1
|
Świeca M, Reguła J, Molska M, Jarocki P, Murat J, Pytka M, Wessely-Szponder J. Adzuki and Mung Bean Sprouts Enriched with Probiotic Lactiplantibacillus plantarum 299v Improve Body Mass Gain and Antioxidant Status and Reduce the Undesirable Enzymatic Activity of Microbiota in Healthy Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:270-276. [PMID: 38358639 DOI: 10.1007/s11130-024-01157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Introducing and establishing new food requires a detailed evaluation of its safety, nutritional value and functionality, thus the control and probiotic-rich adzuki and mung bean sprouts were studied in an in vivo rats model. However, the total feed intake did not differ significantly between the groups, the highest body weight gain and body weight change were recorded in the control AIN diet. At the same time, the addition of legume sprouts caused a reduction of these parameters (up to 25% in the variant with probiotic-rich adzuki bean sprouts). There was no significant effect on serum morphology, except white blood cells (ca. 20% reduction in the control sprout-supplemented diets). Serum and liver antiradical properties were significantly elevated by consuming mung bean sprouts (no effect of the probiotics). The faecal lactic acid bacteria were already increased by the control sprouts (a 2.8- and 2.1-fold increase for adzuki and mung bean sprouts, respectively). The probiotic-rich sprouts further improved this parameter. The diets enriched with mung bean sprouts significantly decreased the urease (by ca. 65%) and β-glucuronidase activities (by ca. 30%). All the tested diets caused also a significant reduction of faecal tryptophanase activity (the effect was intensified by Lactiplantibacillus plantarum 299v). The functional components did not affect negatively the nutritional parameters and blood morphological characteristics. They improved also the antioxidant potential and significantly decreased the activities of colon cancer-related enzymes (urease and tryptophanase). The results confirmed that these new probiotic carriers may be a valuable, safe and functional element of a healthy diet.
Collapse
Affiliation(s)
- Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, Lublin, 20-704, Poland.
| | - Julita Reguła
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego Str. 31, Poznań, 60-624, Poland
| | - Marta Molska
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego Str. 31, Poznań, 60-624, Poland
- Department of Dietetics, Faculty of Physical Culture in Gorzów Wlkp, Poznan University of Physical Education, Estkowskiego 13, Gorzów Wielkopolski, 66-400, Poland
| | - Piotr Jarocki
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| | - Jakub Murat
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, Lublin, 20-704, Poland
| | - Monika Pytka
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| | - Joanna Wessely-Szponder
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, Lublin, 20-033, Poland
| |
Collapse
|
2
|
Różyło R, Gładyszewski G, Chocyk D, Dziki D, Świeca M, Matwijczuk A, Rząd K, Karcz D, Gawłowski S, Wójcik M, Gawlik U. The Influence of Micronization on the Properties of Black Cumin Pressing Waste Material. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2501. [PMID: 38893765 PMCID: PMC11173985 DOI: 10.3390/ma17112501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/21/2024]
Abstract
The purpose of this study was to investigate the effect of micronization on the characteristics of black cumin pressing waste material. The basic composition, amino acid, and fatty acid content of the raw material-specifically, black cumin pressing waste material-were determined. The samples were micronized in a planetary ball mill for periods ranging from 0 to 20 min. The particle sizes of micronized samples of black cumin pressing waste material were then examined using a laser analyzer, the Mastersizer 3000. The structures of the produced micronized powders was examined by X-ray diffraction. Additionally, the FTIR (Fourier-transform infrared) spectra of the micronized samples were recorded. The measurement of phenolic and antiradical properties was conducted both before and after in vitro digestion, and the evaluation of protein digestibility and trypsin inhibition was also conducted. The test results, including material properties, suggest that micronization for 10 min dramatically reduced particle diameters (d50) from 374.7 to 88.7 µm, whereas after 20 min, d50 decreased to only 64.5 µm. The results obtained using FTIR spectroscopy revealed alterations, especially in terms of intensity and, to a lesser extent, the shapes of the bands, indicating a significant impact on the molecular properties of the tested samples. X-ray diffraction profiles revealed that the internal structures of all powders are amorphous, and micronization methods have no effect on the internal structures of powders derived from black cumin pressing waste. Biochemical analyses revealed the viability of utilizing micronized powders from black cumin pressing waste materials as beneficial food additives, since micronization increased total phenolic extraction and antiradical activity.
