1
|
Sang X, Zhen F, Lv P, Zhang Z, Qu B, Wang Y. Green and chemical-free pretreatment of flavonoids in tea plant seed husk using ultrasound-cold isostatic pressure synergistic extraction. Food Chem 2025; 478:143725. [PMID: 40073604 DOI: 10.1016/j.foodchem.2025.143725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
A new method was established to extract flavonoids from tea plant seed husk: ultrasonic-cold isostatic pressure synergistic extraction. The effects of pressure, ethanol concentration, tea plant seed husk addition and treatment time on the extraction of flavonoids were investigated. The optimal extraction process was determined as follows: applied pressure 468.440 MPa, 31.169 g of tea plant seed husk, ethanol concentration 69.067 %, and processing time 10.916 min. Characterization experiments demonstrated that ultrasonic synergistic cold isostatic pressure extraction could effectively destroy the plant structure and promote the efflux of active ingredients. Then, the flavonoid extracts were analyzed qualitatively and quantitatively by LC-MS/MS, and three flavonoids were identified and found to be higher in the ultrasonic-cold isostatic pressure synergistic extraction group. Finally, the antioxidant, anti-inflammatory and bacteriostatic tests revealed that the activity of the extract was higher in the ultrasonic-cold isostatic pressure synergistic extraction group and did not destroy the activity of extraction.
Collapse
Affiliation(s)
- Xueting Sang
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Peng Lv
- Heihe Customs Technical Center, Heihe 164300, China
| | - Zhiyun Zhang
- College of Animal Medicine, Northeast Agr Univ, Harbin 150030, China
| | - Bin Qu
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China.
| | - Yuxin Wang
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China
| |
Collapse
|
2
|
Qu Q, Zhu Z, Zhao M, Wang H, Cui W, Huang X, Yuan Z, Zheng Y, Dong N, Liu Y, Wang H, Dong C, Zhang Z, Li Y. Optimization ultrasonic-assisted aqueous two-phase extraction of glabridin from licorice root and its activity against the foodborne pathogen MRSA. Food Chem X 2025; 26:102338. [PMID: 40115497 PMCID: PMC11924929 DOI: 10.1016/j.fochx.2025.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/23/2025] Open
Abstract
This study aimed to extract glabridin (GLA) from licorice using an environmentally sustainable ultrasonic-assisted aqueous two-phase extraction method and to evaluate its efficacy. The extraction parameters were optimized through single-factor experiments and response surface methodology, resulting in a GLA content of 2049.51 μg/g under the conditions of 51 min ultrasonic time, 76 °C ultrasonic temperature, and 640 W ultrasonic power. In vitro analyses demonstrated that licorice extract (1.6 mg/mL) and GLA (8 μg/g) exhibited rapid bactericidal activity against methicillin-resistant Staphylococcus aureus (MRSA). Furthermore, both licorice extract and GLA showed significant disinfection activity against MRSA in models of pork spoilage and cooking utensils. Mechanistic studies revealed that GLA targets phospholipids, thereby disrupting the integrity and normal function of bacterial cell membranes. In conclusion, this study introduces an environmentally sustainable and effective method for obtaining a GLA-rich extract from licorice, which has potential applications in the food industry for addressing MRSA contamination.
Collapse
Affiliation(s)
- Qianwei Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technol, Northeast Agricultural University, Harbin, China
| | - Zhenxin Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Huilong Town Comprehensive Service Center, Qidong City, Jiangsu, China
| | - Mengmeng Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huiwen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenqiang Cui
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingyu Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhongwei Yuan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yadan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technol, Northeast Agricultural University, Harbin, China
| | - Yanyan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haoran Wang
- Southern Medical University, Guangzhou, China
| | - Chunliu Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhiyun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Zhang X, Jin L, Wu Y, Huang B, Chen K, Huang W, Li J. Anti-inflammatory properties of biflavonoids derived from Selaginella moellendorffii Hieron: Targeting NLRP3 inflammasome-dependent pyroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119172. [PMID: 39643022 DOI: 10.1016/j.jep.2024.119172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Selaginella moellendorffii Hieron. has been used as ethnic drug for chronic inflammation treatment. Biflavonoids represent a crucial class of bioactive compounds recognized for their potent anti-inflammatory activity in S. moellendorffii (SM). However, the effective components, targets, and pathways that SM in anti-inflammasome remain unclear. AIM OF THE STUDY Therefore, this study initially evaluated the effective components of SM and explored the underlying mechanisms. MATERIALS AND METHODS Firstly, a series of biflavonoids were isolated from SM, and then all compounds were evaluated for their anti-inflammatory ability in the THP-macrophages co-stimulated with lipopolysaccharide (LPS) and NLRP3 inflammasome inducers. Secondly, transcriptomic analysis and metabolomics analysis revealed the differential genes and metabolites associated with effective components treatment. Finally, molecular docking of effective components with NLRP3 was performed and western blotting was performed in order to determine the expression of related proteins. RESULTS Overall, eleven biflavonoids were successfully isolated from SM. Particularly, F7 exhibited the most potent inhibitory effect against NLRP3 inflammasome-mediated cytokines levels, cell membrane integrity and Ca2+ influx. Transcriptomic studies demonstrated that the differential genes (DEGs) were mainly enriched in NF-κB signaling pathway and NOD-like receptor signaling pathway. Metabolomics studies that the metabolites were mainly involved the pyrimidine metabolites. Further validation analysis manifested that F7's significant downregulation of NLRP3 inflammasome-related genes and proteins expression (P < 0.05, P < 0.01), encompassing both priming (NLRP3, TNF-α, p-p65/p65) and activation stages (IL-1β, IL-18, Caspase-1, GSDMD-N/GSDMD). Moreover, NLRP3 knockdown attenuated F7-mediated inhibition of pyroptosis. Finally, in silico results showed that F7 exhibited promising predicted binding affinity towards NLRP3. CONCLUSIONS Collectively, these findings revealed an anti-inflammatory material basis for SM and confirmed F7 as a potent inhibitor of pyroptosis by suppressing NF-κB/NLRP3 Pathway.
Collapse
Affiliation(s)
- Xueyan Zhang
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei, 430065, China; Department of Pharmacy, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430070, China
| | - Lu Jin
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei, 430065, China
| | - You Wu
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei, 430065, China
| | - Bisheng Huang
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei, 430065, China
| | - Keli Chen
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei, 430065, China
| | - Wei Huang
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei, 430065, China.
| | - Juan Li
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16(#), Hongshan District, Wuhan, Hubei, 430065, China.
| |
Collapse
|
4
|
Zheng S, Huang Z, Dong L, Li D, Hu X, Chen F, Ma C. Sustainable Extraction Technology of Fruit and Vegetable Residues as Novel Food Ingredients. Foods 2025; 14:331. [PMID: 39856997 PMCID: PMC11765362 DOI: 10.3390/foods14020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Fruit and vegetable waste (FVW) is a global waste issue with environmental impacts. It contains valuable compounds such as polysaccharides, polyphenols, proteins, vitamins, pigments, and fatty acids, which can be extracted for food applications. This study aims to review sustainable extraction methods for FVW and its potential in the food industry. METHODS This paper provides an overview of the sources and sustainable methods of high value-added compounds extracted from FVW. Sustainable techniques, including supercritical fluid extraction and ultrasound-assisted extraction, are compared with traditional methods, for their efficiency in extracting high-value compounds from FVW while minimizing environmental impact. DISCUSSIONS Sustainable extraction of FVW compounds is sustainable and beneficial for novel food ingredients. However, challenges in scalability and cost need to be addressed for wider adoption in the food sector. CONCLUSIONS Sustainable extraction techniques effectively extract phytochemicals from FVW, preserving bioactivity and reducing environmental load. These methods show promise for sustainable food ingredient development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chen Ma
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Z.); (Z.H.); (L.D.); (D.L.); (X.H.); (F.C.)
