1
|
Wang J, Li Y, Guo X, Zhu K, Wu Z. A Review of the Impact of Starch on the Quality of Wheat-Based Noodles and Pasta: From the View of Starch Structural and Functional Properties and Interaction with Gluten. Foods 2024; 13:1507. [PMID: 38790811 PMCID: PMC11121694 DOI: 10.3390/foods13101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Starch, as a primary component of wheat, plays a crucial role in determining the quality of noodles and pasta. A deep understanding of the impact of starch on the quality of noodles and pasta is fundamentally important for the industrial progression of these products. The starch structure exerts an influence on the quality of noodles and pasta by affecting its functional attributes and the interaction of starch-gluten proteins. The effects of starch structure (amylopectin structure, amylose content, granules size, damaged starch content) on the quality of noodles and pasta is discussed. The relationship between the functional properties of starch, particularly its swelling power and pasting properties, and the texture of noodles and pasta is discussed. It is important to note that the functional properties of starch can be modified during the processing of noodles and pasta, potentially impacting the quality of the end product, However, this aspect is often overlooked. Additionally, the interaction between starch and gluten is addressed in relation to its impact on the quality of noodles and pasta. Finally, the application of exogenous starch in improving the quality of noodles and pasta is highlighted.
Collapse
Affiliation(s)
- Jinrong Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - Xiaona Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.G.); (K.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kexue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.G.); (K.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zijian Wu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300134, China
| |
Collapse
|
2
|
Luque-Vilca OM, Pampa-Quispe NB, Pumacahua-Ramos A, Pilco-Quesada S, Cabel Moscoso DJ, Choque-Rivera TJ. Structural, Thermal, Rheological, and Morphological Characterization of the Starches of Sweet and Bitter Native Potatoes Grown in the Andean Region. Polymers (Basel) 2023; 15:4417. [PMID: 38006141 PMCID: PMC10674986 DOI: 10.3390/polym15224417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
This study aimed to extract and characterize the morphological, physicochemical, thermal, and rheological properties of the starches of native potatoes grown in the department of Puno. Among the varieties evaluated were sweet native potato varieties Imilla Negra (Solanum tuberosum spp. Andígena), Imilla Blanca (Solanum tuberosum spp. Andígena), Peruanita, Albina or Lomo (Solanum chaucha), and Sutamari, and the bitter potatoes Rucki or Luki (Solanum juzepczukii Buk), Locka (Solanum curtilobum), Piñaza (Solanum curtilobum), and Ocucuri (Sola-num curtilobum), acquired from the National Institute of Agrarian Innovation (INIA-Puno). The proximal composition, amylose content, and morphological, thermal, and rheological properties that SEM, DSC, and a rheometer determined, respectively, were evaluated, and the data obtained were statistically analyzed using a completely randomized design and then a comparison of means using Tukey's LSD test. The results show a significant difference in the proximal composition (p ≤ 0.05) concerning moisture content, proteins, fat, ash, and carbohydrates. Thus, the amylose content was also determined, ranging from 23.60 ± 0.10 to 30.33 ± 0.15%. The size morphology of the granules is 13.09-47.73 µm; for the thermal and rheological properties of the different varieties of potato starch, it is shown that the gelatinization temperature is in a range of 57 to 62 °C and, for enthalpy, between 3 and 5 J/g.
Collapse
Affiliation(s)
- Olivia Magaly Luque-Vilca
- Escuela Profesional de Ingeniería en Industrias Alimentarias, Universidad Nacional de Juliaca, Av Nueva Zelandia 631, Juliaca 21101, Peru; (O.M.L.-V.); (T.J.C.-R.)
| | - Noe Benjamin Pampa-Quispe
- Escuela Profesional de Ingeniería en Industrias Alimentarias, Universidad Nacional de Juliaca, Av Nueva Zelandia 631, Juliaca 21101, Peru; (O.M.L.-V.); (T.J.C.-R.)
| | - Augusto Pumacahua-Ramos
- Facultad de Ingeniería de Alimentos, Universidad Nacional Intercultural de Quillabamaba, Cusco 08741, Peru;
| | - Silvia Pilco-Quesada
- Facultad de Ingeniería y Arquitectura, Universidad Peruana Unión, km 19 Carretera Central, Ñaña, Lurigancho Lima 15457, Peru
| | | | - Tania Jakeline Choque-Rivera
- Escuela Profesional de Ingeniería en Industrias Alimentarias, Universidad Nacional de Juliaca, Av Nueva Zelandia 631, Juliaca 21101, Peru; (O.M.L.-V.); (T.J.C.-R.)