Collapse
Affiliation(s)
- Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland; (S.G.); (M.W.)
| | - Grzegorz Gładyszewski
- Department of Applied Physics, Lublin University of Technology, 20-618 Lublin, Poland; (G.G.); (D.C.)
| | - Dariusz Chocyk
- Department of Applied Physics, Lublin University of Technology, 20-618 Lublin, Poland; (G.G.); (D.C.)
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland;
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland; (M.Ś.); (U.G.)
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences, 20-950 Lublin, Poland; (A.M.); (K.R.)
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Klaudia Rząd
- Department of Biophysics, University of Life Sciences, 20-950 Lublin, Poland; (A.M.); (K.R.)
| | - Dariusz Karcz
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland;
- Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, 31-155 Krakow, Poland
| | - Sławomir Gawłowski
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland; (S.G.); (M.W.)
| | - Monika Wójcik
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland; (S.G.); (M.W.)
| | - Urszula Gawlik
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland; (M.Ś.); (U.G.)
| |
Collapse
|
3
|
Liu Q, Tan L, Hong P, Liu H, Zhou C. Tilapia-soybean protein co-precipitates: Focus on physicochemical properties, nutritional quality, and proteomics profile. Food Chem X 2024; 21:101179. [PMID: 38370298 PMCID: PMC10869750 DOI: 10.1016/j.fochx.2024.101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
The development of binary protein systems featuring superior nutritional properties and applied range is an interesting and challenging task in the food industry. In this study, the tilapia-soybean protein co-precipitates (TSPCs) with different mass ratios of tilapia meat and soybean meal were constructed. Results of physicochemical properties showed that the highest solubility and thermal stability values of TSPCs were 81.90 % and 90.30 °C, respectively. TSPCs have the full complement of amino acids and enhanced nutritional quality compared to tilapia protein isolate (TPI) and soybean protein isolate (SPI). TSPC2:1 and TSPC1:1 contained the highest levels of tryptophan, aspartic acid, glycine, histidine, and arginine relative to TPI and SPI. The in vitro protein digestibility and protein digestibility corrected amino acid scores of TSPCs were also higher than that of SPI. SDS-PAGE revealed that TSPCs contained protein subunits from TPI and SPI. Moreover, the lysine-to-arginine ratio and β subunit were greatly correlated with protein digestibility with correlation coefficients of -0.962 (P < 0.01) and -0.971 (P < 0.01), respectively. Compared to SPI, TSPCs displayed a lower lysine-to-arginine ratio and β-conglycinin content, which improved its digestibility. Proteomic analysis indicated that TSPC1:1 had 989 unique proteins, which gives TSPCs enhanced biological properties compared to TPI and SPI, allowing them to participate in a broad range of biochemical metabolic and signal transduction pathways. The study would advance the utilization of mixed proteins toward exceptional food industry applications.
