1
|
Li Z, Liu J, Fang Y, Chen H, Yang B, Wang Y. An efficient and high-water-content enzymatic esterification method for the synthesis of β-sitosterol conjugated linoleate via a sodium citrate-based three-liquid-phase system. Food Chem 2024; 458:140250. [PMID: 38964114 DOI: 10.1016/j.foodchem.2024.140250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Three-liquid-phase systems (TLPSs) are novel interfacial enzymatic reaction systems that have been successfully applied in many valuable reactions. However, these systems are suitable only for hydrolysis reactions and not for more widely used esterification reactions. Surprisingly, our recent research revealed that two water-insoluble substrates (β-sitosterol and conjugated linoleic acid) could be rapidly esterified in this system. The initial rate of the esterification reaction in the TLPS based on sodium citrate was enhanced by approximately 10-fold relative to that in a traditional water/n-hexane system. The special emulsion structure (S/W1/W2 emulsion) formed may be vital because it not only provides a larger reaction interface but also spontaneously generates a middle phase that might regulate water activity to facilitate esterification. Furthermore, the lipase-enriched phase could be reused at least 8 times without significant loss of catalytic efficiency. Therefore, this TLPS is an ideal enzymatic esterification platform for ester synthesis because it is efficient, convenient to use, and cost-effective.
Collapse
Affiliation(s)
- Zhigang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiaqin Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yinglin Fang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Huayong Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Bo Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Yonghua Wang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
2
|
He WS, Zhao L, Sui J, Li X, Huang S, Ding H, Zhu H, Chen ZY. Enzymatic Synthesis of a Novel Antioxidant Octacosanol Lipoate and Its Antioxidant Potency in Sunflower Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21781-21793. [PMID: 39289871 PMCID: PMC11450929 DOI: 10.1021/acs.jafc.4c07240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
α-Lipoic acid possesses remarkable antioxidant activity; however, its poor lipid solubility greatly restricts its practical utilization. The present study was the first (i) to synthesize a novel lipophilic antioxidant of octacosanol lipoate and (ii) to assess its antioxidant potency in sunflower oil by hydrogen nuclear magnetic resonance (1H NMR) spectroscopy. In brief, octacosanol lipoate was successfully synthesized using octacosanol and lipoic acid as substrates and Candida sp. 99-125 lipase as a catalyst. The conversion of octacosanol lipoate could reach as high as 98.1% within merely 2 h, with an overall yield of 87.9%. The hydrophobicity of lipoic acid was significantly enhanced upon esterification with octacosanol. Interestingly, both traditional methods and 1H NMR analysis consistently indicated that octacosanol lipoate exhibited superior antioxidant activity compared with butyl hydroxytoluene at high temperatures. It was concluded that octacosanol lipoate has the potential to be developed into a safe and efficient natural antioxidant which can be utilized not only in daily cooking oils but also in frying oils.
Collapse
Affiliation(s)
- Wen-Sen He
- School
of Food and Biological Engineering, Jiangsu
University, Zhenjiang, Jiangsu 212013, China
- School
of Life Sciences, The Chinese University
of Hong Kong, Shatin, Hong Kong 999077, China
| | - Liying Zhao
- School
of Food and Biological Engineering, Jiangsu
University, Zhenjiang, Jiangsu 212013, China
| | - Jiawei Sui
- School
of Food and Biological Engineering, Jiangsu
University, Zhenjiang, Jiangsu 212013, China
| | - Xian Li
- School
of Food and Biological Engineering, Jiangsu
University, Zhenjiang, Jiangsu 212013, China
| | - Shouhe Huang
- School
of Life Sciences, The Chinese University
of Hong Kong, Shatin, Hong Kong 999077, China
| | - Huafang Ding
- School
of Life Sciences, The Chinese University
of Hong Kong, Shatin, Hong Kong 999077, China
| | - Hanyue Zhu
- School
of Life Sciences, The Chinese University
of Hong Kong, Shatin, Hong Kong 999077, China
- School