| |
Collapse
|
3
|
Huang ZH, Zhao Y, Hu ZX, Ma L, Geng SZ, Chen KY, Zhou HM. Preparation of fat replacer utilizing gluten and barley β-glucan and the interaction between them. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6288-6296. [PMID: 37178244 DOI: 10.1002/jsfa.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Fat replacers prepared from polysaccharides and proteins possess functional properties of both polysaccharides and proteins. In this study, an aqueous system of barley β-glucan (BBG) and gluten was prepared. The interactions between BBG and gluten (with/without extrusion modification) were studied. Triple analysis methods, including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and low-field nuclear magnetic resonance (LF-NMR), were utilized to analyze the freezing-thawing and thermal evaporation process, as well as the distribution state of water. Meanwhile, fluorescence microscopic analysis, dynamic rheological analysis and electrophoresis analysis were used to study the structure and rheological properties of the system. RESULTS The results showed that BBG significantly increased the water-holding capacity of gluten, regardless of extrusion treatment, with the water absorption reaching about 4.8 to 6.4 times of its weight, which was 1 to 2.5 times higher than that without BBG. The triple analysis results suggested that BBG increased the binding capacity of the system to weakly bound water, hindered the aggregation of gluten and reduced the thermal decomposition temperature of the BBG and gluten composite system. After the gluten was extruded and homogenized with the BBG solution, the appearance of the composite system was more uniform and delicate. CONCLUSIONS In conclusion, BBG increased the water-holding capacity of the BBG and gluten composite system. With these changes, the composite system presented great potential for the preparation of polysaccharide-gluten fat replacer. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ze-Hua Huang
- National Engineering Research Center of Wheat and Corn Further Processing, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Yang Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Zhe-Xin Hu
- National Engineering Research Center of Wheat and Corn Further Processing, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Liang Ma
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, P. R. China
| | - Shi-Zhao Geng
- National Engineering Research Center of Wheat and Corn Further Processing, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Ke-Ying Chen
- National Engineering Research Center of Wheat and Corn Further Processing, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Hui-Ming Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
4
|
Zou X, Wang X, Peng P, Ma Q, Zhang X, Zou L, Zhou J, Hu X. Glutenin-gliadin ratio changes combining heat-moisture treatment significantly influences the in vitro digestibility of starch in recombinant wheat flours. Int J Biol Macromol 2023; 248:125920. [PMID: 37481181 DOI: 10.1016/j.ijbiomac.2023.125920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
This study aimed to investigate the effect of heat-moisture treatment (HMT) on the in vitro digestibility of recombinant wheat flours characterizing by gluten proteins differ in glutenin-gliadin ratio. Compared with the untreated flours in our previous study, HMT improved the digestion resistance of starch in flours with different glutenin-gliadin ratios. For the HMT strong-gluten flour, the proportional increase of glutenin led to an excessively strong and fragile gluten network that unstable under HMT, which weakened the wrapping of gluten network around starch granules and reduced the long- and short-range order of starch, resulting in the conversion of resistant starch (RS) and slowly digestible starch (SDS) to rapidly digestible starch (RDS); however, the quantitative increase of gliadin induced the conversion of SDS to RS due to the enhanced protein-starch interactions as well as the improved long- and short-range order of starch during HMT. For the HMT weak-gluten flour, the changes of glutenin-gliadin ratio aggravated the broken of protein network and starch granules during HMT, thus improving the starch digestibility in varying degrees. In conclusion, the relative crystallinity of starch mainly affected the content of resistant starch, while the content of slowly digestible starch was more influenced by protein-starch interactions.