Collapse
Affiliation(s)
- Qingguan Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Li Tan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Huanming Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| |
Collapse
|
4
|
Chávez García SN, Rodríguez-Herrera R, Nery Flores S, Silva-Belmares SY, Esparza-González SC, Ascacio-Valdés JA, Flores-Gallegos AC. Sprouts as probiotic carriers: A new trend to improve consumer nutrition. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 7:100185. [PMID: 38155686 PMCID: PMC10753383 DOI: 10.1016/j.fochms.2023.100185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 12/30/2023]
Abstract
Over the past few decades, efforts to eradicate hunger in the world have led to the generation of sustainable development goals to reduce poverty and inequality. It is estimated that the current coronavirus pandemic could add between 83 and 132 million to the total number of undernourished people in the world by 2021. Food insecurity is a contributing factor to the increase in malnutrition, overweight and obesity due to the quality of diets to which people have access. It is therefore necessary to develop functional foods that meet the needs of the population, such as the incorporation of sprouts in their formulation to enhance nutritional quality. Germination of grains and seeds can be used as a low-cost bioprocessing technique that provides higher nutritional value and better bioavailability of nutrients. Consequently, the manuscript describes relevant information about the germination process in different seeds, the changes caused in their nutritional value and the use of techniques within the imbibition phase to modify the metabolic profiles within the sprouts such as inoculation with lactic acid bacteria and yeasts, to generate a functional symbiotic food.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Cecilia Esparza-González
- School of Odontology, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas S/N, Republica Oriente, C.P. 25280 Saltillo, Coahuila, Mexico
| | | | | |
Collapse
|
5
|
Kiersnowska K, Jakubczyk A. Bioactive Peptides Obtained from Legume Seeds as New Compounds in Metabolic Syndrome Prevention and Diet Therapy. Foods 2022; 11:3300. [PMCID: PMC9602117 DOI: 10.3390/foods11203300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Currently, food is regarded not only as a source of nutrients, vitamins, and minerals but also as a source of bioactive compounds that can play a significant role in the prevention and diet therapy of many diseases. Metabolic syndrome (MS) is a complex disorder defined as a set of interrelated factors that increase the risk of cardiovascular disease, atherosclerosis, type 2 diabetes, or dyslipidemia. MS affects not only adults but also children. Peptides are one of the compounds that exhibit a variety of bioactive properties. They are derived from food proteins, which are usually obtained through enzymatic hydrolysis or digestion in the digestive system. Legume seeds are a good source of bioactive peptides. In addition to their high protein content, they contain high levels of dietary fiber, vitamins, and minerals. The aim of this review is to present new bioactive peptides derived from legume seeds and showing inhibitory properties against MS. These compounds may find application in MS diet therapy or functional food production.
Collapse
|
6
|
Chen Y, Guan W, Zhang N, Wang Y, Tian Y, Sun H, Li X, Wang Y, Liu J. <em>Lactobacillus plantarum</em> Lp2 improved LPS-induced liver injury through the TLR-4/MAPK/NFκB and Nrf2-HO-1/CYP2E1 pathways in mice. Food Nutr Res 2022; 66:5459. [PMID: 35903291 PMCID: PMC9287763 DOI: 10.29219/fnr.v66.5459] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Inflammatory liver diseases present a significant public health problem. Probiotics are a kind of living microorganisms, which can improve the balance of host intestinal flora, promote the proliferation of intestinal beneficial bacteria, inhibit the growth of harmful bacteria, improve immunity, reduce blood lipids and so on. Probiotics in fermented foods have attracted considerable attention lately as treatment options for liver injury.
Objective: The aim of this study was selected probiotic strain with well probiotic properties from naturally fermented foods and investigated the underlying mechanisms of screened probiotic strain on lipopolysaccharide (LPS)-induced liver injury, which provided the theoretical foundation for the development of probiotics functional food.
Design: The probiotic characteristics of Lactobacillus plantarum Lp2 isolated from Chinese traditional fermented food were evaluated. Male KM mice were randomly assigned into three groups: normal chow (Control), LPS and LPS with L. plantarum Lp2. L. plantarum Lp2 were orally administered for 4 weeks before exposure to LPS. The liver injury of LPS-induced mice was observed through the evaluation of biochemical indexes, protein expression level and liver histopathology.
Results and discussions: After treatment for 4 weeks, L. plantarum Lp2 administration significantly reduced the LPS-induced liver coefficient and the levels of serum or liver aspartate transaminase (AST), alanine aminotransferase (ALT), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and LPS, as well as decreasing the histological alterations and protein compared with the LPS group. Western-blotting results showed that L. plantarum Lp2 activated the signal pathway of TLR4/MAPK/NFκB/NRF2-HO-1/CYP2E1/Caspase-3 and regulated the expression of related proteins.