| |
Collapse
|
5
|
Sirlam M, Leutcha PB, Sado Nouemsi GR, Zafar H, Tegha HF, Sema DK, Tsague Tankeu VF, Nganso Ditchou YO, Poka M, Demana PH, Atia-Tul-Wahab, Choudhry MI, Siwe Noundou X, Meli Lannang A. Two new flavonoids from the leaves of Garcinia smeathmannii, in vitro and in silico anti-inflammatory potentials. Fitoterapia 2024; 179:106273. [PMID: 39461568 DOI: 10.1016/j.fitote.2024.106273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Garcinia smeathmannii is a well-known plant for its uses in the effective treatment of intestinal parasites, skin eruptions and skin burns. The dichloromethane-methanol (2:3) crude extract of the leaves of G. smeathmannii led to the isolation and characterization of twenty compounds (1-20) using chromatographic and spectroscopic techniques. Extracts and compounds were screened in vitro for their anti-inflammatory (ROS), antiglycation and antileishmanial (L. tropica) activities. Compounds were also screened for their in silico anti-inflammatory activities using Maestro 4.2.1 software with the co-crystal complex structures of the ovine oCOX-1: meloxicam (PDB Id: 4O1Z) and murine mCOX-2: meloxicam (PDB Id: 4M11) proteins. An unprecedented flavonol (1) and a flavone dimer (2) together with eighteen known compounds (3-20) were characterized. All the tested samples in vitro revealed no antiglycation and antileishmanial activities. Beside, extracts revealed moderate anti-inflammatory activities (IC50 ranging from 24.1 ± 2.0 to 34.7 ± 0.8 μg/mL). Only compound (13) revealed an anti-inflammatory activity which was 9.33 times more active than the reference (Ibuprofen, IC50 = 11.2 ± 1.9 μg/mL) with IC50 of 1.2 ± 0.0 μg/mL. Compounds (2-9, 11-13 and 19-20) were docked and the docking scores were ranging from -10.178 to -6.119 (kcal/mol) which were in agreement with the experimental anti-inflammatory activity. These results are in agreement with the traditional uses of the leave of G. smeathmannii as cataplasm for skin eruption and as analgesic agent.
Collapse
Affiliation(s)
- Moïse Sirlam
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Peron Bosco Leutcha
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua, Cameroon; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Guy Raphael Sado Nouemsi
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua, Cameroon; Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, Ngaoundéré, P.O. Box 454, Cameroon
| | - Humaira Zafar
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Hycienth Fung Tegha
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Denis Kehdinga Sema
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua, Cameroon
| | | | | | - Madan Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa.
| | - Patrick Hulisani Demana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa.
| | - Atia-Tul-Wahab
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Iqbal Choudhry
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| | - Xavier Siwe Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa.
| | - Alain Meli Lannang
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, Ngaoundéré, P.O. Box 454, Cameroon.
| |
Collapse
|
6
|
Wu Y, Jiang L, Ran W, Zhong K, Zhao Y, Gao H. Antimicrobial activities of natural flavonoids against foodborne pathogens and their application in food industry. Food Chem 2024; 460:140476. [PMID: 39032295 DOI: 10.1016/j.foodchem.2024.140476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
The application of natural alternatives as food preservatives has gained much attention due to the escalating negative perception of synthetic preservatives among consumers and the spread of drug-resistance foodborne pathogens. Natural flavonoids have the potential to be employed for food safety due to their antimicrobial properties against a wide range of foodborne pathogenic microorganisms. In this perspective, we reviewed the antimicrobial activities of natural flavonoids, the mechanism of action, as well as their application for food safety and quality. Various strategies for the incorporation of flavonoids into food products were highlighted, including direct addition to food formulations, encapsulation as micro or nanocarriers, and incorporation into edible or active films and coatings. Furthermore, we discussed the current challenges of industrial application of flavonoids, and proposed future trends to enhance their potential as natural preservatives. This review provides a theoretical foundation for the further development and application of flavonoids for food safety.
Collapse
Affiliation(s)
- Yanping Wu
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ling Jiang
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Wenyi Ran
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Kai Zhong
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
7
|
Gao Q, Qiao L, Hou Y, Ran H, Zhang F, Liu C, Kuang J, Deng S, Jiang Y, Wang G, Zhang X. Antidiabetic and Antigout Properties of the Ultrasound-Assisted Extraction of Total Biflavonoids from Selaginella doederleinii Revealed by In Vitro and In Silico Studies. Antioxidants (Basel) 2024; 13:1184. [PMID: 39456438 PMCID: PMC11504096 DOI: 10.3390/antiox13101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
In this study, the extraction, purification and metabolic enzyme inhibition potential of Selaginella doederleinii were investigated. In order to extract the total biflavonoids from S. doederleinii (SDTBs), the optimum extraction process was obtained by optimizing the ultrasonic extraction parameters using response-surface methodology. This resulted in a total biflavonoid content of 22.26 ± 0.35 mg/g. Purification of the S. doederleinii extract was carried out using octadecylsilane (ODS), and the transfer rate of the SDTBs was 82.12 ± 3.48% under the optimum purification conditions. We determined the effect of the SDTBs on α-glucosidase (AG), α-amylase and xanthine oxidase (XOD) and found that the SDTBs had an extremely potent inhibitory effect on AG, with an IC50 value of 57.46 μg/mL, which was much lower than that of the positive control. Meanwhile, they also showed significant inhibition of XOD and α-amylase, with IC50 values of 289.67 μg/mL and 50.85 μg/mL, respectively. In addition, molecular docking studies were carried out to understand the nature of the action of the biflavonoids on AG and XOD. The results showed that robustaflavone had the lowest binding energy to AG (-11.33 kcal/mol) and XOD (-10.21 kcal/mol), while, on the other hand, amentoflavone showed a good binding affinity to AG (-10.40 kcal/mol) and XOD (-9.962 kcal/mol). Moreover, molecular dynamics simulations verified the above results.
Collapse
Affiliation(s)
- Qiong Gao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Lei Qiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Yiru Hou
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Hailin Ran
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Feng Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Chao Liu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Juxiang Kuang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Shixing Deng
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Yongmei Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Xin Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
8
|
Qian H, Li Y. Nandina domestica Thunb.: a review of traditional uses, phytochemistry, pharmacology, and toxicology. Front Pharmacol 2024; 15:1407140. [PMID: 39045046 PMCID: PMC11263726 DOI: 10.3389/fphar.2024.1407140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Nandina domestica: Thunb. is a traditional Chinese herbal drug that has long been used in China and Japan for the treatment of colds, fevers, asthma, chronic bronchitis, conjunctivitis, whooping cough, pharyngeal tumors, etc. Published data have reported at least 366 constituents from N. domestica, including alkaloids, flavonoids, lignans, terpenoids, phenolic acids and their derivatives, fatty acids, and others. Of these, the isoquinoline alkaloids are considered characteristic markers for N. domestica. These alkaloids also showed the most promising bioactivities. The crude extracts or semi-purified constituents of N. domestica exhibit a variety of activities, including antitumor, dermatological, anti-inflammatory, antioxidant, antimicrobial, and detoxification activities, as well as effects on respiratory system, etc. The fruit is considered poisonous when eaten raw, with nausea, vomiting, diarrhea, and abdominal pain as side effects after ingestion. Most traditional uses are supported by biological activities demonstrated in modern experimental studies, suggesting a potential medicinal value of N. domestica. However, more information is needed on its mechanisms of activity, pharmacokinetic profile of the constituents, and its safety and efficacy profile in humans.