Collapse
Affiliation(s)
- Xiaoyang Zou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang'an Avenue, Chang'an District, Xi'an 710119, China
| | - Xiaolong Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang'an Avenue, Chang'an District, Xi'an 710119, China.
| | - Pai Peng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang'an Avenue, Chang'an District, Xi'an 710119, China
| | - Qianying Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang'an Avenue, Chang'an District, Xi'an 710119, China
| | - Xinyu Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang'an Avenue, Chang'an District, Xi'an 710119, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jian Zhou
- Northwest Land and Resource Research Center, Shaanxi Normal University, No. 620 West Chang'an Avenue, Chang'an District, Xi'an 710119, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang'an Avenue, Chang'an District, Xi'an 710119, China
| |
Collapse
|
5
|
Effects of three glutenins extracted in acidic, neutral and alkaline urea solutions on the retrogradation of wheat amylose and amylopectin. Int J Biol Macromol 2023; 233:123576. [PMID: 36764342 DOI: 10.1016/j.ijbiomac.2023.123576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Three glutenins (glutenin 1, glutenin 2, and glutenin 2) were extracted in acidic, neutral and alkaline urea solutions respectively. All of the three glutenins are rich in glutamic acid (Glu, >30 %) and proline (Pro, >20 %). Glutenin 1, extracted at pH 5, shows higher contents of hydrophilic amino acids as serine (Ser, 5.25 %), aspartic acid (Asp, 2.99 %), tyrosine (Tyr, 3.11 %), arginine (Arg, 2.09 %) and threonine (Thr, 2.11 %) than the other two glutenins. The retrogradation of three glutenins with amylose/amylopectin indicated that glutenin 1 showed significant inhibition effect on the retrogradation of wheat amylose. The characterizations of amylose retrograded with glutenin 1 by FT-IR, XRD, DSC and solid 13C NMR showed that new hydrogen bonds between Glu, Tyr and wheat amylose were formed, which prevented the formation of hydrogen bonds between amylose themselves. Glycosidic bonds between some hydroxyl groups of C6 in wheat amylose and certain hydroxyl groups of Ser and Thr in glutenin with specific chain length were present. The macromolecules with steric hindrance prevented the rearrangement of amylose into regular crystals. The retrogradation of wheat amylose was inhibited in this way. This study provides a key targeting step to control the retrogradation of amylose.
Collapse
|
6
|
Liang Y, Liu H, Li K, Liu M, Zhang X, Wu X, Chen S, He B, Wang J. Effect of sanxan gel on the quality of salt-free noodles during cooking. J Food Sci 2023; 88:1790-1799. [PMID: 36965112 DOI: 10.1111/1750-3841.16511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 03/27/2023]
Abstract
The effect and mechanism of sanxan on the quality of salt-free noodles (SFNs) were investigated from different cooking stages (initial stage, 1 min; optimum cooking time, OCT; overcooked time, OT). The results showed significant changes in the cooking process with the addition of 1.2% sanxan. The OCT for noodles with 1.2% sanxan (experimental group, EG) was extended from 5 to 7 min compared to the non-added noodles (blank group, BG) and 1.5% salt-containing noodles (control group, CG). The hardness and adhesiveness of BG, EG, and CG all decreased significantly during cooking. In contrast, the springiness, maximum tensile strength, and tensile fracture distance trended first to increase and then to decrease. At OCT, EG had the highest hardness (3971.69 ± 94.49 g), adhesiveness (372.26 ± 33.56 g s), and maximum tensile strength (41.51 ± 2.76 g), which remained large even after overcooking. However, those in BG and CG showed a significant reduction (p < 0.05). The proportion of free water increased progressively as cooking progressed, with CG showing the largest increase, from 82.29% to 91.19%, whereas EG showed the smallest increase, from 78.34% to 86.02%. During the cooking process, the addition of sanxan delayed the water migration, whereas salt promoted it. Sensory evaluation showed that EG was smoother in appearance than BG and tasted malty with a slight stickiness. Moreover, EG had the smallest k1 and C∞ values. Thus, sanxan is an effective additive to enhance the quality of SFNs and can replace the role of salt in noodles in some properties, which is beneficial for the development of SFNs.