Conclusions: In summary, L. plantarum Lp2 suppressed the LPS-induced activation of inflammatory pathways, oxidative injury and apoptosis has the potential to be used to improve liver injury.
Collapse
Affiliation(s)
- Yiying Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Wuyang Guan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Nan Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yuan Tian
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Haiyue Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- Xia Li Tel: +86 0431 84533312; fax: +86 0431 84533312 E-mail:
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- National Processing Laboratory for Soybean Industry and Technology, Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
- Xia Li Tel: +86 0431 84533312; fax: +86 0431 84533312 E-mail:
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| |
Collapse
|
7
|
Modulation of lentil antinutritional properties using non-thermal mediated processing techniques – A review. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Changes in the Chemical Composition of Edible Grasshoppers (Sphenarium purpurascens) Fed Exclusively with Soy Sprouts or Maize Leaves. INSECTS 2022; 13:insects13060510. [PMID: 35735847 PMCID: PMC9225435 DOI: 10.3390/insects13060510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary One of the most used insects in Mexico is the grasshopper, which is mostly consumed as a snack and collected in open fields where maize or alfalfa is grown. In this study, diet control of grasshoppers has helped to raise some important components such as protein, unsaturated fatty acids, and fiber content. Therefore, diet control could help to obtain insects with a preferred chemical and nutrient composition, making them a more nutritious alternative for human intake. Additionally, this strategy could improve the techno-functional properties of edible insects and their incorporation as ingredients in daily food. Abstract In recent times, insects have gained attention because of their nutritional characteristics as well as the environmental advantages of their production. In this research, the effect of the diet of grasshoppers (Sphenarium purpurascens) under controlled conditions on their chemical and nutritional content was studied. The insects were divided into two groups: maize leaf-fed grasshoppers (MFG) and soy sprout-fed grasshoppers (SFG). To evaluate the changes in composition, chemical analysis (protein, fiber, fat, ashes, and chitin) was carried out in triplicate according to AOAC procedures, and a Student’s t-test was used to determine any significant differences. The results showed a higher content of crude protein, in vitro protein digestibility percentage, and sum of non-essential amino acids (NEAAs) in the MFG samples compared with the SFG samples. The total dietary fiber, insoluble dietary fiber, soluble dietary fiber, sum of the EAA, non-essential amino acid percentage (EAA%), and biological value percentage (BV%) were higher in the SFG than the MFG, while in the amino acid profile and chitin content, no significant differences were obtained, although an increase in oleic acid in the SFG was observed. In FTIR, a β-sheet appeared in the SFG, which could be related to the low in vitro protein digestibility. The use of a soy sprout diet caused changes in the chemical composition and nutritional content of grasshoppers. This represents an opportunity to improve their nutritional value for commercial interests.
Collapse
|
9
|
Li H, Zou L, Li XY, Wu DT, Liu HY, Li HB, Gan RY. Adzuki bean (Vigna angularis): Chemical compositions, physicochemical properties, health benefits, and food applications. Compr Rev Food Sci Food Saf 2022; 21:2335-2362. [PMID: 35365946 DOI: 10.1111/1541-4337.12945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022]
Abstract
Adzuki bean (Vigna angularis), also called red bean, is a legume of Fabaceae (Leguminosae) family. This crop is native to East Asia and is also commercially available in other parts of the world. It is becoming a research focus owing to its distinct nutritional properties (e.g., abundant in polyphenols). The diverse health benefits and multiple utilization of this pulse are associated with its unique composition. However, there is a paucity of reviews focusing on the nutritional properties and potent applications of adzuki beans. This review summarizes the chemical compositions, physicochemical properties, health benefits, processing, and applications of adzuki beans. Suggestions on how to better utilize the adzuki bean are also provided to facilitate its development as a functional grain. Adzuki bean and its components can be further developed into value-added and nutritionally enhanced products.
