
- Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Rui Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiaxuan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Ji Li
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
25
|
Ma J, Xu T, Bao M, Zhou H, Zhang T, Li Z, Gao G, Li X, Xu J. Response of the red algae Pyropia yezoensis grown at different light intensities to CO2-induced seawater acidification at different life cycle stages. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Feng Z, Zhang T, Wang J, Huang W, Wang R, Xu J, Fu G, Gao G. Spatio-temporal features of microplastics pollution in macroalgae growing in an important mariculture area, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137490. [PMID: 32143099 DOI: 10.1016/j.scitotenv.2020.137490] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Macroalgae are being consumed by a growing number of people as functional food. Therefore, they are intensively cultivated to meet the rising demand. Mariculture is a potential source of microplastics (MPs). However, as a potential source of microplastics, little is known regarding the MPs pollution in macroalgae of open sea macriculture. Here we investigated the MPs characteristics in macroalgae in three sections of Haizhou Bay, an important mariculture area in China, during Pyropia culture (Pyropia yezoensis) and non-culture periods (Ulva prolifera, Sargassum horneri, Cladophora sp., Undaria pinnatifida, Ulva pertusa). It was found that P. yezoensis during the culture period had higher MPs abundance (0.17 ± 0.08 particles g-1fresh weight) than other macroalgae (0.12 ± 0.09 particles g-1 fresh weight) during the non-culture period, particularly for the nearshore sections. There were more fiber MPs in P. yezoensis (90.43%) in culture period compared to macroalgae (84.46%) in non-culture period. Highly similar spectrum of plastics in culture gears and macroalgae was verified. Pyropia culture gears released about 1, 037 tons plastics into the environment annually and the MPs abundances in seawater during the culture and non-culture periods were 1.04 ± 0.32 and 1.86 ± 0.49 particles L-1, respectively. The gap of MPs abundance between the two periods can be attributed to the tremendous trapping by massive biomass of P. yezoensis during the culture period and the continuous plastic release during the non-culture period. This study indicates that culture gears of macroalgae could be an important MPs source and the MPs can be transferred to human by edible macroalgae, and meanwhile macroalgae may be ideal biomonitors for MPs pollution in seawater due to their unbiased trapping and immovability.
Collapse
Affiliation(s)
- Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Tao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiaxuan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Rui Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guanghui Fu
- Lianyungang Oceanic and Fishery Development Center, Lianyungang Oceanic and Fishery Bureau, Lianyungang 222005, China
| | - Guang Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
27
|
Kumar A, Buia MC, Palumbo A, Mohany M, Wadaan MAM, Hozzein WN, Beemster GTS, AbdElgawad H. Ocean acidification affects biological activities of seaweeds: A case study of Sargassum vulgare from Ischia volcanic CO 2 vents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113765. [PMID: 31884208 DOI: 10.1016/j.envpol.2019.113765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
We utilized volcanic CO2 vents at Castello Aragonese off Ischia Island as a natural laboratory to investigate the effect of lowered pH/elevated CO2 on the bioactivities of extracts from fleshy brown algae Sargassum vulgare C. Agardh. We analysed the carbohydrate levels, antioxidant capacity, antibacterial, antifungal, antiprotozoal, anticancer properties and antimutagenic potential of the algae growing at the acidified site (pH ∼ 6.7) and those of algae growing at the nearby control site Lacco Ameno (pH∼8.1). The results of the present study show that the levels of polysaccharides fucoidan and alginate were higher in the algal population at acidified site. In general, extracts for the algal population from the acidified site showed a higher antioxidant capacity, antilipidperoxidation, antibacterial, antifungal, antiprotozoal, anticancer activities and antimutagenic potential compared to the control population. The increased bioactivity in acidified population could be due to elevated levels of bioactive compounds of algae and/or associated microbial communities. In this snapshot study, we performed bioactivity assays but did not characterize the chemistry and source of presumptive bioactive compounds. Nevertheless, the observed improvement in the medicinal properties of S. vulgare in the acidified oceans provides a promising basis for future marine drug discovery.
Collapse
Affiliation(s)
- Amit Kumar
- Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, India; Sathyabama Marine Research Station, 123 Sallimalai Street, Rameswaram, India.