Collapse
Affiliation(s)
- Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Kaifang Li
- Zhengzhou Synear Food Co., Ltd., Zhengzhou, China
| | - Mei Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Xia Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Xingquan Wu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shihua Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Baoshan He
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
7
|
Peng P, Wang X, Liao M, Zou X, Ma Q, Zhang X, Hu X. Effects of HMW-GSs at Glu-B1 locus on starch-protein interaction and starch digestibility during thermomechanical processing of wheat dough. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2134-2145. [PMID: 36397183 DOI: 10.1002/jsfa.12340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/30/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The composition of glutenin protein significantly affects protein-starch interactions and starch digestion characteristics in wheat dough matrices. To elucidate the effects of high molecular weight glutenin subunits at the Glu-B1 locus on dough processing quality, the detailed structural changes of protein, starch, and their complexes were compared in Mixolab dough samples of two near isogenic lines 7 + 8 and 7 + 9. RESULTS The results showed that the degree of protein aggregation increased continuously during dough processing, as did the destruction and rearrangement of the gluten network. Compared to 7 + 8, the stronger and more stable protein network formed in 7 + 9 dough induced intensive interactions between protein and starch, primarily through hydrogen bonds and isomeric glycosidic bonds. In 7 + 9 dough, the more compact and extensive protein-starch network significantly inhibited starch gelatinization during dough pasting, while during the dough cooling stage [from C4 (82.8 °C) to C5 (52.8 °C)], more protein-starch complexes composed of monomeric proteins and short-chain starch were generated, which remarkably inhibited starch retrogradation. All protein-starch interactions in the 7 + 9 dough improved the starch digestion resistance, as reflected by the high content of resistant starch. CONCLUSION The more extensive and intensive protein-starch interactions in the 7 + 9 dough inhibited the gelatinization and enzymatic hydrolysis of starch, thereby producing more slowly digestible starch and resistant starch. These findings demonstrate the feasibility of optimizing the texture and digestibility of wheat-based food products by regulating the behavior and interactions of proteins and starch during dough processing. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pai Peng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaolong Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Mei Liao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaoyang Zou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qianying Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaoke Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Zhou Y, Zhao J, Guo J, Lian X, Wang H. Effects of Amylopectins from Five Different Sources on Disulfide Bond Formation in Alkali-Soluble Glutenin. Foods 2023; 12:foods12020414. [PMID: 36673506 PMCID: PMC9857419 DOI: 10.3390/foods12020414] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Wheat, maize, cassava, mung bean and sweet potato starches have often been added to dough systems to improve their hardness. However, inconsistent effects of these starches on the dough quality have been reported, especially in refrigerated dough. The disulfide bond contents of alkali-soluble glutenin (ASG) have direct effects on the hardness of dough. In this paper, the disulfide bond contents of ASG were determined. ASG was mixed and retrograded with five kinds of amylopectins from the above-mentioned botanical sources, and a possible pathway of disulfide bond formation in ASGs by amylopectin addition was proposed through molecular weight, chain length distribution, FT-IR, 13C solid-state NMR and XRD analyses. The results showed that when wheat, maize, cassava, mung bean and sweet potato amylopectins were mixed with ASG, the disulfide bond contents of alkali-soluble glutenin increased from 0.04 to 0.31, 0.24, 0.08, 0.18 and 0.29 μmol/g, respectively. However, after cold storage, they changed to 0.55, 0.16, 0.26, 0.07 and 0.19 μmol/g, respectively. The addition of wheat amylopectin promoted the most significant disulfide bond formation of ASG. Hydroxyproline only existed in the wheat amylopectin, indicating that it had an important effect on the disulfide bond formation of ASG. Glutathione disulfides were present, as mung bean and sweet potato amylopectin were mixed with ASG, and they were reduced during cold storage. Positive/negative correlations between the peak intensity of the angles at 2θ = 20°/23° and the disulfide bond contents of ASG existed. The high content of hydroxyproline could be used as a marker for breeding high-quality wheat.
Collapse
Affiliation(s)
- Yu Zhou
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinjin Zhao
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Junjie Guo
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xijun Lian
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Correspondence: ; Tel.: +86-13-312101772; Fax: +86-22-26686254
| | - Huaiwen Wang
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| |
Collapse
|
9
|
Zou X, Wang X, Zhang M, Peng P, Ma Q, Hu X. Pre-baking-steaming of oat induces stronger macromolecular interactions and more resistant starch in oat-buckwheat noodle. Food Chem 2022; 400:134045. [DOI: 10.1016/j.foodchem.2022.134045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022]
|
10
|
Effects of Different Gluten Proteins on Starch’s Structural and Physicochemical Properties during Heating and Their Molecular Interactions. Int J Mol Sci 2022; 23:ijms23158523. [PMID: 35955657 PMCID: PMC9368910 DOI: 10.3390/ijms23158523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Starch–gluten interactions are affected by biopolymer type and processing. However, the differentiation mechanisms for gluten–starch interactions during heating have not been illuminated. The effects of glutens from two different wheat flours (a weak-gluten (Yangmai 22, Y22) and a medium-strong gluten (Yangmai 16, Y16)) on starch’s (S) structural and physicochemical properties during heating and their molecular interactions were investigated in this study. The results showed that gluten hindered the gelatinization and swelling of starch during heating when temperature was below 75 °C, due to competitive hydration and physical barriers of glutens, especially in Y22. Thus, over-heating caused the long-range molecular order and amylopectin branches of starch to be better preserved in the Y22-starch mixture (Y22-S) than in the Y16-starch mixture (Y16-S). Meanwhile, the starch’s degradation pattern during heating in turn influenced the polymerization of both glutens. During heating, residual amylopectin branching points restricted the aggregation and cross-linking of gluten proteins due to steric hindrance. More intense interaction between Y16 and starch during heating mitigated the steric hindrance in starch–gluten networks, which was due to more residual short-range ordered starch and hydrogen bonds involved in the formation of starch–gluten networks in Y16-S during heating.