Collapse
Affiliation(s)
| | - Yanling Li
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
9
|
Singh S, Agrawal N, Goyal A. Unraveling Amentoflavone's Therapeutic Potential in Alzheimer's Disease: A Preclinical Assessment. Comb Chem High Throughput Screen 2024; 27:1851-1860. [PMID: 38441013 DOI: 10.2174/0113862073301291240229102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/06/2024]
Abstract
Alzheimer's disease is one of the neurodegenerative diseases which causes cognition deficit. There are currently few medications available to treat Alzheimer's disease, even though researchers have devoted a great deal of time studying the condition and offering many benefits. Thus, only a few drugs are available for the treatment of Alzheimer's disease. Amentoflavone is a dietary component found in many plants and herbs that has several health advantages. Amentoflavone has demonstrated strong protective benefits against a range of brain illnesses in preclinical trials, most frequently in Alzheimer's disease. Amentoflavone, a biflavonoid, can be identified in a variety of herbs upon isolation. Considering the beneficial properties of this compound, this review emphasizes the pharmacological effects and botanical sources of amentoflavone, as well as the compound's benefits and possible applications in the treatment of Alzheimer's disorders.
Collapse
Affiliation(s)
- Sushma Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P., India
- Department of Pharmacology, Shri Ramswaroop Memorial University Village-Hadauri, Post-Tindola, Lucknow-Deva Road, Barabanki, U.P., 225003, India
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P., India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P., India
| |
Collapse
|
10
|
Sharma P, Kishore A, De I, Negi S, Kumar G, Bhardwaj S, Singh M. Mitigating neuroinflammation in Parkinson's disease: Exploring the role of proinflammatory cytokines and the potential of phytochemicals as natural therapeutics. Neurochem Int 2023; 170:105604. [PMID: 37683836 DOI: 10.1016/j.neuint.2023.105604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Parkinson's disease (PD) is one of the most prevalent neuroinflammatory illnesses, characterized by the progressive loss of neurons in the brain. Proinflammatory cytokines play a key role in initiating and perpetuating neuroinflammation, which can lead to the activation of glial cells and the deregulation of inflammatory pathways, ultimately leading to permanent brain damage. Currently, available drugs for PD mostly alleviate symptoms but do not target underlying inflammatory processes. There is a growing interest in exploring the potential of phytochemicals to mitigate neuroinflammation. Phytochemicals such as resveratrol, apigenin, catechin, anthocyanins, amentoflavone, quercetin, berberine, and genistein have been studied for their ability to scavenge free radicals and reduce proinflammatory cytokine levels in the brain. These plant-derived compounds offer a natural and potentially safe alternative to conventional drugs for managing neuroinflammation in PD and other neurodegenerative diseases. However, further research is necessary to elucidate their underlying mechanisms of action and clinical effectiveness. So, this review delves into the pathophysiology of PD and its intricate relationship with proinflammatory cytokines, and explores how their insidious contributions fuel the disease's initiation and progression via cytokine-dependent signaling pathways. Additionally, we tried to give an account of PD management using existing drugs along with their limitations. Furthermore, our aim is to provide a thorough overview of the diverse groups of phytochemicals, their plentiful sources, and the current understanding of their anti-neuroinflammatory properties. Through this exploration, we posit the innovative idea that consuming nutrient-rich phytochemicals could be an effective approach to preventing and treating PD.
Collapse
Affiliation(s)
- Prashant Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Abhinoy Kishore
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Indranil De
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Swarnima Negi
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Gulshan Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Sahil Bhardwaj
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Manish Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India.
| |
Collapse
|
11
|
Inci H, Izol E, Yilmaz MA, Ilkaya M, Bingöl Z, Gülçin I. Comprehensive Phytochemical Content by LC/MS/MS and Anticholinergic, Antiglaucoma, Antiepilepsy, and Antioxidant Activity of Apilarnil (Drone Larvae). Chem Biodivers 2023; 20:e202300654. [PMID: 37610045 DOI: 10.1002/cbdv.202300654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
Apilarnil is 3-7 days old drone larvae. It is an organic bee product known to be rich in protein. In this study, the biological activities of Apilarnil were determined by its antioxidant and enzyme inhibition effects. Antioxidant activities were determined by Fe3+ , Cu2+ , Fe3+ -TPTZ ((2,4,6-tris(2-pyridyl)-s-triazine), reducing ability and 1,1-diphenyl-2-picrylhydrazyl (DPPH⋅) scavenging assays. Also, its enzyme inhibition effects were tested against carbonic anhydrase I and II isoenzymes (hCA I, hCA II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Antioxidant activity of Apilarnil was generally lower than the standard molecules in the applied methods. In DPPH⋅ radical scavenging assay, Apilarnil exhibited higher radical scavenging than some standards. Enzyme inhibition results towards hCA I (IC50 : 14.2 μg/mL), hCA II: (IC50 : 11.5 μg/mL), AChE (IC50 : 22.1 μg/mL), BChE (IC50 : 16.1 μg/mL) were calculated. In addition, the quantity of 53 different phytochemical compounds of Apilarnil was determined by a validated method by LC/MS/MS. Compounds with the highest concentrations (mg analyte/g dry extract) were determined as quinic acid (1091.045), fumaric acid (48.714), aconitic acid (47.218), kaempferol (39.946), and quercetin (27.508). As a result, it was determined that Apilarnil had effective antioxidant profile when compared to standard antioxidants.
Collapse
Affiliation(s)
- Hakan Inci
- Department of Animal Science, Faculty of Agriculture, Bingöl University, Bingöl, Türkiye
| | - Ebubekir Izol
- Bee and Natural Products R&D and P&D Application and Research Center, Bingöl University, Bingöl, Türkiye
| | - Mustafa Abdullah Yilmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Türkiye
| | - Mehmet Ilkaya
- Department of Animal Science, Faculty of Agriculture, Bingöl University, Bingöl, Türkiye
| | - Zeynebe Bingöl
- Vocational School of Health Services, Gaziosmanpaşa University, Tokat, Türkiye
| | - Ilhami Gülçin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Türkiye
| |
Collapse
|
12
|
Feng Y, Wang J, Zhang S, Li Y, Wang B, Zhang J, Qiu Y, Zhang Y, Zhang Y. Preparation of amentoflavone-loaded DSPE-PEG 2000 micelles with improved bioavailability and in vitro antitumor efficacy. Biomed Chromatogr 2023; 37:e5690. [PMID: 37337343 DOI: 10.1002/bmc.5690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/27/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023]
Abstract
To overcome the poor aqueous solubility and enhance the anticancer effects of amentoflavone (AF), a nontoxic and biodegradable amphiphilic copolymer, poly(ethyleneglycol)-distearoylphosphatidylethanolamine (DSPE-PEG2000 ), was introduced to prepare AF micelles using the thin-film hydration method. Amentoflavone was successfully encapsulated into the core, achieving an encapsulation efficiency of 98.80 ± 0.24% and a drug loading efficiency of 2.96 ± 0.12%. The resulting micelles exhibited a spherical shape with a particle size of approximately 25.99 nm. The solubility of AF was significant improved by 412-fold, and cumulative drug release studies showed that AF release was much faster from the micelles compared with the free drug. The release of AF was sustained over time and followed a degradation-based kinetic model, similar to polymeric systems. After oral administration, the AF-loaded micelles demonstrated an enhanced oral bioavailability, which was 3.79 times higher than that of free AF. In vitro evaluations of the micelles' antitumor effects revealed a significantly greater efficacy compared with free AF. These findings highlight the tremendous potential of DSPE-PEG2000 micelles as a drug delivery carrier for improving the solubility and therapeutic efficacy of AF.