of Food Science and Engineering/Guangdong Provincial Key Laboratory
of Intelligent Food Manufacturing, Foshan
University, Foshan, Guangdong 528000, China
| | - Zhen-Yu Chen
- School
of Life Sciences, The Chinese University
of Hong Kong, Shatin, Hong Kong 999077, China
| |
Collapse
|
3
|
Ma G, Zhang Z, Chen M, Zhang Y, Nian B, Hu Y. Ionic liquid modification reshapes the substrate pockets of lipase to boost its stability and activity in vitamin E succinate synthesis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2669-2678. [PMID: 37994149 DOI: 10.1002/jsfa.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND The relative low stability, reusability and activity of enzymes made the industrial production of vitamin E succinate (VES) can only be performed with complex processes and high cost using chemical methods. To address these issues, in the present study, an ionic liquids (ILs) modification strategy was developed to improve the activity and stability of lipases in VES synthesis. RESULTS The results showed that the [1-butyl-3-methyl imidazole] [N-acetyl-l-proline] ILs modified Candida rugosa lipase (CRL) has the highest modification degree (48.28%), activity (774 U g-1 ), thermostability and solvent tolerance in three selected modifiers. Additionally, after reaction condition optimization, the highest yield of VES can be improved to 95.18% at 45 °C for 15 h, which was significantly improved compared to some previous studies. CONCLUSION In the present study, a high-efficiency VES synthesis strategy was successfully developed via modification of lipase. Moreover, the mechanism by which ILs modification can enhance the activity and stability of lipase was investigated via both experimental and computational-aided methods. Molecular dynamics simulation suggested that ILs modification changed the geometry of Phe344 from flat to upright, which significantly reshaped and enhanced the size of substrate binding pocket of CRL. It is also agreement with our circular dichroism and fluorescence spectroscopy results, which suggested that the modification changed the secondary structure of CRL to a certain extent. The larger pocket also endowed the suitable binding pose of succinate, which made the hydrogen bonds between succinate and active site Ser209 become stronger, and thus improving the yield of VES. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangzheng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Zihan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Mei Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Yifei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| |
Collapse
|
4
|
He WS, Zhao L, Yang H, Rui J, Li J, Chen ZY. Novel Synthesis of Phytosterol Ferulate Using Acidic Ionic Liquids as a Catalyst and Its Hypolipidemic Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2309-2320. [PMID: 38252882 PMCID: PMC10835726 DOI: 10.1021/acs.jafc.3c09148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Phytosterol ferulate (PF) is quantitively low in rice, corn, wheat, oats, barley, and millet, but it is potentially effective in reducing plasma lipids. In this study, PF was synthesized for the first time using acidic ionic liquids as a catalyst. The product was purified, characterized using Fourier transform infrared, mass spectroscopy, and nuclear magnetic resonance, and ultimately confirmed as the desired PF compound. The conversion of phytosterol surpassed an impressive 99% within just 2 h, with a selectivity for PF exceeding 83%. Plasma lipid-lowering activity of PF was further investigated by using C57BL/6J mice fed a high-fat diet as a model. Supplementation of 0.5% PF into diet resulted in significant reductions in plasma total cholesterol, triacylglycerols, and nonhigh-density lipoprotein cholesterol by 13.7, 16.9, and 46.3%, respectively. This was accompanied by 55.8 and 36.3% reductions in hepatic cholesterol and total lipids, respectively, and a 22.9% increase in fecal cholesterol excretion. Interestingly, PF demonstrated a higher lipid-lowering activity than that of its substrates, a physical mixture of phytosterols and ferulic acid. In conclusion, an efficient synthesis of PF was achieved for the first time, and PF had the great potential to be developed as a lipid-lowering dietary supplement.