Collapse
|
11
|
Low JT, Yusoff NISM, Othman N, Wong T, Wahit MU. Silk fibroin‐based films in food packaging applications: A review. Compr Rev Food Sci Food Saf 2022; 21:2253-2273. [DOI: 10.1111/1541-4337.12939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Jia Tee Low
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| | | | - Norhayani Othman
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| | - Tuck‐Whye Wong
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| | - Mat Uzir Wahit
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
- Centre for Advanced Composite Materials (CACM) Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| |
Collapse
|
12
|
Synergistic strongly coupled super-deamidation of wheat gluten by glucose-organic acid natural deep eutectic solvent and the efficaciousness of structure and functionality. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Dynamic behaviors of protein and starch and interactions associated with glutenin composition in wheat dough matrices during sequential thermo-mechanical treatments. Food Res Int 2022; 154:110986. [DOI: 10.1016/j.foodres.2022.110986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/22/2022]
|
14
|
Yang T, Wang P, Zhou Q, Wang X, Cai J, Huang M, Jiang D. Investigation on the Molecular and Physicochemical Changes of Protein and Starch of Wheat Flour during Heating. Foods 2021; 10:foods10061419. [PMID: 34207388 PMCID: PMC8233833 DOI: 10.3390/foods10061419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
The behaviors of starch and protein in wheat flour during heating were investigated, and the molecular changes of starch and protein and their effects on the textural characteristics were assessed. The results showed that with the increased temperature, soluble protein aggregated to insoluble high-molecular-weight protein polymers when the heating temperature exceeded 70 °C, and the aggregation of protein was mainly caused by covalent bonds of disulfide (SS) bonds. Hydrophobic interaction was the main noncovalent bond that participated in the formation of protein aggregates. The major change in the secondary structure during heating was a pronounced transition towards β-sheet-like structures. Considerable disruption of ordered structures of starch occurred at 70 °C, and starch was fully gelatinized at 80 °C. Typical starch pasting profiles of cooked flour were observed when the temperature was below 70 °C, and heat treatment decreased the pasting viscosity of the cooked flour from control to 80 °C, whereas the viscosity of the wheat flour increased in heating treatment at 90, 95 and 100 °C. The intense protein-starch interaction during heating affected the textural characteristic of flour gelation, which showed higher strength at 90, 95 and 100 °C. This study may provide a basis for improving wheat flour processing conditions and could lead to the production of new wheat products.
Collapse
Affiliation(s)
- Tao Yang
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (T.Y.); (X.W.); (J.C.); (M.H.); (D.J.)
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
- Correspondence: (P.W.); (Q.Z.); Tel.: +86-25-8439-6293 (P.W.); +86-25-8439-9627 (Q.Z.)
| | - Qin Zhou
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (T.Y.); (X.W.); (J.C.); (M.H.); (D.J.)
- Correspondence: (P.W.); (Q.Z.); Tel.: +86-25-8439-6293 (P.W.); +86-25-8439-9627 (Q.Z.)
| | - Xiao Wang
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (T.Y.); (X.W.); (J.C.); (M.H.); (D.J.)
| | - Jian Cai
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (T.Y.); (X.W.); (J.C.); (M.H.); (D.J.)
| | - Mei Huang
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (T.Y.); (X.W.); (J.C.); (M.H.); (D.J.)
| | - Dong Jiang
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (T.Y.); (X.W.); (J.C.); (M.H.); (D.J.)