Collapse
Affiliation(s)
- Yuan Feng
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, China
| | - Jin Wang
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, China
| | | | - Yanan Li
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, China
| | - Boxin Wang
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, China
| | - Jiayuan Zhang
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, China
| | - Yingzhe Qiu
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, China
| | - Yi Zhang
- Shenyang Pharmaceutical University, Shenyang, China
| | - Yuanyuan Zhang
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, China
| |
Collapse
|
13
|
Frota LS, Alves DR, Marinho MM, da Silva LP, Almeida Neto FWDQ, Marinho ES, de Morais SM. Antioxidant and anticholinesterase activities of amentoflavone isolated from Ouratea fieldingiana (Gardner) Engl. through in vitro and chemical-quantum studies. J Biomol Struct Dyn 2023; 41:1206-1216. [PMID: 34907850 DOI: 10.1080/07391102.2021.2017353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ouratea fieldingiana, popularly known as batiputá, is a tree species easily found in the coastal part of northeastern Brazil. Its leaves are rich in biflavonoids, its major compound being amentoflavone. Biflavonoids are well studied due to their high antioxidant capacity. Alzheimer's disease (AD) is a disease characterized by the progressive loss of neurons. Currently, the pharmacological treatment of AD has four drugs: donepezil, galantamine, rivastigmine and memantine. Where these drugs, with the exception of memantine, are inhibitors of acetylcholinesterase, thus inhibiting the enzyme that destroys acetylcholine, thus increasing the availability of this neurotransmitter. This article aims to determine in vitro and in silico the antioxidant and anticholinesterase action of amentoflavone isolated from the leaves of Ouratea fieldingiana. The antioxidant capacity of amentoflavone was evaluated using the DPPH* free radical scavenging method, with an IC50 of 5.73 ± 0.08 µg/mL. The antiradical properties of the molecule were also studied in silico through several HAT, SET-PT and SPLET mechanisms via DFT M06-2X/6-311++G(d,p). It was found that in the hydrogen atom transfer mechanism (HAT) the best trend was obtained as an anti-radical mechanism. Amentoflavone has the ability to inhibit acetylcholinesterase when tested in vitro, having an IC50 of 8.68 ± 0.73 µg/mL, corroborating its effect in the in silico test, presenting four strong covalent hydrogen bonds for having a bond length up to 2.5 Å. Thus, amentoflavone is an important target for further testing against Alzheimer's disease. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lucas Soares Frota
- Programa de Pós-graduação em Biotecnologia, Rede Nordeste de Biotecnologia, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, Brasil
| | - Daniela Ribeiro Alves
- Programa de Pós-graduação em Ciências Naturais, Faculdade de Veterinária, Núcleo de Pesquisa em Sanidade Animal, Universidade Estadual do Ceará, Fortaleza, Brasil
| | - Márcia Machado Marinho
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Brasil
| | - Leonardo Paes da Silva
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Brasil
| | | | - Emmanuel Silva Marinho
- Grupo de Química Teórica e Eletroquímica, Faculdade de Filosofia Dom Aureliano Matos, Universidade Estadual do Ceara, Limoeiro do Norte, Brasil
| | | |
Collapse
|
14
|
Tuli HS, Joshi H, Vashishth K, Ramniwas S, Varol M, Kumar M, Rani I, Rani V, Sak K. Chemopreventive mechanisms of amentoflavone: recent trends and advancements. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:865-876. [PMID: 36773053 DOI: 10.1007/s00210-023-02416-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
In parallel to the continuous rise of new cancer cases all over the world, the interest of scientific community in natural anticancer agents has steadily been increased. In the past decades, numerous phytochemicals have been shown to possess a strong anticancer potential in preclinical conditions. One of such interesting compounds, derived from different plants such as ginkgo, hinoki, and St. John`s wort, is amentoflavone. In this review article, a wide range of anticancer properties of this natural biflavone are described, revealing its ability to suppress the malignant growth and lead tumor cells to apoptotic death, besides impeding also angiogenic and metastatic processes. Therefore, amentoflavone can be considered a potential lead compound for the development of novel anticancer drug candidates, definitely deserving further in vivo studies and also initiation of clinical trials. It is expected that this plant biflavone might be important, either alone or in combination with the current standard chemotherapeutics, in providing some alleviation for the continuous rise of global cancer burden.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, Mullana, 133207, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER) Chandigarh, Chandigarh, 160012, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, 140413, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University Sadopur, Ambala, 134007, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, 134007, Ambala, India
| | - Vibha Rani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201307, Uttar Pradesh, India
| | | |
Collapse
|
15
|
Zhang L, Qin M, Yin J, Liu X, Zhou J, Zhu Y, Liu Y. Antibacterial activity and mechanism of ginger extract against Ralstonia solanacearum. J Appl Microbiol 2022; 133:2642-2654. [PMID: 35892189 DOI: 10.1111/jam.15733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/24/2022] [Accepted: 07/16/2022] [Indexed: 11/26/2022]
Abstract
AIMS The current study aimed to determine the chemical compositions of ginger extract (GE) and to assess the antibacterial activities of GE against the ginger bacterial wilt pathogen Ralstonia solanacearum and to screen their mechanisms of action. METHODS AND RESULTS A total of 393 compounds were identified by using ultra-performance liquid chromatography and tandem-mass spectrometry. The antibacterial test indicated that GE had strong antibacterial activity against R. solanacearum and that the bactericidal effect exhibited a dose-dependent manner. The minimum inhibitory concentration and minimum bactericidal concentration of R. solanacearum were 3.91 and 125 mg/ml, respectively. The cell membrane permeability and integrity of R. solanacearum were destroyed by GE, resulting in cell content leakage, such as electrolytes, nucleic acids, proteins, extracellular adenosine triphosphate and exopoly saccharides. In addition, the activity of cellular succinate dehydrogenase and alkaline phosphatase of R. solanacearum decreased gradually with an increase in the GE concentration. Scanning electron microscopy analysis revealed that GE treatment changed the morphology of the R. solanacearum cells. Further experiments demonstrated that GE delayed or slowed the occurrence of bacterial wilt on ginger. CONCLUSIONS GE has a significant antibacterial effect on R. solanacearum, and the antibacterial effect is concentration dependent. The GE treatments changed the morphology, destroyed membrane permeability and integrity, reduced key enzyme activity and inhibit the synthesis of the virulence factor EPS of R. solanacearum. GE significantly controlled the bacterial wilt of ginger during infection. SIGNIFICANCE AND IMPACT OF THE STUDY This research provides insight into the antimicrobial mechanism of GE against R. solanacearum, which will open a new application field for GE.
Collapse
Affiliation(s)
- Lingling Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Manli Qin
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Junliang Yin
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Xuli Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Jie Zhou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Yongxing Zhu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Yiqing Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| |
Collapse
|
16
|
Batalha ADDSJ, Souza DCDM, Ubiera RD, Chaves FCM, Monteiro WM, da Silva FMA, Koolen HHF, Boechat AL, Sartim MA. Therapeutic Potential of Leaves from Fridericia chica (Bonpl.) L. G. Lohmann: Botanical Aspects, Phytochemical and Biological, Anti-Inflammatory, Antioxidant and Healing Action. Biomolecules 2022; 12:biom12091208. [PMID: 36139047 PMCID: PMC9496332 DOI: 10.3390/biom12091208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Plants of the species Fridericia chica (Bonpl.) L. G. Lohmann (Bignoniaceae), which are widely distributed in Brazil and named crajiru in the state of Amazonas, are known in folk medicine as a traditional medicine in the form of a tea for the treatment of intestinal colic, diarrhea, and anemia, among other diseases. The chemical analysis of extracts of the leaves has identified phenolic compounds, a class of secondary metabolites that provide defense for plants and benefits to the health of humans. Several studies have shown the therapeutic efficacy of F. chica extracts, with antitumor, antiviral, wound healing, anti-inflammatory, and antioxidant activities being among the therapeutic applications already proven. The healing action of F. chica leaf extract has been demonstrated in several experimental models, and shows the ability to favor the proliferation of fibroblasts, which is essential for tissue repair. The anti-inflammatory activity of F. chica has been clearly demonstrated by several authors, who suggest that it is related to the presence of 3-deoxyanthocyanidins, which is capable of inhibiting pro-inflammatory pathways such as the kappa B (NF-kB) nuclear transcription factor pathway. Another important effect attributed to this species is the antioxidant effect, attributed to phenolic compounds interrupting chain reactions caused by free radicals and donating hydrogen atoms or electrons. In conclusion, the species Fridericia chica has great therapeutic potential, which is detailed in this paper with the objective of encouraging new research and promoting the sum of efforts for the inclusion of herbal medicines in health systems around the world.