Collapse
Affiliation(s)
- Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xin-Yan Li
- Department of Neonatology, Longquanyi District of Chengdu Maternal and Child Healthcare Hospital, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
10
|
Dobrowolska-Iwanek J, Zagrodzki P, Galanty A, Fołta M, Kryczyk-Kozioł J, Szlósarczyk M, Rubio PS, Saraiva de Carvalho I, Paśko P. Determination of Essential Minerals and Trace Elements in Edible Sprouts from Different Botanical Families—Application of Chemometric Analysis. Foods 2022; 11:foods11030371. [PMID: 35159521 PMCID: PMC8834360 DOI: 10.3390/foods11030371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 01/21/2023] Open
Abstract
Background: elemental deficiency may result in the malfunctioning of human organisms. Sprouts, with their attractive looks and well-established popularity, may be considered as alternative sources of elements in the diet. Moreover, the uptake of micro- and macronutrients from sprouts is better when compared to other vegetable sources. The aim of the study was to determine and compare the level of the selected essential minerals and trace elements in 25 sprouts from different botanical families, to preselect the richest species of high importance for human diets. Methods: the Cu, Zn, Mn, Fe, Mg, Ca determinations were performed using atomic absorption spectrometry with flame atomization and iodine by the colorimetric method. Results: beetroot sprouts had the highest levels of Zn, Fe, and Mg, while onion sprouts were the richest in Mn and Ca, among all of the tested sprouts. Sprouts of the Brassicaceae family were generally richer in Ca, Mg, and Zn than sprouts from the Fabaceae family. Results allow preselection of the most perspective sprouts as possible dietary sources of essential minerals and trace elements. For rucola, leeks, onions, and beetroot sprouts, the data on minerals and trace element compositions were performed for the first time.
Collapse
Affiliation(s)
- Justyna Dobrowolska-Iwanek
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Maria Fołta
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Jadwiga Kryczyk-Kozioł
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Marek Szlósarczyk
- Department of Inorganic and Analytical Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Pol Salvans Rubio
- Faculty of Pharmacy and Food Science, University of Barcelona, Diagonal Campus, Joan XXIII 27-31, 08-028 Barcelona, Spain;
| | - Isabel Saraiva de Carvalho
- Mediterranean Institute for Agriculture, Environment and Development, University of Algarve, 8005-139 Faro, Portugal;
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
- Correspondence: ; Tel.: +48-126-205-670
| |
Collapse
|
11
|
Mošovská S, Medvecká V, Klas M, Kyzek S, Valík Ľ, Mikulajová A, Zahoranová A. Decontamination of Escherichia coli on the surface of soybean seeds using plasma activated water. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Nordström EA, Teixeira C, Montelius C, Jeppsson B, Larsson N. Lactiplantibacillus plantarum 299v (LP299V ®): three decades of research. Benef Microbes 2021; 12:441-465. [PMID: 34365915 DOI: 10.3920/bm2020.0191] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review aims to provide a comprehensive overview of the in vitro, animal, and clinical studies with the bacterial strain Lactiplantibacillus plantarum 299v (L. plantarum 299v; formerly named Lactobacillus plantarum 299v) published up until June 30, 2020. L. plantarum 299v is the most documented L. plantarum strain in the world, described in over 170 scientific publications out of which more than 60 are human clinical studies. The genome sequence of L. plantarum 299v has been determined and is available in the public domain (GenBank Accession number: NZ_LEAV01000004). The probiotic strain L. plantarum 299v was isolated from healthy human intestinal mucosa three decades ago by scientists at Lund University, Sweden. Thirty years later, a wealth of data coming from in vitro, animal, and clinical studies exist, showing benefits primarily for gastrointestinal health, such as reduced flatulence and abdominal pain in patients with irritable bowel syndrome (IBS). Moreover, several clinical studies have shown positive effects of L. plantarum 299v on iron absorption and more recently also on iron status. L. plantarum 299v is safe for human consumption and does not confer antibiotic resistance. It survives the harsh conditions of the human gastrointestinal tract, adheres to mannose residues on the intestinal epithelial cells and has in some cases been re-isolated more than ten days after administration ceased. Besides studying health benefits, research groups around the globe have investigated L. plantarum 299v in a range of applications and processes. L. plantarum 299v is used in many different food applications as well as in various dietary supplements. In a freeze-dried format, L. plantarum 299v is robust and stable at room temperature, enabling long shelf-lives of consumer healthcare products such as capsules, tablets, or powder sachets. The strain is patent protected for a wide range of indications and applications worldwide as well as trademarked as LP299V®.
