1
|
Yang Q, Guo S, Ran Y, Zeng J, Qiao D, Xu H, Cao Y. Enhanced degradation of exogenetic citrinin by glycosyltransferases in the oleaginous yeast Saitozyma podzolica zwy-2-3. BIORESOURCE TECHNOLOGY 2024; 413:131468. [PMID: 39260733 DOI: 10.1016/j.biortech.2024.131468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
The contamination by the toxin citrinin (CIT), produced by fungi, has been reported in agricultural foods and is known to be nephrotoxic to humans. In this study, we found that CIT could be effectively degraded by the oleaginous yeast Saitozyma podzolica zwy-2-3. Four genes encoding glycosyltransferases (GTs) in S. podzolica zwy-2-3 (SPGTs) were identified by evolutionary and structural analyses. The overexpression of SPGTs enhanced CIT degradation to 0.56 mg/L/h in S. podzolica zwy-2-3 by increasing ATP and glutathione (GSH) contents to oxidize CIT and scavenge reactive oxygen species (ROS). Besides, SPGTs promoted lipid synthesis by 9.3 % of S. podzolica zwy-2-3 under CIT stress. These results suggest that SPGTs in oleaginous yeast play a pivotal role in enhancing CIT degradation and lipid accumulation. These findings provide a valuable basis for the application of GTs in oleaginous yeast to alleviate CIT contamination in agricultural production, which may contribute to food safety.
Collapse
Affiliation(s)
- Qingzhuoma Yang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shengtao Guo
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yulu Ran
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Zeng
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
2
|
Pan J, Yang X, Hu C, Fu T, Zhang X, Liu Z, Wang Y, Zhang F, He X, Yu JH. Functional, transcriptomic, and lipidomic studies of the choC gene encoding a phospholipid methyltransferase in Aspergillus fumigatus. Microbiol Spectr 2024; 12:e0216823. [PMID: 38009944 PMCID: PMC10783049 DOI: 10.1128/spectrum.02168-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE This study explored the phospholipid metabolic pathway in A. fumigatus and its relationship with fungal growth, metabolism, and pathogenicity. ChoC, based on its critical roles in many aspects of the fungus and relatively conserved characteristics in filamentous fungi with low similarity with mammalian ones, can be a novel target of new antifungal drugs.
Collapse
Affiliation(s)
- Jiao Pan
- Institute for Cultural Heritage and History of Science and Technology, University of Science and Technology Beijing, Beijing, China
| | - Xinyu Yang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Cuiting Hu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Tongtong Fu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiuyan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zijun Liu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yu Wang
- Institute for Cultural Heritage and History of Science and Technology, University of Science and Technology Beijing, Beijing, China
| | - Fengyu Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyuan He
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Jae-Hyuk Yu
- Department of Bacteriology, Food Research Institute, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Detoxification of the Mycotoxin Citrinin by a Manganese Peroxidase from Moniliophthora roreri. Toxins (Basel) 2022; 14:toxins14110801. [PMID: 36422974 PMCID: PMC9693499 DOI: 10.3390/toxins14110801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Citrinin (CIT) is a mycotoxin found in foods and feeds and most commonly discovered in red yeast rice, a food additive made from ordinary rice by fermentation with Monascus. Currently, no enzyme is known to be able to degrade CIT effectively. In this study, it was discovered that manganese peroxidase (MrMnP) from Moniliophthora roreri could degrade CIT. The degradation appeared to be fulfilled by a combination of direct and indirect actions of the MrMnP with the CIT. Pure CIT, at a final concentration of 10 mg/L, was completely degraded by MrMnP within 72 h. One degradation product was identified to be dihydrocitrinone. The toxicity of the CIT-degradation product decreased, as monitored by the increased survival rate of the Caco-2 cells incubated with MrMnP-treated CIT. In addition, MrMnP could degrade CIT (with a starting concentration of up to 4.6 mg/L) completely contaminated in red yeast rice. MrMnP serves as an excellent candidate enzyme for CIT detoxification.