Collapse
Affiliation(s)
| | - Damy Caroline de Melo Souza
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
| | - Rosmery Duran Ubiera
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
| | | | - Wuelton Marcelo Monteiro
- Tropical Medicine Graduate Program, Amazonas State University—UEA, Manaus 69040-000, Brazil
- Tropical Medicine Foundation Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, Brazil
| | | | - Hector Henrique Ferreira Koolen
- Tropical Medicine Graduate Program, Amazonas State University—UEA, Manaus 69040-000, Brazil
- Research Group in Metabolomics and Mass Spectrometry, Amazonas State University, Manaus 690065-130, Brazil
| | - Antônio Luiz Boechat
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
- Laboratory of Innovative Therapies, Department of Parasitology, Amazonas State University—UEA, Manaus 69080-900, Brazil
| | - Marco Aurélio Sartim
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
- Tropical Medicine Graduate Program, Amazonas State University—UEA, Manaus 69040-000, Brazil
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Brazil
- Correspondence:
| |
Collapse
|
17
|
Characterization, solubility and stability of amentoflavone polymorphs. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Thuy PT, Son NT. Thermodynamic and kinetic studies on antioxidant capacity of amentoflavone: a DFT (density functional theory) computational approach. Free Radic Res 2022; 56:526-535. [PMID: 36370431 DOI: 10.1080/10715762.2022.2146584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Density functional theory (DFT) at the theoretical M06-2X/6-311G(d,p) level was used to assess thermodynamics and kinetics in the antioxidative action of amentoflavone (AF). The antioxidative HAT pathway (H-atom transfer) is assigned to this compound in gas, but the SPL-ET (sequential proton loss-electron transfer) is the main route in polar solvents methanol and water. In all four mediums gas, benzene, methanol, and water, 4‴-OH is the most active site in free radical quenching with the lowest BDE (bond dissociation enthalpy) values of 81.8-84.8 kcal/mol, as well as it exerted the PA (proton affinity) values of 29.8-33.0 kcal/mol in methanol and water. Regarding kinetics, when interacted with •OOH and •NO2 in gas and methanol, 4‴-OH group is also responsible for the lowest ΔG# values (Gibbs free energy of activation), and the highest rate constant K values. Acidic assessment also indicated that 4‴-OH is associated with the strongest acidity (the lowest pKa). Two favorable oriented 4‴-OH and 7-OH groups further exhibited antioxidative activity since they prevented metal ions Zn2+ and Fe2+ from participating in free radical producing processes, in which the most stable complex [FeAF(H2O)4] generated the lowest IE value of -206.2 kcal/mol, and Egap value of 3.491 kcal/mol, but the highest MIA values of 184.6 kcal/mol in methanol.
Collapse
Affiliation(s)
- Phan Thi Thuy
- Department of Chemistry, College of Education, Vinh University, Vinh, Vietnam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Caugiay, Vietnam
| |
Collapse
|
19
|
Altay A, Yeniçeri EKK, Taslimi P, Taskin‐Tok T, Yılmaz MA, Köksal E. Phytochemical Analysis and Biological Evaluation of
Hypericum linarioides
Bosse: in Vitro and in Silico Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ahmet Altay
- Chemistry Faculty of Arts and Sciences Erzincan Binali Yildirim University 24100 Erzincan Turkey
| | | | - Parham Taslimi
- Biotechnology Faculty of Science Bartin University 74100 Bartın Turkey
| | - Tugba Taskin‐Tok
- Chemistry Faculty of Arts and Sciences Gaziantep University, 27310 Gaziantep Turkey
| | | | - Ekrem Köksal
- Chemistry Faculty of Arts and Sciences Erzincan Binali Yildirim University Erzincan Turkey
| |
Collapse
|
20
|
Šamec D, Karalija E, Dahija S, Hassan STS. Biflavonoids: Important Contributions to the Health Benefits of Ginkgo ( Ginkgo biloba L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:1381. [PMID: 35631806 PMCID: PMC9143338 DOI: 10.3390/plants11101381] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 05/03/2023]
Abstract
Ginkgo (Ginkgo biloba L.) is one of the most distinctive plants, characterized by excellent resistance to various environmental conditions. It is used as an ornamental plant and is recognized as a medicinal plant in both traditional and Western medicine. Its bioactive potential is associated with the presence of flavonoids and terpene trilactones, but many other compounds may also have synergistic effects. Flavonoid dimers-biflavonoids-are important constituents of ginkgophytopharmaceuticals. Currently, the presence of 13 biflavonoids has been reported in ginkgo, of which amentoflavone, bilobetin, sciadopitysin, ginkgetin and isoginkgetin are the most common. Their role in plants remains unknown, but their bioactivity and potential role in the management of human health are better investigated. In this review, we have provided an overview of the chemistry, diversity and biological factors that influence the presence of biflavonoids in ginkgo, as well as their bioactive and health-related properties. We have focused on their antioxidant, anticancer, antiviral, antibacterial, antifungal and anti-inflammatory activities as well as their potential role in the treatment of cardiovascular, metabolic and neurodegenerative diseases. We also highlighted their potential toxicity and pointed out further research directions.
Collapse
Affiliation(s)
- Dunja Šamec
- Department of Food Technology, University North, Trga Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Erna Karalija
- Department for Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.)
| | - Sabina Dahija
- Department for Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.)
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| |
Collapse
|
21
|
Bajpai VK, Bahuguna A, Kumar V, Khan I, Alrokayan SH, Khan HA, Simal-Gandara J, Xiao J, Na M, Sonwal S, Lee H, Kim M, Suk Huh Y, Han YK, Shukla S. Cellular antioxidant potential and inhibition of foodborne pathogens by a sesquiterpene ilimaquinone in cold storaged ground chicken and under temperature-abuse condition. Food Chem 2022; 373:131392. [PMID: 34742043 DOI: 10.1016/j.foodchem.2021.131392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 02/08/2023]
Abstract
A sesquiterpene quinone, ilimaquinone, was accessed for its cellular antioxidant efficacy and possible antimicrobial mechanism of action against foodborne pathogens (Staphylococcus aureus and Escherichia coli) in vitro and in vivo. Ilimaquinone was found to be protective against H2O2-induced oxidative stress as validated by the reduction in the ROS levels, including increasing expression of SOD1 and SOD2 enzymes. Furthermore, ilimaquinone evoked MIC against S. aureus and E. coli within the range of 125-250 µg/mL. Ilimaquinone established its antimicrobial mode of action against both tested pathogens as evident by bacterial membrane depolarization, loss of nuclear genetic material, potassium ion, and release of extracellular ATP, as well as compromised membrane permeabilization and cellular component damage. Also, ilimaquinone showed no teratogenic effect against zebrafish, suggesting its nontoxic nature. Moreover, ilimaquinone significantly reduced the S. aureus count without affecting the sensory properties and color values of cold-storaged ground chicken meat even under temperature abuse condition.
Collapse
Affiliation(s)
- Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea
| | - Ashutosh Bahuguna
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk 38541, Republic of Korea
| | - Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk 38541, Republic of Korea
| | - Imran Khan
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Salman H Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haseeb A Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain; Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China.