Collapse
Affiliation(s)
| | - C Teixeira
- Probi AB, Ideongatan 1A, 22370 Lund, Sweden
| | | | - B Jeppsson
- Department of Surgery, Lund University, Universitetssjukhuset, 22184 Lund, Sweden
| | - N Larsson
- Probi AB, Ideongatan 1A, 22370 Lund, Sweden
| |
Collapse
|
13
|
Chaturvedi S, Chakraborty S. Review on potential non‐dairy synbiotic beverages: a preliminary approach using legumes. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14779] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Smriti Chaturvedi
- Food Engineering and Technology Department Institute of Chemical Technology Matunga Mumbai 400019 India
| | - Snehasis Chakraborty
- Food Engineering and Technology Department Institute of Chemical Technology Matunga Mumbai 400019 India
| |
Collapse
|
14
|
Atudorei D, Stroe SG, Codină GG. Impact of Germination on the Microstructural and Physicochemical Properties of Different Legume Types. PLANTS 2021; 10:plants10030592. [PMID: 33809819 PMCID: PMC8004221 DOI: 10.3390/plants10030592] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022]
Abstract
The microstructural and physicochemical compositions of bean (Phaseolus vulgaris), lentil (Lens culinaris Merr.), soybean (Glycine max L.), chickpea (Cicer aretinium L.) and lupine (Lupinus albus) were investigated over 2 and 4 days of germination. Different changes were noticed during microscopic observations (Stereo Microscope, SEM) of the legume seeds subjected to germination, mostly related to the breakages of the seed structure. The germination caused the increase in protein content for bean, lentil, and chickpea and of ash content for lentil, soybean and chickpea. Germination increased the availability of sodium, magnesium, iron, zinc and also the acidity for all legume types. The content of fat decreased for lentil, chickpea, and lupine, whereas the content of carbohydrates and pH decreased for all legume types during the four-day germination period. Fourier transform infrared spectroscopic (FT-IR) spectra show that the compositions of germinated seeds were different from the control and varied depending on the type of legume. The multivariate analysis of the data shows close associations between chickpea, lentil, and bean and between lupine and soybean samples during the germination process. Significant negative correlations were obtained between carbohydrate contents and protein, fat and ash at the 0.01 level.
Collapse
|
15
|
Sikora M, Złotek U, Kordowska-Wiater M, Świeca M. Spicy Herb Extracts as a Potential Improver of the Antioxidant Properties and Inhibitor of Enzymatic Browning and Endogenous Microbiota Growth in Stored Mung Bean Sprouts. Antioxidants (Basel) 2021; 10:antiox10030425. [PMID: 33802137 PMCID: PMC7999257 DOI: 10.3390/antiox10030425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
The quality and shelf life of sprouts can be improved by postharvest application of water herb extracts. The effect of water infusions of marjoram, oregano, basil, and thyme on the phenolic content, antioxidant potential, and the microbiological and consumer quality of stored mung bean sprouts was studied. Compared to the control, the treatments increased total phenolic content. The highest amounts were determined in sprouts soaked in the thyme extract (6.8 mg/g d.m.). The infusions also inhibited the activity of enzymes utilizing phenolics, and marjoram and oregano were found to be the most effective. The increase in the level of phenolics was reflected in enhanced antioxidant properties (ability to quench cation radical ABTS•+, reducing and chelating power). Both total phenolics and flavonoids, as well as antioxidant capacities, were highly bioaccessible in vitro. All the natural extracts effectively reduced the growth of total mesophilic bacteria, coliforms, and molds (they were more effective than ascorbic and kojic acids). The treatments did not exert a negative influence on the sensory properties or nutritional value of the sprouts, and even improved starch and protein digestibility. These results are very promising and may suggest a wider used of natural extracts as preservatives of minimally processed food.