Collapse
|
4
|
Development and evaluation of a qPCR detection method for citrinin in Liupao tea. Anal Biochem 2022; 653:114771. [DOI: 10.1016/j.ab.2022.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
|
5
|
Whole-genome sequencing of Cryptococcus podzolicus Y3 and data-independent acquisition-based proteomic analysis during OTA degradation. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Wei M, Dhanasekaran S, Yang Q, Ngolong Ngea GL, Godana EA, Zhang H. Degradation and stress response mechanism of Cryptococcus podzolicus Y3 on ochratoxin A at the transcriptional level. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Kamle M, Mahato DK, Gupta A, Pandhi S, Sharma N, Sharma B, Mishra S, Arora S, Selvakumar R, Saurabh V, Dhakane-Lad J, Kumar M, Barua S, Kumar A, Gamlath S, Kumar P. Citrinin Mycotoxin Contamination in Food and Feed: Impact on Agriculture, Human Health, and Detection and Management Strategies. Toxins (Basel) 2022; 14:toxins14020085. [PMID: 35202113 PMCID: PMC8874403 DOI: 10.3390/toxins14020085] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/21/2022] Open
Abstract
Citrinin (CIT) is a mycotoxin produced by different species of Aspergillus, Penicillium, and Monascus. CIT can contaminate a wide range of foods and feeds at any time during the pre-harvest, harvest, and post-harvest stages. CIT can be usually found in beans, fruits, fruit and vegetable juices, herbs and spices, and dairy products, as well as red mold rice. CIT exerts nephrotoxic and genotoxic effects in both humans and animals, thereby raising concerns regarding the consumption of CIT-contaminated food and feed. Hence, to minimize the risk of CIT contamination in food and feed, understanding the incidence of CIT occurrence, its sources, and biosynthetic pathways could assist in the effective implementation of detection and mitigation measures. Therefore, this review aims to shed light on sources of CIT, its prevalence in food and feed, biosynthetic pathways, and genes involved, with a major focus on detection and management strategies to ensure the safety and security of food and feed.
Collapse
Affiliation(s)
- Madhu Kamle
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia; (D.K.M.); (S.G.)
| | - Akansha Gupta
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (B.S.); (S.M.); (A.K.)
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (B.S.); (S.M.); (A.K.)
| | - Nitya Sharma
- Food Customization Research Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (B.S.); (S.M.); (A.K.)
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (B.S.); (S.M.); (A.K.)
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, India
| | - Shalini Arora
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India;
| | - Raman Selvakumar
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India;
| | - Vivek Saurabh
- Division of Food Science and Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Jyoti Dhakane-Lad
- Technology Transfer Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India;
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India;
| | - Sreejani Barua
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India;
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Arvind Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (B.S.); (S.M.); (A.K.)
| | - Shirani Gamlath
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia; (D.K.M.); (S.G.)
| | - Pradeep Kumar
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
- Correspondence:
| |
Collapse
|
8
|
Zhang LL, Huang W, Zhang YY, Fan G, He J, Ren JN, Li Z, Li X, Pan SY. Genomic and Transcriptomic Study for Screening Genes Involved in the Limonene Biotransformation of Penicillium digitatum DSM 62840. Front Microbiol 2020; 11:744. [PMID: 32390984 PMCID: PMC7188761 DOI: 10.3389/fmicb.2020.00744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
α-Terpineol has been widely used in daily chemical, pharmaceutical, food, and flavor industries due to its pleasant odor with high economic value and pharmacological action. Our previous study showed that Penicillium digitatum DSM 62840 was an efficient biocatalyst for the transformation of limonene to α-terpineol. Thus, it was meaningful to explore the genome features and the gene expression differences of strain DSM 62840 during limonene biotransformation, and the detailed bioconversion pathways. In this study, the functional genes related to limonene bioconversion were investigated using genome and transcriptome sequences analysis. The results showed that the P. digitatum DSM 62840 genome was estimated to be 29.09 Mb and it encoded 9,086 protein-encoding genes. The most annotated genes were associated to some protein metabolism and energy metabolism functions. When the threshold for differentially expressed genes (DEGs) was set at twofold ratio, a total of 4,128, and 4,148 DEGs were identified in P_L_12h (limonene-treated condition) compared with P_0h (blank) and P_12h (limonene-untreated blank), respectively. Among them, the expression levels of genes involved in the biosynthesis of secondary metabolites, energy metabolism and ATP-binding cassette (ABC) transporters were significantly altered during the biotransformation. And the reliability of these results was further confirmed by quantitative real-time polymerase chain reaction (RT-qPCR). Moreover, we found that the enzyme participated in limonene biotransformation was inducible. This enzyme was located in the microsome, and it was inhibited by cytochrome P450 inhibitors. This indicated that the cytochrome P450 may be responsible for the limonene bioconversion. Several differentially expressed cytochrome P450 genes were further identified, such as PDIDSM_85260 and PDIDSM_67430, which were significantly up-regulated with limonene treatment. These genes may be responsible for converting limonene to α-terpineol. Totally, the genomic and transcriptomic data could provide valuable information in the discovery of related-genes which was involved in limonene biotransformation, pathogenicity of fungi, and investigation of metabolites and biological pathways of strain DSM 62840.