Collapse
Affiliation(s)
- Wen-Sen He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin ,Hong Kong, China
| | - Liying Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haonan Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jiaxin Rui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jie Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin ,Hong Kong, China
| |
Collapse
|
5
|
Liu Y, Wang Q, Liu C, Yang H, Jia L, Zhao L, Gong F, Tan C, Tao H, He WS. Improved antioxidant activity of rutin via lipase-mediated esterification with oleic acid. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3489-3500. [PMID: 36754830 DOI: 10.1002/jsfa.12486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/10/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Oxidation is a major problem for oils and fats, which can be mitigated by antioxidants. Rutin has excellent antioxidant activity, but its poor lipid solubility greatly limits its practical application. In this study, an efficient enzymatic synthesis route of lipophilic rutin ester was established using oleic acid as an acyl donor, and the antioxidant potential of rutin oleate was evaluated for the first time by proton (1 H) nuclear magnetic resonance (NMR) spectroscopy. RESULTS The synthesized product was finally identified as rutin oleate by Fourier transform infrared, high-performance liquid chromatography-mass spectrometry, and 1 H, carbon-13, and DEPT-135 NMR analyses, and the acylation site was the 4‴-OH of the rhamnose group in the rutin molecule. The maximum conversion was over 93% after 48 h of reaction using Novozym 435 as catalyst under the best conditions among these tests. The conversion of rutin ester decreased with the increase of carbon chain length and the number of carbon-carbon double bonds of the fatty acid molecule. Most importantly, rutin oleate exhibited antioxidant capacity comparable to butylated hydroxytoluene and its counterparts (rutin and oleic acid) at low temperatures (60° C), but had a significant advantage at high temperatures (120° C). CONCLUSION The antioxidant activity of rutin was significantly enhanced by lipase-mediated esterification with oleic acid. Therefore, rutin oleate could be further developed as a novel antioxidant for use in oil- and fat-based foods. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yihang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qingzhi Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Chen Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haonan Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Jia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Litao Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Fayong Gong
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, China
| | - Chen Tan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wen-Sen He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
He WS, Sun Y, Li Z, Yang H, Li J, Wang Q, Tan C, Zou B. Enhanced antioxidant capacity of lipoic acid in different food systems through lipase-mediated esterification with phytosterols. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7115-7125. [PMID: 35704042 DOI: 10.1002/jsfa.12073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND α-Lipoic acid has excellent antioxidant activity, but its poor lipid solubility greatly limits its practical application. This study was undertaken (i) to develop a novel and efficient enzymatic synthesis of lipophilic lipoic acid esters using Candida sp. 99-125 lipase as a catalyst; and (ii) to systematically evaluate their antioxidant potential against bulk oil, oil-in-water emulsion (O/W) and cooked ground meat. RESULTS Lipophilic lipoic acid esters were successfully and efficiently synthesized using phytosterols as acyl receptor in the presence of Candida sp. 99-125 lipase. The product was identified as phytosterol lipoate by mass spectrometry, Fourier transform infrared spectroscopy and nuclear magnetic resonance. The maximum conversion of phytosterol lipoate surpassed 90% within 12 h and its final yield exceeded 81%. Interestingly, the oil solubility of lipoic acid was increased at least 25-fold and other physicochemical properties were significantly improved. Most importantly, phytosterol lipoate exhibited higher antioxidant activity than lipoic acid in bulk oil, O/W emulsions and cooked ground meat. CONCLUSION The antioxidant capacity of lipoic acid can be significantly enhanced by esterification with phytosterols. Therefore, phytosterol lipoate could be further developed as a new antioxidant for use in oil- and fat-based foods. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen-Sen He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuying Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhishuo Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haonan Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junjie Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qingzhi Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chen Tan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
7
|
Zhabinskii VN, Drasar P, Khripach VA. Structure and Biological Activity of Ergostane-Type Steroids from Fungi. Molecules 2022; 27:2103. [PMID: 35408501 PMCID: PMC9000798 DOI: 10.3390/molecules27072103] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Mushrooms are known not only for their taste but also for beneficial effects on health attributed to plethora of constituents. All mushrooms belong to the kingdom of fungi, which also includes yeasts and molds. Each year, hundreds of new metabolites of the main fungal sterol, ergosterol, are isolated from fungal sources. As a rule, further testing is carried out for their biological effects, and many of the isolated compounds exhibit one or another activity. This study aims to review recent literature (mainly over the past 10 years, selected older works are discussed for consistency purposes) on the structures and bioactivities of fungal metabolites of ergosterol. The review is not exhaustive in its coverage of structures found in fungi. Rather, it focuses solely on discussing compounds that have shown some biological activity with potential pharmacological utility.
Collapse
Affiliation(s)
- Vladimir N. Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| | - Pavel Drasar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technicka 5, CZ-166 28 Prague, Czech Republic;
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| |
Collapse
|
8
|
Abstract
Lipases are versatile enzymes widely used in the pharmaceutical, cosmetic, and food industries. They are green biocatalysts with a high potential for industrial use compared to traditional chemical methods. In recent years, lipases have been used to synthesize a wide variety of molecules of industrial interest, and extraordinary results have been reported. In this sense, this review describes the important role of lipases in the synthesis of phytosterol esters, which have attracted the scientific community’s attention due to their beneficial effects on health. A systematic search for articles and patents published in the last 20 years with the terms “phytosterol AND esters AND lipase” was carried out using the Scopus, Web of Science, Scielo, and Google Scholar databases, and the results showed that Candida rugosa lipases are the most relevant biocatalysts for the production of phytosterol esters, being used in more than 50% of the studies. The optimal temperature and time for the enzymatic synthesis of phytosterol esters mainly ranged from 30 to 101 °C and from 1 to 72 h. The esterification yield was greater than 90% for most analyzed studies. Therefore, this manuscript presents the new technological approaches and the gaps that need to be filled by future studies so that the enzymatic synthesis of phytosterol esters is widely developed.