Collapse
Affiliation(s)
- Małgorzata Sikora
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (M.S.); (U.Z.)
| | - Urszula Złotek
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (M.S.); (U.Z.)
| | - Monika Kordowska-Wiater
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (M.S.); (U.Z.)
- Correspondence: ; Tel.: +48-81-46-23-328
| |
Collapse
|
16
|
Kruk M, Trząskowska M. Analysis of Biofilm Formation on the Surface of Organic Mung Bean Seeds, Sprouts and in the Germination Environment. Foods 2021; 10:foods10030542. [PMID: 33807767 PMCID: PMC7999400 DOI: 10.3390/foods10030542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to analyse the impact of sanitation methods on the formation of bacterial biofilms after disinfection and during the germination process of mung bean on seeds and in the germination environment. Moreover, the influence of Lactobacillus plantarum 299v on the growth of the tested pathogenic bacteria was evaluated. Three strains of Salmonella and E. coli were used for the study. The colony forming units (CFU), the crystal violet (CV), the LIVE/DEAD and the gram fluorescent staining, the light and the scanning electron microscopy (SEM) methods were used. The tested microorganisms survive in a small number. During germination after disinfection D2 (20 min H2O at 60 °C, then 15 min in a disinfecting mixture consisting of H2O, H2O2 and CH₃COOH), the biofilms grew most after day 2, but with the DP2 method (D2 + L. plantarum 299v during germination) after the fourth day. Depending on the method used, the second or fourth day could be a time for the introduction of an additional growth-limiting factor. Moreover, despite the use of seed disinfection, their germination environment could be favourable for the development of bacteria and, consequently, the formation of biofilms. The appropriate combination of seed disinfection methods and growth inhibition methods at the germination stage will lead to the complete elimination of the development of unwanted microflora and their biofilms.
Collapse
Affiliation(s)
- Marcin Kruk
- Faculty of Human Nutrition, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Monika Trząskowska
- Food Hygiene and Quality Management, Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
- Correspondence:
| |
Collapse
|
17
|
Enhancement of the Anti-Inflammatory Effect of Mustard Kimchi on RAW 264.7 Macrophages by the Lactobacillus plantarum Fermentation-Mediated Generation of Phenolic Compound Derivatives. Foods 2020; 9:foods9020181. [PMID: 32059406 PMCID: PMC7074436 DOI: 10.3390/foods9020181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 12/22/2022] Open
Abstract
Mustard leaf kimchi contains numerous functional compounds that have various health benefits. However, the underlying mechanisms of their anti-inflammatory effects are unclear. In this study, changes in the mustard leaf kimchi phenolics profile after fermentation with or without Lactobacillus plantarum were determined using liquid chromatography–mass spectrometry/mass spectrometry (LC–MS/MS). To correlate changes in phenolic profiles with anti-inflammatory activities of the fermentation extracts, lipopolysaccharides (LPS)-stimulated RAW 264.7 cells were treated with the extracts. We identified 12 phenolic acids in mustard leaf kimchi fermented with L. plantarum. Caffeic acid, chlorogenic acid, epicatechin, and catechin substituted the metabolite abundance. Extracts of mustard leaf kimchi fermented by L. plantarum (MLKL) markedly inhibited nitric oxide production by decreasing interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX2) expression levels in LPS-treated RAW 264.7 cells. Thus, fermentation with L. plantarum potentially improves the anti-inflammatory activities of mustard leaf and mustard leaf fermented with this microorganism may serve as a proper diet for the treatment of inflammation.
Collapse
|