| | - Maria Cristina Buia
- Center of Villa Dohrn Ischia - Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, P.ta S. Pietro, Ischia, Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed A M Wadaan
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research Group (IMPRES) Department of Biology, Groenenborgerlaan 171, University of Antwerp, Antwerp, Belgium
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Integrated Molecular Plant Physiology Research Group (IMPRES) Department of Biology, Groenenborgerlaan 171, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
28
|
Ma J, Wang W, Liu X, Wang Z, Gao G, Wu H, Li X, Xu J. Zinc toxicity alters the photosynthetic response of red alga Pyropia yezoensis to ocean acidification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3202-3212. [PMID: 31838674 DOI: 10.1007/s11356-019-06872-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
The globally changing environmental climate, ocean acidification, and heavy metal pollution are of increasing concern. However, studies investigating the combined effects of ocean acidification and zinc (Zn) exposure on macroalgae are very scarce. In this study, the photosynthetic performance of the red alga Pyropia yezoensis was examined under three different concentrations of Zn (control, 25 (medium), and 100 (high) μg L-1) and pCO2 (400 (ambient) and 1000 (high) μatm). The results showed that higher Zn concentrations resulted in increased toxicity for P. yezoensis, while ocean acidification alleviated this negative effect. Ocean acidification increased the relative growth rate of thalli under both medium and high Zn concentrations. The net photosynthetic rate and respiratory rate of thalli also significantly increased in response under ocean acidification, when thalli were cultured under both medium and high Zn concentrations. Malondialdehyde levels decreased under ocean acidification, compared to ambient CO2 conditions and either medium or high Zn concentrations. The activity of superoxide dismutase increased in response to high Zn concentrations, which was particularly apparent at high Zn concentration and ocean acidification. Immunoblotting tests showed that ocean acidification increased D1 removal, with increasing expression levels of the PSII reaction center proteins D2, CP47, and RbcL. These results suggested that ocean acidification could alleviate the damage caused by Zn exposure, thus providing a theoretical basis for a better prediction of the impact of global climate change and heavy metal contamination on marine primary productivity in the form of seaweeds.
Collapse
Affiliation(s)
- Jing Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China
| | - Wen Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China
| | - Xiaoyan Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China
| | - Guang Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China
| | - Hailong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China
| | - Xinshu Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China.
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China.
| |
Collapse
|
29
|
Acid treatment combined with high light leads to increased removal efficiency of Ulva prolifera. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
30
|
Feng Z, Zhang T, Li Y, He X, Wang R, Xu J, Gao G. The accumulation of microplastics in fish from an important fish farm and mariculture area, Haizhou Bay, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133948. [PMID: 31442723 DOI: 10.1016/j.scitotenv.2019.133948] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 05/20/2023]
Abstract
Marine fisheries and aquaculture can match growing demand for marine protein from an increasing population. However, the microplastics (MPs) in marine environments may pose a threat to human health through food chains by seafood consumption. The MPs have been found lodged in the digestive tracts and other tissues of various sea animals, nevertheless, little is known in regard to the accumulation of MPs in fish from major fish farms and mariculture areas, especially in non-digestive tissues of fishes. This study investigated the accumulation of MPs in six major wild fish species (including Thryssa kammalensis, Amblychaeturichthys hexanema, Odontamblyopus rubicundus, Cynoglossus semilaevis, Chaeturichthys stigmatias and Collichthys lucidus), both in digestive and non-digestive tissues, from an important fish farm and mariculture area, Haizhou Bay, China. All fishes had items that were identified as MPs. The highest abundance of MPs was 22.21±1.70items/individual or 11.19±1.28items/g in T. kammalensis, which is filter-feeding and usually inhabits in estuary. The lowest abundance of MPs was observed in C. semilaevis (13.54±2.09items/individual) and C. stigmatias (1.61±0.56items/g). The abundance of MPs exponentially increased with the decrease of MPs size. The MPs were dominated by fiber in shape, black or grey in colour and cellophane in composition. As to different tissues, the total number of MPs on skin (800) or in gills (746) was higher than that in gut (514). In terms of skin, the abundances of MPs in three species of scaleless fish with mucus (A. hexanema, C. stigmatias and O. rubicundus) were generally higher than other three fishes with scales (C. lucidus, C. semilaevis and T. kammalensis), implying the potential high risk of scaleless fish consumption for human health in Haizhou Bay. More in-depth studies need to focus on the scaleless fish through mucus adsorbing enormous MPs.
Collapse
Affiliation(s)
- Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - You Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinran He
- Lianyungang Environmental Monitoring Center of Jiangsu Province, Lianyungang 222001, China
| | - Rui Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
31
|
Chu Y, Liu Y, Li J, Gong Q. Effects of elevated pCO 2 and nutrient enrichment on the growth, photosynthesis, and biochemical compositions of the brown alga Saccharina japonica (Laminariaceae, Phaeophyta). PeerJ 2019; 7:e8040. [PMID: 31799072 PMCID: PMC6884996 DOI: 10.7717/peerj.8040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/15/2019] [Indexed: 01/03/2023] Open
Abstract
Ocean acidification and eutrophication are two major environmental issues affecting kelp mariculture. In this study, the growth, photosynthesis, and biochemical compositions of adult sporophytes of Saccharina japonica were evaluated at different levels of pCO2 (400 and 800 µatm) and nutrients (nutrient-enriched and non-enriched seawater). The relative growth rate (RGR), net photosynthetic rate, and all tested biochemical contents (including chlorophyll (Chl) a, Chl c, soluble carbohydrates, and soluble proteins) were significantly lower at 800 µatm than at 400 µatm pCO2. The RGR and the contents of Chl a and soluble proteins were significantly higher under nutrient-enriched conditions than under non-enriched conditions. Moreover, the negative effects of the elevated pCO2 level on the RGR, net photosynthetic rate, Chl c and the soluble carbohydrates and proteins contents were synergized by the elevated nutrient availability. These results implied that increased pCO2could suppress the growth and biochemical composition of adult sporophytes of S. japonica. The interactive effects of ocean acidification and eutrophication constitute a great threat to the cultivation of S. japonica due to growth inhibition and a reduction in quality.