| |
Collapse
|
15
|
Zheng W, Chen ZP, Yang YH, Yang R, Yang TD, Lai PL, Chen TL, Qiu SL, Wang SY, Liao L. Improved stabilization of coix seed oil in a nanocage-coating framework based on gliadin-carboxymethyl chitosan-Ca 2. Carbohydr Polym 2021; 257:117557. [PMID: 33541626 DOI: 10.1016/j.carbpol.2020.117557] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/02/2020] [Accepted: 12/20/2020] [Indexed: 11/26/2022]
Abstract
Coix seed oil (CSO) is easily suffered functional-loss by oxidation and hydrothermal-treatment. The environmental stable nanocage-coating-CSO particles (OGC-Ca) by the frameworks consist of gliadins, carboxymethyl chitosan (CMCS) and Ca2+ were investigated. Results showed Ca2+ was the key controller for fabricating this nanocage-coating-frameworks, bridging macromolecule-chains with electrostatic interaction and hydrogen bonds, detected by FTIR, CD, DSC and XRD. SEM displayed new-formed velvet-like twigs after cross-linking CMCS to gliadins. Ca2+ assisted the nanocage-coating by significant down-sizing conversion OGC to OGC-Ca with consumption of twigs. OGC-Ca displayed a good stability towards heat (60-80 °C, 0-80 min), pH (3-8), NaCl (0-0.5 mM), storage (4/25 °C, 12 days), and a reduce of the pre-oxidation value of CSO in water and the improved controlled release of CSO in simulated GI tract. It illustrated GC-Ca frameworks would be a suitable delivery carrier for the CSO like pharmaceuticals and nutraceuticals for the food or medical use.
Collapse
Affiliation(s)
- Wenyu Zheng
- Department of Food Science, College of Food Science and Engeerning, Foshan University, Foshan, Guangdong, 528000, People's Republic of China
| | - Zhan-Peng Chen
- Department of Food Science, College of Food Science and Engeerning, Foshan University, Foshan, Guangdong, 528000, People's Republic of China
| | - Yan-Hong Yang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Rong Yang
- Department of Food Science, College of Food Science and Engeerning, Foshan University, Foshan, Guangdong, 528000, People's Republic of China
| | - Tu-di Yang
- Department of Food Science, College of Food Science and Engeerning, Foshan University, Foshan, Guangdong, 528000, People's Republic of China
| | - Pei-Li Lai
- Department of Food Science, College of Food Science and Engeerning, Foshan University, Foshan, Guangdong, 528000, People's Republic of China
| | - Tong-Lin Chen
- Department of Food Science, College of Food Science and Engeerning, Foshan University, Foshan, Guangdong, 528000, People's Republic of China
| | - Shui-Ling Qiu
- Department of Food Science, College of Food Science and Engeerning, Foshan University, Foshan, Guangdong, 528000, People's Republic of China
| | - Shao-Yun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Lan Liao
- Department of Food Science, College of Food Science and Engeerning, Foshan University, Foshan, Guangdong, 528000, People's Republic of China; College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China.
| |
Collapse
|
16
|
Cao SL, Zheng WY, Chen ZP, Zhang FL, Jiang WH, Qiu YQ, Gu M, Chen ZS, Zheng TY, Zhang HK, Wang SY, Liao L. Highly Efficient Deamidation of Wheat Gluten by Glucose-Citric Acid-Based Natural Deep Eutectic Solvent: A Potential Effective Reaction Media. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3452-3465. [PMID: 33724017 DOI: 10.1021/acs.jafc.0c07275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An efficient technique using citric acid and glucose based natural deep eutectic solvent (G-C-NADES) was developed to obtain ultrahigh deamidated wheat gluten (UDWG) (deamidation degree (DD) > 90%). FTIR and 1H NMR indicated intensive hydrogen bonds (HBs) in G-C-NADES supermolecules. Quantum chemical calculations and molecular dynamic simulations demonstrated that 10 wt % diluted G-C-NADES still had a myriad of HBs. Physicochemical results showed UDWG had DD up to 92.45% after G-C-NADES deamidation, that is, 22% higher than citric-acid-DWG with a weak degree of hydrolysis (1.75%). Conformational characterization demonstrated the obvious conversion from α-helix to β-sheet via FTIR, the least amount of disulfide bonds by Raman spectra, and more exposure of tryptophan residues by fluorescence measurement for UDWG. It is proven that enhanced accessible conformation of WG reached with HBs of G-C-NADESs could contribute to the improvement on nucleophilic attack of deamidation, declaring that G-C-NADES might be a potential solvent for obtaining an ultrahigh deamidation for WG to successfully guarantee the safety of wheat gluten based cereal food regarding to lowering its allergy.