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Sonam Sonwal
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Hoomin Lee
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk 38541, Republic of Korea.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| | - Shruti Shukla
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gwal Pahari, Gurugram, Haryana 122003, India.
| |
Collapse
|
22
|
Evaluation of amentoflavone metabolites on PARP-1 inhibition and the potentiation on anti-proliferative effects of carboplatin in A549 cells. Bioorg Med Chem Lett 2022; 56:128480. [PMID: 34843914 DOI: 10.1016/j.bmcl.2021.128480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/10/2021] [Accepted: 11/20/2021] [Indexed: 11/23/2022]
Abstract
The present study aims to determine the major metabolites of amentoflavone (AMF) and further evaluate their inhibitory effects on PARP-1. First, different fractions (Frs. 1-9), which were collected according to retention time of AMF metabolites based on UHPLC-QTOF-MS/MS qualitative analysis, were evaluated on their inhibitory effects against PARP-1. Then, two mono-sulfate metabolites in the fractions with potent PARP-1 inhibitory effect were targetedly semi-synthesized. Moreover, three mono-sulfate conjugates (compound 8, 9 and 10), including one disulfate conjugate (compound 10), were isolated and their structures were fully elucidated by UHPLC-QTOF-MS/MS and NMR. Finally, the binding mode of compound 8 (amentoflavone-4‴-O-sulfate) toward PARP-1 and its potentiation on carboplatin (CBP) in A549 cells were investigated. This study was the first report on bioactivity evaluation of AMF metabolites in rat bile on PARP-1 and the potentiation of compound 8 on carboplatin (CBP) in A549 cells in vitro. This paper also provided scientific basis for the AMF metabolites on PARP-1 inhibition and chemosensitization.
Collapse
|
23
|
Xiong X, Tang N, Lai X, Zhang J, Wen W, Li X, Li A, Wu Y, Liu Z. Insights Into Amentoflavone: A Natural Multifunctional Biflavonoid. Front Pharmacol 2022; 12:768708. [PMID: 35002708 PMCID: PMC8727548 DOI: 10.3389/fphar.2021.768708] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Amentoflavone is an active phenolic compound isolated from Selaginella tamariscina over 40 years. Amentoflavone has been extensively recorded as a molecule which displays multifunctional biological activities. Especially, amentoflavone involves in anti-cancer activity by mediating various signaling pathways such as extracellular signal-regulated kinase (ERK), nuclear factor kappa-B (NF-κB) and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), and emerges anti-SARS-CoV-2 effect via binding towards the main protease (Mpro/3CLpro), spike protein receptor binding domain (RBD) and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. Therefore, amentoflavone is considered to be a promising therapeutic agent for clinical research. Considering the multifunction of amentoflavone, the current review comprehensively discuss the chemistry, the progress in its diverse biological activities, including anti-inflammatory, anti-oxidation, anti-microorganism, metabolism regulation, neuroprotection, radioprotection, musculoskeletal protection and antidepressant, specially the fascinating role against various types of cancers. In addition, the bioavailability and drug delivery of amentoflavone, the molecular mechanisms underlying the activities of amentoflavone, the molecular docking simulation of amentoflavone through in silico approach and anti-SARS-CoV-2 effect of amentoflavone are discussed.
Collapse
Affiliation(s)
- Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Nan Tang
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Xudong Lai
- Department of Infectious Disease, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jinli Zhang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Weilun Wen
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Xiaojian Li
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yanhua Wu
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Qiu H, Guo Z, Xu Q, Mao S, Wu W. Evaluation on absorption risks of amentoflavone after oral administration in rats. Biopharm Drug Dispos 2021; 42:435-443. [PMID: 34655436 DOI: 10.1002/bdd.2304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/05/2021] [Indexed: 11/06/2022]
Abstract
The present study was aimed to systemically assess the absorption risks of amentoflavone (AMF). Physicochemical properties of AMF were evaluated using in vitro assays including water solubility and stability in both simulated gastric and intestinal fluids, as well as logD, pka and permeability studies in a monolayer Caco-2 model. The results together suggested that AMF was a compound with moderate intestinal absorption and the poor solubility was the key rate-limiting step for the oral absorption of AMF, and PVP-K30 were thus used as a solubilizer to improve its solubility and oral bioavailability. Furthermore, studies on pharmacokinetics and biliary excretion of AMF with tween 80 or PVP-K30 were performed after oral administration, and the results showed that the percentage of AMF conjugates in bile was determined up to be 96.73% and no AMF conjugates were detected in rat plasma. The above results revealed that the poor oral absorption of AMF may probably be attributed to the low solubility, high level of metabolism and hepatic first-pass effects. The relative bioavailability of AMF solubilized by PVP-K30 was about 2-fold than that of AMF suspended in 1% tween 80. The present study may help provide scientific insights to guide the rational design of AMF into more efficient formulation systems.
Collapse
Affiliation(s)
- Hui Qiu
- Department of Pharmaceutics, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhengbing Guo
- Department of Pharmaceutics, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Qian Xu
- Department of Pharmaceutics, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Shengfang Mao
- Department of Pharmaceutics, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Wenming Wu
- Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
25
|
Imahori D, Μatsumoto T, Saito Y, Ohta T, Yoshida T, Nakayama Y, Watanabe T. Cell death-inducing activities via P-glycoprotein inhibition of the constituents isolated from fruits of Nandina domestica. Fitoterapia 2021; 154:105023. [PMID: 34428520 DOI: 10.1016/j.fitote.2021.105023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022]
Abstract
Two new pyrrole alkaloids methyl-E-mangolamide (1) and methyl-Z-mangolamide (2), four new megastigmane glycosides nandinamegastigmanes I-IV (3-6), and eight known compounds (7-14) were isolated from the methanol extract of the fruits of Nandina domestica. The structures of the new compounds were elucidated based on chemical and spectroscopic evidence. The absolute stereochemistry of nandinamegastigmane I (3) was established upon comparing the experimental and predicted electronic circular dichroism (ECD) data. Among the isolated compounds, 1 and 2 showed cell death-inducing activity on the Adriamycin-treated HeLa cells. In addition, one of the mechanisms for cell death-inducing activity of 1 and 2 was suggested as inhibition of P-glycoprotein.
Collapse
Affiliation(s)
- Daisuke Imahori
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Takahiro Μatsumoto
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Tomoe Ohta
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki 859-3298, Japan
| | - Tatsusada Yoshida
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki 859-3298, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Tetsushi Watanabe
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan.
| |
Collapse
|
26
|
Ariza JJ, García-López D, Sánchez-Nieto E, Guillamón E, Baños A, Martínez-Bueno M. Antilisterial Effect of a Natural Formulation Based on Citrus Extract in Ready-To-Eat Foods. Foods 2021; 10:1475. [PMID: 34202152 PMCID: PMC8305249 DOI: 10.3390/foods10071475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/30/2022] Open
Abstract
Controlling Listeria in food is a major challenge, especially because it can persist for years in food processing plants. The best option to control this pathogen is the implementation of effective cleaning and disinfection procedures that guarantee the safety and quality of the final products. In addition, consumer trends are changing, being more aware of the importance of food safety and demanding natural foods, minimally processed and free of chemical additives. For this reason, the current consumption model is focusing on the development of preservatives of natural origin, from plants or microorganisms. In sum, this study aimed to evaluate the antimicrobial effectiveness of a citrus extract formulation rich in flavonoids against several L. monocytogenes and L. innocua strains, using in vitro test (agar diffusion test, minimum bactericidal concentration (MBC), and time-kill curves) and challenge test in food trials (carne mechada, salami, fresh salmon, lettuce, brine, and mozzarella cheese). The results presented in this work show that citrus extract, at doses of 5 and 10%, had a relevant antimicrobial activity in vitro against the target strains tested. Besides this, citrus extract applied on the surface of food had a significant antilisterial activity, mainly in carne mechada and mozzarella cheese, with reductions of up to eight logarithmic units with respect to the control. These results suggest that citrus extract can be considered a promising tool to improve the hygienic quality of ready-to-eat foods.
Collapse
Affiliation(s)
- Juan José Ariza
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Spain; (J.J.A.); (D.G.-L.); (E.S.-N.); (E.G.)