Collapse
Affiliation(s)
- Yaoyao Chu
- College of Fisheries, Ocean University of China, Qingdao, Shandong, China
| | - Yan Liu
- College of Fisheries, Ocean University of China, Qingdao, Shandong, China.,The Key Laboroatory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, China
| | - Jingyu Li
- College of Fisheries, Ocean University of China, Qingdao, Shandong, China.,The Key Laboroatory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, China
| | - Qingli Gong
- College of Fisheries, Ocean University of China, Qingdao, Shandong, China.,The Key Laboroatory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, China
| |
Collapse
|
32
|
Yue F, Gao G, Ma J, Wu H, Li X, Xu J. Future CO 2-induced seawater acidification mediates the physiological performance of a green alga Ulva linza in different photoperiods. PeerJ 2019; 7:e7048. [PMID: 31198646 PMCID: PMC6555391 DOI: 10.7717/peerj.7048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/30/2019] [Indexed: 11/20/2022] Open
Abstract
Photoperiods have an important impact on macroalgae living in the intertidal zone. Ocean acidification also influences the physiology of macroalgae. However, little is known about the interaction between ocean acidification and photoperiod on macroalgae. In this study, a green alga Ulva linza was cultured under three different photoperiods (L: D = 8:16, 12:12, 16:8) and two different CO2 levels (LC, 400 ppm; HC, 1,000 ppm) to investigate their responses. The results showed that relative growth rate of U. linza increased with extended light periods under LC but decreased at HC when exposed to the longest light period of 16 h compared to 12 h. Higher CO2 levels enhanced the relative growth rate at a L: D of 8:16, had no effect at 12:12 but reduced RGR at 16:8. At LC, the L: D of 16:8 significantly stimulated maximum quantum yield (Yield). Higher CO2 levels enhanced Yield at L: D of 12:12 and 8:16, had negative effect at 16:8. Non-photochemical quenching (NPQ) increased with increasing light period. High CO2 levels did not affect respiration rate during shorter light periods but enhanced it at a light period of 16 h. Longer light periods had negative effects on Chl a and Chl b content, and high CO2 level also inhibited the synthesis of these pigments. Our data demonstrate the interactive effects of CO2 and photoperiod on the physiological characteristics of the green tide macroalga Ulva linza and indicate that future ocean acidification may hinder the stimulatory effect of long light periods on growth of Ulva species.
Collapse
Affiliation(s)
- Furong Yue
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China
| | - Guang Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China
| | - Jing Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China
| | - Hailong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China
| | - Xinshu Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, HuaiHai Institute of Technology, Lianyungang, China.,Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, Lianyungang, China
| |
Collapse
|
33
|
Bao M, Hu L, Fu Q, Gao G, Li X, Xu J. Different Photosynthetic Responses of Pyropia yezoensis to Ultraviolet Radiation Under Changing Temperature and Photosynthetic Active Radiation Regimes. Photochem Photobiol 2019; 95:1213-1218. [PMID: 30968421 DOI: 10.1111/php.13108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/02/2019] [Indexed: 11/27/2022]
Abstract
Macroalgae play a crucial role in coastal marine ecosystems, but they are also subject to multiple challenges due to tidal and seasonal alterations. In this work, we investigated the photosynthetic response of Pyropia yezoensis to ultraviolet radiation (PAR: 400-700 nm; PAB: 280-700 nm) under changing temperatures (5, 10 and 15°C) and light intensities (200, 500 and 800 μmol photons m-2 s-1 ). Under low light intensity (200 μmol photons m-2 s-1 ), P. yezoensis showed the lowest sensitivity to ultraviolet radiation, regardless of temperature. However, higher temperatures inhibited the repair rates (r) and damage rates (k) of photosystem II (PSII) in P. yezoensis. However, under higher light intensities (500 and 800 μmol photons m-2 s-1 ), P. yezoensis showed higher sensitivity to UV radiation. Both r and the ratio of repair rate to damage rate (r:k) were significantly inhibited in P. yezoensis by PAB, regardless of temperature. In addition, higher temperatures significantly decreased the relative UV-inhibition rates, while an increased carbon fixation rate was found. Our study suggested that higher light intensities enhanced the sensitivity to UV radiation, while higher temperatures could relieve the stress caused by high light intensity and UV radiation.
Collapse
Affiliation(s)
- Menglin Bao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China
| | - Lili Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China
| | - Qianqian Fu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China
| | - Guang Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, China.,Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, Lianyungang, China
| | - Xinshu Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, China.,Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, Lianyungang, China
| |
Collapse
|