Collapse
Affiliation(s)
- Shi-Lin Cao
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
| | - Wen-Yu Zheng
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
| | - Zhan-Peng Chen
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
| | - Feng-Li Zhang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, The People's Republic of China
| | - Wen-Hao Jiang
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
| | - Yu-Qiong Qiu
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
| | - Ming Gu
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
| | - Zi-Shi Chen
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
| | - Tian-Yi Zheng
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
| | - Hong-Kun Zhang
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
| | - Shao-Yun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, The People's Republic of China
| | - Lan Liao
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, The People's Republic of China
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, The People's Republic of China
| |
Collapse
|
17
|
Wang Z, Ma S, Sun B, Wang F, Huang J, Wang X, Bao Q. Effects of thermal properties and behavior of wheat starch and gluten on their interaction: A review. Int J Biol Macromol 2021; 177:474-484. [PMID: 33636262 DOI: 10.1016/j.ijbiomac.2021.02.175] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Starch and gluten, the most important macromolecules in wheat flour, vary in thermal properties. The thermal behavior of starch, gluten and their complexes during the manufacture and quality control of flour products need to be accurately understood. However, the high complexity of starch-gluten systems impedes the accurate description of their interactions. When heated within varying temperature ranges and when water molecules are involved, the behaviors of amylose and amylopectin change, and the properties of the starch are modified. Moreover, important indicators of starch granules such as gelatinization temperature, peak viscosity, and so on, which are encapsulated by the gluten matrix, are altered. Meanwhile, the high-temperature environment induces the opening of the intrachain disulfide bonds of gliadin, leading to an increase in the probability of interchain disulfide bond formation in the gluten network system. These behaviors are notable and may provide insights into this complex interaction. In this review, the relationship between the thermal behavior of wheat starch and gluten and the quality of flour products is analyzed. Several methods used to investigate the thermal characteristics of wheat and its flour products are summarized, and some thermal interaction models of starch and gluten are proposed.
Collapse
Affiliation(s)
- Zhen Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Fengcheng Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jihong Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Qingdan Bao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| |
Collapse
|
18
|
Gutiérrez TJ, Mendieta JR, Ortega-Toro R. In-depth study from gluten/PCL-based food packaging films obtained under reactive extrusion conditions using chrome octanoate as a potential food grade catalyst. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106255] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Chemical modifications and their effects on gluten protein: An extensive review. Food Chem 2020; 343:128398. [PMID: 33268180 DOI: 10.1016/j.foodchem.2020.128398] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/28/2020] [Accepted: 10/11/2020] [Indexed: 12/21/2022]
Abstract
Gluten protein as one of the plant resources is susceptible to genetic, physical, chemical, enzymatic and engineering modifications. Chemical modifications have myriad advantages over other treatments, including short reaction times, low cost, no requirement for specialized equipment, and highly clear modification effects. Therefore, chemical modification of gluten can be mainly conducted via acylation, glycosylation, phosphorylation, and deamidation. The present review investigated the impact of different chemical compounds on conformations of gluten and its subunits. Moreover, their effects on the physico-chemical, morphological, and rheological properties of gluten and their subunits were studied. This allows for the use of gluten for a variety of purposes in the food and non-food industry.
Collapse
|
20
|
Li M, Yue Q, Liu C, Zheng X, Hong J, Li L, Bian K. Effect of gliadin/glutenin ratio on pasting, thermal, and structural properties of wheat starch. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102973] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Song L, Zhao L, Liu Z, Li L, Zheng J, Li X. Effects of exogenous starch on the structural–thermal properties of gluten in wheat with HMW-GS variations at Glu-D1 locus. Food Res Int 2020; 130:108950. [DOI: 10.1016/j.foodres.2019.108950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 12/23/2022]
|
22
|
Zheng L, Yu Y, Tong Z, Zou Q, Han S, Jiang H. The characteristics of starch gels molded by 3D printing. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13993] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Luyao Zheng
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Yangling Yu
- Library of Northwest A & F University Yangling China
| | - Zhaobin Tong
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Qianhui Zou
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Shiyao Han
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Hao Jiang
- College of Food Science and Engineering Northwest A&F University Yangling China
| |
Collapse
|