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain;
| | - David García-López
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Spain; (J.J.A.); (D.G.-L.); (E.S.-N.); (E.G.)
| | - Esperanza Sánchez-Nieto
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Spain; (J.J.A.); (D.G.-L.); (E.S.-N.); (E.G.)
| | - Enrique Guillamón
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Spain; (J.J.A.); (D.G.-L.); (E.S.-N.); (E.G.)
| | - Alberto Baños
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Spain; (J.J.A.); (D.G.-L.); (E.S.-N.); (E.G.)
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain;
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain;
| |
Collapse
|
27
|
Hao K, Xu B, Zhang G, Lv F, Wang Y, Ma M, Si H. Antibacterial Activity and Mechanism of Litsea cubeba L. Essential Oil Against Acinetobacter baumannii. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21999146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The main objective of this study was to investigate the antibacterial activity and mechanism of Litsea cubeba essential oil (LCEO) against Acinetobacter baumannii. The antibacterial activity was examined by a serial dilution method and growth curves. The essential oil showed strong activity against A. baumannii. The mechanism of the antibacterial action was evaluated by the integrity and permeability of the membrane, scanning electron microscopy ( SEM) and SDS-PAGE. The change in permeability of the cell membrane and leakage of cell intracellular biomacromolecules verified that LCEO has an obvious effect on the cell membrane. SEM showed the damaging effect of the essential oil on cells since the morphology of the treated bacteria was significantly changed. Different expression of proteins indicated the effect of the essential oil on protein synthesis. It is suggested that LCEO with both emulsifying and antibacterial activities, has a potential to serve as an inhibitor against A. baumannii.
Collapse
Affiliation(s)
- Kaiyuan Hao
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Baichang Xu
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Geyin Zhang
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Feifei Lv
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Yuhan Wang
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Mingxiang Ma
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Hongbin Si
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| |
Collapse
|
28
|
Wang B, Lu Y, Hu X, Feng J, Shen W, Wang R, Wang H. Systematic Strategy for Metabolites of Amentoflavone In Vivo and In Vitro Based on UHPLC-Q-TOF-MS/MS Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14808-14823. [PMID: 33322906 DOI: 10.1021/acs.jafc.0c04532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Amentoflavone, a biflavonoid occurring in many edible supplements, possesses some bioactivities, including antioxidant, anti-inflammation, antitumor, and neuroprotective activities. In the present study, an ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS) method, combined with a three-step analytical strategy, was employed to identify metabolites in vivo (rat plasma, bile, urine, and feces) and in vitro (rat liver microsomes and rat intestine microsomes). A total of 39 metabolites in rats and nine metabolites in rat microsomes were elucidated by UHPLC-Q-TOF-MS/MS analysis, and the chemical structure of some isomers was further assigned by calculated Clog P values. Oxidation, internal hydrolysis, hydrogenation, methylation, sulfation, glucuronidation, glucosylation, O-aminomethylation, and degradation were the major metabolic pathways of amentoflavone. Noteworthy, O-aminomethylation and glucosylation could be considered as unique metabolic pathways of amentoflavone. This was the first report on metabolite identification of amentoflavone in vivo and in vitro, and the metabolic findings offer novel and valuable evidence for an in-depth understanding of the safety and efficacy of amentoflavone.
Collapse
Affiliation(s)
- Baolin Wang
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
- Nanchang Key Laboratory of Quality Control and Safety Evaluation of TCM, Nanchang Institute for Food and Drug Control, Nanchang 330012, People's Republic of China
| | - Yimeng Lu
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jiahao Feng
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wei Shen
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Rong Wang
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
29
|
Yousefi M, Khorshidian N, Hosseini H. Potential Application of Essential Oils for Mitigation of Listeria monocytogenes in Meat and Poultry Products. Front Nutr 2020; 7:577287. [PMID: 33330578 PMCID: PMC7732451 DOI: 10.3389/fnut.2020.577287] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/21/2020] [Indexed: 01/23/2023] Open
Abstract
One of the most important challenges in the food industry is to provide healthy and safe food. Therefore, it is not possible to achieve this without different processes and the use of various additives. In order to improve safety and extend the shelf life of food products, various synthetic preservatives have been widely utilized by the food industry to prevent growth of spoilage and pathogenic microorganisms. On the other hand, consumers' preference to consume food products with natural additives induced food industries to use natural-based preservatives in their production. It has been observed that herbal extracts and their essential oils could be potentially considered as a replacement for chemical antimicrobials. Antimicrobial properties of plant essential oils are derived from some main bioactive components such as phenolic acids, terpenes, aldehydes, and flavonoids that are present in essential oils. Various mechanisms such as changing the fatty acid profile and structure of cell membranes and increasing the cell permeability as well as affecting membrane proteins and inhibition of functional properties of the cell wall are effective in antimicrobial activity of essential oils. Therefore, our objective is to revise the effect of various essential oils and their bioactive components against Listeria monocytogenes in meat and poultry products.
Collapse
Affiliation(s)
- Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Natural Antioxidants: A Review of Studies on Human and Animal Coronavirus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3173281. [PMID: 32855764 PMCID: PMC7443229 DOI: 10.1155/2020/3173281] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
The outbreaks of viruses with wide spread and mortality in the world population have motivated the research for new therapeutic approaches. There are several viruses that cause a biochemical imbalance in the infected cell resulting in oxidative stress. These effects may be associated with the development of pathologies and worsening of symptoms. Therefore, this review is aimed at discussing natural compounds with both antioxidant and antiviral activities, specifically against coronavirus infection, in an attempt to contribute to global researches for discovering effective therapeutic agents in the treatment of coronavirus infection and its severe clinical complications. The contribution of the possible action of these compounds on metabolic modulation associated with antiviral properties, in addition to other mechanisms of action, is presented.
Collapse
|
31
|
Wang B, Lu Y, Wang R, Liu S, Hu X, Wang H. Transport and metabolic profiling studies of amentoflavone in Caco-2 cells by UHPLC-ESI-MS/MS and UHPLC-ESI-Q-TOF-MS/MS. J Pharm Biomed Anal 2020; 189:113441. [PMID: 32615340 DOI: 10.1016/j.jpba.2020.113441] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/09/2020] [Accepted: 06/18/2020] [Indexed: 01/15/2023]
Abstract
Amentoflavone, a kind of biflavonoid existing in several medicinal plants such as Selaginella moellendorfi and Gingko biloba, possesses anti-inflammatory, antioxidant, anti-virus, anti-tumor activities. In the present study, a new reliable and sensitive UHPLC-ESI-MS/MS method was developed to determine the permeability of amentoflavone under different conditions, and its metabolites in Caco-2 cells were identified by means of UHPLC-Q-TOF-MS/MS method. The results showed that amentoflavone could be considered as a compound with moderate intestinal absorption in Caco-2 cell model and its absorption characteristics might be involved in paracellular passive penetration and clathrin-mediated endocytosis with no participation of efflux transporters. Eight metabolites of amentoflavone were identified in Caco-2 cell model, indicating that the main metabolic pathways were oxidation, reduction, methylation and glucuronide conjugation. This study can provide valuable evidence for an in-depth understanding of absorption mechanism and transformation of amentoflavone in the intestine.