Collapse
Affiliation(s)
- Lu-Lu Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Huang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying-Ying Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhi Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Jiang B, Xing Y, Li G, Zhang N, Lian L, Sun G, Zhang D. iTRAQ-Based Comparative Proteomic Analysis of Acinetobacter baylyi ADP1 Under DNA Damage in Relation to Different Carbon Sources. Front Microbiol 2020; 10:2906. [PMID: 31993023 PMCID: PMC6971185 DOI: 10.3389/fmicb.2019.02906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/02/2019] [Indexed: 12/27/2022] Open
Abstract
DNA damage response allows microorganisms to repair or bypass DNA damage and maintain the genome integrity. It has attracted increasing attention but the underlying influential factors affecting DNA damage response are still unclear. In this work, isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic analysis was used to investigate the influence of carbon sources on the translational response of Acinetobacter baylyi ADP1 to DNA damage. After cultivating in a nutrient-rich medium (LB) and defined media supplemented with four different carbon sources (acetate, citrate, pyruvate, and succinate), a total of 2807 proteins were identified. Among them, 84 proteins involved in stress response were significantly altered, indicating the strong influence of carbon source on the response of A. baylyi ADP1 to DNA damage and other stresses. As the first study on the comparative global proteomic changes in A. baylyi ADP1 under DNA damage across nutritional environments, our findings revealed that DNA damage response in A. baylyi ADP1 at the translational level is significantly altered by carbon source, providing an insight into the complex protein interactions across carbon sources and offering theoretical clues for further study to elucidate their general regulatory mechanism to adapt to different nutrient environments.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing, China.,State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China
| | - Nana Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Luning Lian
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Guangdong Sun
- School of Environment, Tsinghua University, Beijing, China.,State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, China.,State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Wang K, Zheng X, Zhang X, Zhao L, Yang Q, Boateng NAS, Ahima J, Liu J, Zhang H. Comparative Transcriptomic Analysis of the Interaction between Penicillium expansum and Apple Fruit ( Malus pumila Mill.) during Early Stages of Infection. Microorganisms 2019; 7:microorganisms7110495. [PMID: 31661784 PMCID: PMC6920851 DOI: 10.3390/microorganisms7110495] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 01/26/2023] Open
Abstract
Blue mold, caused by Penicillium expansum, is an important postharvest disease of apple, and can result in significant economic losses. The present study investigated the interaction between P. expansum and wounded apple fruit tissues during the early stages of the infection. Spores of P. expansum became activated one hour post-inoculation (hpi), exhibited swelling at 3 hpi, and the germ tubes were found entering into apple tissues at 6 hpi. RNA-seq was performed on samples of P. expansum and apple fruit tissue collected at 1, 3, and 6 hpi. The main differentially expressed genes (DEGs) that were identified in P. expansum were related to interaction, cell wall degradation enzymes, anti-oxidative stress, pH regulation, and effectors. Apple tissues responded to the presence of P. expansum by activating pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) at 1 hpi, then activated effector-triggered immunity (ETI) at 3 hpi. This research provides new information on the interaction between P. expansum and apple fruit tissue at an early stage of the infection process.
Collapse
Affiliation(s)
- Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiangfeng Zheng
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lina Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | | | - Joseph Ahima
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China.
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
11
|
Wang K, Zheng X, Yang Q, Zhang H, Apaliya MT, Dhanasekaran S, Zhang X, Zhao L, Li J, Jiang Z. S-Adenosylmethionine-Dependent Methyltransferase Helps Pichia caribbica Degrade Patulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11758-11768. [PMID: 31577438 DOI: 10.1021/acs.jafc.9b05144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Patulin contamination not only is a menace to human health but also causes serious environmental problems worldwide due to the synthetic fungicides that are used to control it. This study focused on investigating the patulin degradation mechanism in Pichia caribbica at the molecular level. According to the results, P. caribbica (2 × 106 cells/mL) was able to degrade patulin from 20 μg/mL to an undetectable level in 72 h. The RNA-seq data showed patulin-induced oxidative stress and responses in P. caribbica. The deletion of PcCRG1 led to a significant decrease in patulin degradation by P. caribbica, whereas the overexpression of PcCRG1 accelerated the degradation of patulin. The study identified that PcCRG1 protein had the ability to degrade patulin in vitro. Overall, we demonstrated that the patulin degradation process in P. caribbica was more than one way; PcCRG1 was an S-adenosylmethionine-dependent methyltransferase and played an important role in the patulin degradation process in P. caribbica.
Collapse
Affiliation(s)
| | - Xiangfeng Zheng
- School of Food Science and Engineering , Yangzhou University , Yangzhou 225009 , Jiangsu , People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|