Collapse
|
9
|
Amin M, Bhatti HN, Nawaz S, Bilal M. Penicillium fellutanum lipase as a green and ecofriendly biocatalyst for depolymerization of poly (ɛ-caprolactone): Biochemical, kinetic, and thermodynamic investigations. Biotechnol Appl Biochem 2021; 69:410-419. [PMID: 33559904 DOI: 10.1002/bab.2118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/06/2021] [Indexed: 11/07/2022]
Abstract
Microbial lipases hold a prominent position in biocatalysis by their capability to mediate reactions in aqueous and nonaqueous media. Herein, a lipase from Penicillium fellutanum was biochemically characterized and investigated its potential to degrade poly (ɛ-caprolactone) (PCL). The lipase exhibited stability over a broad pH spectrum and performed best at pH 8.5 and 45 °C. The activation energy was determined to be 66.37 kJ/mol by Arrhenius plot, whereas Km and Vmax for pNPP hydrolysis were 0.75 mM and 83.33 μmol/mL/Min, respectively. A rise in temperature reduced the Gibbs free energy, whereas the enthalpy of thermal unfolding (∆H*) remains the same up to 54 °C following a modest decline at 61 °C. The entropy (∆S*) of the enzyme demonstrated an increasing trend up to 54 °C and dropped at 61 °C. Lipase retained stability by incubation with various industrially relevant organic solvents (benzene, hexanol, ether, and acetone). However, exposure to urea and guanidine hydrochloride influenced its catalytic activity to different extents. Under optimal operating conditions, lipase catalyzed the excellent degradation of PCL film degradation leading to 66% weight loss, increased surface erosion, and crystallinity. Fourier-transform infrared spectrometry, differential scanning calorimetry, and scanning electron microscopy studies monitored the weight loss after enzymatic hydrolysis. The findings indicate that P. fellutanum lipase would be a prospective biocatalytic system for polyesters depolymerization and environmental remediation.
Collapse
Affiliation(s)
- Misbah Amin
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sadia Nawaz
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, People's Republic of China
| |
Collapse
|
10
|
Molina-Gutiérrez M, Rodríguez-Sánchez L, Doñoro C, Martínez MJ, Prieto A. Sustainable and Green Synthesis of Stanol Esters from Oil Wastes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:286-293. [PMID: 33375783 DOI: 10.1021/acs.jafc.0c06581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The recombinant lipase ofOphiostoma piceae (OPEr) is characterized by its prominent sterol esterase activity. The protein was immobilized on magnetic nanoparticles, giving four enzyme variants that have been tested in solvent-free transesterification of methyl oleate and sitostanol. The yields of stanol esters reached 85%, and the catalysts can be reused. Stanol esters were also obtained in a two-step cascade reaction; a mixture of fatty acid methyl esters was enzymatically synthesized from cooking oil wastes and then used for stanol transesterification. An 85% conversion was achieved in 2 h from the second cycle onward, maintaining the activity over 5 cycles. The biocatalysts can be safely used since they don't release toxic compounds for HeLa and A549 cell lines. These procedures comply with the principles of green chemistry and contribute to the sustainable production of these nutraceuticals from secondary raw materials, like the lipid fraction from industrial or agricultural residues.
Collapse
Affiliation(s)
- María Molina-Gutiérrez
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Leonor Rodríguez-Sánchez
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carmen Doñoro
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - M Jesús Martínez
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Alicia Prieto
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
11
|
Chang M, Zhang T, Feng W, Wang T, Liu R, Jin Q, Wang X. Preparation of highly pure stigmasteryl oleate by enzymatic esterification of stigmasterol enriched from soybean phytosterols. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
He WS, Cui D, Li L, Rui J, Tong LT. Plasma triacylglycerol-reducing activity of ergosterol linolenate is associated with inhibition of intestinal lipid absorption. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
13
|
He WS, Li L, Wang H, Rui J, Cui D. Synthesis and cholesterol-reducing potential of water-soluble phytosterol derivative. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103428] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|