Collapse
Affiliation(s)
- Baolin Wang
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Nanchang Key Laboratory of Quality Control and Safety Evaluation of TCM, Nanchang Institute for Food and Drug Control, Nanchang 330012, People's Republic of China
| | - Yimeng Lu
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Rong Wang
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shumeng Liu
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
32
|
Wu Z, Cai YS, Yuan R, Wan Q, Xiao D, Lei J, Yu J. Bioactive pterocarpans from Trigonella foenum-graecum L. Food Chem 2020; 313:126092. [DOI: 10.1016/j.foodchem.2019.126092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/16/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
|
33
|
Gan L, Ma J, You G, Mai J, Wang Z, Yang R, Xie C, Fei J, Tang L, Zhao J, Cai Z, Ye L. Glucuronidation and its effect on the bioactivity of amentoflavone, a biflavonoid from Ginkgo biloba leaves. J Pharm Pharmacol 2020; 72:1840-1853. [PMID: 32144952 DOI: 10.1111/jphp.13247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/09/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Ginkgo biloba leaves contain amentoflavone (AMF), a dietary flavonoid that possesses antioxidant and anticancer activity. Flavonoids are extensively subjected to glucuronidation. This study aimed to determine the metabolic profile of AMF and the effect of glucuronidation on AMF bioactivity. METHODS A pharmacokinetic study was conducted to determine the plasma concentrations of AMF and its metabolites. The metabolic profile of AMF was elucidated using different species of microsomes. The antioxidant activity of AMF metabolites was determined using DPPH/ABTS radical and nitric oxide assays. The anticancer activity of AMF metabolites was evaluated in U87MG/U251 cells. KEY FINDINGS Pharmacokinetic studies indicated that the oral bioavailability of AMF was 0.06 ± 0.04%, and the area under the curve of the glucuronidated AMF metabolites (410.938 ± 62.219 ng/ml h) was significantly higher than that of AMF (194.509 ± 16.915 ng/ml h). UGT1A1 and UGT1A3 greatly metabolized AMF. No significant difference was observed in the antioxidant activity between AMF and its metabolites. The anticancer activity of AMF metabolites significantly decreased. CONCLUSIONS A low AMF bioavailability was due to extensive glucuronidation, which was mediated by UGT1A1 and UGT1A3. Glucuronidated AMF metabolites had the same antioxidant but had a lower anticancer activity than that of AMF.
Collapse
Affiliation(s)
- Lili Gan
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiating Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Guoquan You
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinxia Mai
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhaoyu Wang
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China
| | - Ruopeng Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Cong Xie
- Pharmacy Department of Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Jingrao Fei
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zheng Cai
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Khan I, Bahuguna A, Shukla S, Aziz F, Chauhan AK, Ansari MB, Bajpai VK, Huh YS, Kang SC. Antimicrobial potential of the food-grade additive carvacrol against uropathogenic E. coli based on membrane depolarization, reactive oxygen species generation, and molecular docking analysis. Microb Pathog 2020; 142:104046. [PMID: 32061823 DOI: 10.1016/j.micpath.2020.104046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 11/26/2022]
Abstract
The antibiotic resistance of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli has increased drastically in recent years. In our study, we determined the principle mechanisms of action for the food-grade additive carvacrol against ESBL E. coli isolated from the blood of patients with a urinary tract infection. Carvacrol, which has a minimum inhibitory concentration of 150 μg/ml and a minimum bactericidal concentration of 300 μg/ml, reduced E. coli cell counts in a time-dependent manner. After treatment with carvacrol, the E. coli killing time was found to be 120 min. Fluorescent staining confirmed an increase in bacterial cell death, greater membrane depolarization, and an elevated oxidative burst in carvacrol-treated E. coli. Carvacrol also induced the release of cellular DNA, proteins, and potassium ions from bacterial cells and reduced both the number of E. coli in invasion assays against macrophages and the levels of the inflammatory proteins TNF-α and COX-2. In addition, carvacrol was found to inhibit β-lactamase enzyme activity (in vitro), which was supported by in silico results. Moreover, carvacrol inhibited motility, and protected against bacterial invasion. Overall, the findings suggest that carvacrol has significant antimicrobial potential against ESBL E. coli.
Collapse
Affiliation(s)
- Imran Khan
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea; Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 712-714, Republic of Korea; The Hormel Institute, University of Minnesota, MN 55912, USA
| | - Ashutosh Bahuguna
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 712-714, Republic of Korea
| | - Shruti Shukla
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, 131028, India
| | - Faisal Aziz
- The Hormel Institute, University of Minnesota, MN 55912, USA
| | - Anil Kumar Chauhan
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 712-714, Republic of Korea
| | - Mohd Bismillah Ansari
- SABIC Technology & Innovation Centre, Saudi Basic Industries Corporation (SABIC), Riyadh, 11551, Saudi Arabia
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, Republic of Korea.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea.
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 712-714, Republic of Korea.
| |
Collapse
|
35
|
Zhao D, Liu G, Wang X, Daraz U, Sun Q. Abundance of human pathogen genes in the phyllosphere of four landscape plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109933. [PMID: 32063310 DOI: 10.1016/j.jenvman.2019.109933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
The surface of leaf, also known as phyllosphere, harbors diverse microbial communities which include both beneficial microorganisms promoting plants growth and harmful microorganisms, such as plant pathogens and human pathogens. Several studies have investigated the interaction between plants and human pathogens, while few works have focused on the quantitative analysis of pathogenic bacteria. On the basis of real-time polymerase chain reaction (qPCR), this study aimed to evaluate the abundance of following genes: the nuc and pvl of Staphylococcus aureus, the lytA and psaA of Streptococcus pneumoniae, and the ttr and invA of Salmonella enterica in the phyllosphere of four landscape plants (Nandina domestica, Rhododendron pulchrum, Photinia serrulata, and Cinnamomum camphora) growing in two habitats. Our results indicated that the relative abundance of pathogenic genes in the phyllosphere ranged from 10-9 to 10-6. The specific genes of S. aureus, S. pneumoniae and S. enterica in landscape plants were pvl, lytA and ttr, respectively. The two pathogenic genes of S. pneumoniae and the 16S rRNA gene were mainly affected by habitats, host species, and habitats-species interaction. Moreover, for the abundance of lytA and 16S rRNA, results showed that plants present in roadside with traffic pollution were relatively higher than that of campus with less pollution. The N. domestica and C. camphora were recommended for planting along the roadsides due to lower abundance of pathogenic genes. However, we have observed no significant difference in the abundance of pathogenic genes among four plants in the campus. Thereby, this study provided a valuable reference for selecting landscape plants in view of human health.
Collapse
Affiliation(s)
- Dandan Zhao
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, China
| | - Guijia Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, China
| | - Xuefei Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, China
| | - Umar Daraz
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, China
| | - Qingye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, China.
| |
Collapse
|
36
|
Granato D, Barba FJ, Bursać Kovačević D, Lorenzo JM, Cruz AG, Putnik P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu Rev Food Sci Technol 2020; 11:93-118. [PMID: 31905019 DOI: 10.1146/annurev-food-032519-051708] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional foods is a very popular term in the social and scientific media; consequently, food producers have invested resources in the development of processed foods that may provide added functional benefits to consumers' well-being. Because of intrinsic regulation and end-of-use purposes in different countries, worldwide meanings and definitions of this term are still unclear. Hence, here we standardize this definition and propose a guideline to attest that some ingredients or foods truly deserve this special designation. Furthermore, focus is directed at the most recent studies and practical guidelines that can be used to develop and test the efficacy of potentially functional foods and ingredients. The most widespread functional ingredients, such as polyunsaturated fatty acids (PUFAs), probiotics/prebiotics/synbiotics, and antioxidants, and their technological means of delivery in food products are described. The review discusses the steps that food companies should take to ensure that their developed food product is truly functional.
Collapse
Affiliation(s)
- Daniel Granato
- Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-0250 Espoo, Finland;
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 Burjassot, València, Spain
| | | | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Vinas, 32900 Ourense, Spain
| | - Adriano G Cruz
- Department of Food, Federal Institute of Science, Education and Technology of Rio de Janeiro (IFRJ), 20260-100 Rio de Janeiro, Brazil
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
37
|
Mohammadinejad R, Maleki H, Larrañeta E, Fajardo AR, Nik AB, Shavandi A, Sheikhi A, Ghorbanpour M, Farokhi M, Govindh P, Cabane E, Azizi S, Aref AR, Mozafari M, Mehrali M, Thomas S, Mano JF, Mishra YK, Thakur VK. Status and future scope of plant-based green hydrogels in biomedical engineering. APPLIED MATERIALS TODAY 2019; 16:213-246. [DOI: 10.1016/j.apmt.2019.04.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|