1
|
Zheng Y, Duan L, Li J, Zhang P, Jiang Y, Yang X, Li X, Jia X. Photocatalytic titanium dioxide reduces postharvest decay of nectarine fruit packaged in different materials through modulating central carbon and energy metabolisms. Food Chem 2024; 433:137357. [PMID: 37688821 DOI: 10.1016/j.foodchem.2023.137357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
The capacity of titanium dioxide (TiO2) photocatalysis photocatalytic reactor to prevent and control pathogen infection in nectarine fruit packed in laminated nylon/LDPE, low density polyethylene and microperforated LDPE films was evaluated. Results showed that TiO2 combined with microperforated LDPE packaging (TPL) exhibited superior inhibition of microbial growth, reducing total viable counts by 4.18 log CFU g-1 and yeast and mold counts by 3.20 log CFU g-1, compared to microperforated LDPE packaging alone. TiO2 photocatalysis primed the defense systems in nectarine fruit packed in microperforated LDPE, improving the activity of defense-related enzymes. Metabolomics analysis indicated that l-aspartate, oxaloacetate, and succinic acid involved in central carbon metabolism including the glycolysis and tricarboxylic acid cycle pathways, were significantly upregulated by TPL. TiO2 increased the activity of energy metabolism-related enzymes, adenosine triphosphate, adenosine diphosphate, and energy charge levels to provide adequate energy, thus reducing fruit decay.
Collapse
Affiliation(s)
- Yanli Zheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lihua Duan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiangkuo Li
- Institute of Agricultural Products Preservation and Processing Science and Technology, Tianjin Academy of Agricultural Sciences, National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin 300384, China
| | - Peng Zhang
- Institute of Agricultural Products Preservation and Processing Science and Technology, Tianjin Academy of Agricultural Sciences, National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin 300384, China
| | - Yunbin Jiang
- Shanxi Fruit Industry Cold Chain New Material Co., Ltd, Tongchuan 727199, China.
| | - Xiangzheng Yang
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250200, China.
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoyu Jia
- Institute of Agricultural Products Preservation and Processing Science and Technology, Tianjin Academy of Agricultural Sciences, National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin 300384, China; Shanxi Fruit Industry Cold Chain New Material Co., Ltd, Tongchuan 727199, China.
| |
Collapse
|
2
|
Zhao L, Wang J, Zhang H, Peng Q, Fan C, Zhou Y, Zhang X. Cell structure damage contributes to antifungal activity of sodium propylparaben against Trichothecium roseum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105758. [PMID: 38225061 DOI: 10.1016/j.pestbp.2023.105758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024]
Abstract
Trichothecium roseum is a type of fungus that causes pink rot in muskmelon after the melons are harvested. Pink rot leads to severe decay during storage and causes the production of toxins that can be harmful to human health. Sodium propylparaben (SPP, IUPAC name: sodium; 4-propoxycarbonylphenolate) is an antimicrobial preservative that can be used to treat the inedible parts of fruits in addition to food, medications, and packaging. In this study, the effectiveness of SPP in inhibiting T. roseum was tested, and the inhibition mechanism was investigated. The results show that SPP inhibited the growth and spore germination of T. roseum. The malondialdehyde (MDA) content, propidium iodide staining, alkaline phosphatase (AKP) activity, and calcofluor white (CFW) staining results show that SPP produced a disruption of the cell membrane and cell wall integrity of T. roseum. Scanning and transmission electron microscopy (SEM and TEM, respectively) results also indicate that SPP disrupted the cellular structure of T. roseum. Meanwhile, the large amounts of superoxide anion and hydrogen peroxide in T. roseum accumulated due to the effects of SPP on the activities of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, superoxide dismutase, and decreased catalase. In addition, SPP caused a significant reduction in the incidence rate and disease degree of muskmelon pink rot in vivo. In conclusion, SPP appears to be effective against T. roseum via disruption of the cell membrane and wall. SPP could be used to manage melon pink rot after fruit harvesting because of its disease inhibition effect in vivo.
Collapse
Affiliation(s)
- Lunaike Zhao
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Junjie Wang
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Huaiyu Zhang
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Qiding Peng
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Chunxia Fan
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Yueli Zhou
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Xiu Zhang
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
3
|
Wu Q, He Y, Cui C, Tao X, Zhang D, Zhang Y, Ying T, Li L. Quantitative proteomic analysis of tomato fruit ripening behavior in response to exogenous abscisic acid. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7469-7483. [PMID: 37421609 DOI: 10.1002/jsfa.12838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/17/2023] [Accepted: 07/08/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND To determine how abscisic acid (ABA) affects tomato fruit ripening at the protein level, mature green cherry tomato fruit were treated with ABA, nordihydroguaiaretic acid (NDGA) or sterile water (control, CK). The proteomes of treated fruit were analyzed and quantified using tandem mass tags (TMTs) at 7 days after treatment, and the gene transcription abundances of differently expressed proteins (DEPs) were validated with quantitative real-time polymerase chain reaction. RESULTS Postharvest tomato fruit underwent faster color transformation and ripening than the CK when treated with ABA. In total, 6310 proteins were identified among the CK and treatment groups, of which 5359 were quantified. Using a change threshold of 1.2 or 0.83 times, 1081 DEPs were identified. Among them, 127 were upregulated and 127 were downregulated in the ABA versus CK comparison group. According to KEGG and protein-protein interaction network analyses, the ABA-regulated DEPs were primarily concentrated in the photosynthesis system and sugar metabolism pathways, and 102 DEPs associated with phytohormones biosynthesis and signal transduction, pigment synthesis and metabolism, cell wall metabolism, photosynthesis, redox reactions, allergens and defense responses were identified in the ABA versus CK and NDGA versus CK comparison groups. CONCLUSION ABA affects tomato fruit ripening at the protein level to some extent. The results of this study provided comprehensive insights and data for further research on the regulatory mechanism of ABA in tomato fruit ripening. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiong Wu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Yanan He
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Chunxiao Cui
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Xiaoya Tao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Dongdong Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Yurong Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Tiejin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Li D, Gao Z, Li Q, Liu X, Liu H. Cuproptosis-a potential target for the treatment of osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1135181. [PMID: 37214253 PMCID: PMC10196240 DOI: 10.3389/fendo.2023.1135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Osteoporosis is an age-related disease of bone metabolism marked by reduced bone mineral density and impaired bone strength. The disease causes the bones to weaken and break more easily. Osteoclasts participate in bone resorption more than osteoblasts participate in bone formation, disrupting bone homeostasis and leading to osteoporosis. Currently, drug therapy for osteoporosis includes calcium supplements, vitamin D, parathyroid hormone, estrogen, calcitonin, bisphosphates, and other medications. These medications are effective in treating osteoporosis but have side effects. Copper is a necessary trace element in the human body, and studies have shown that it links to the development of osteoporosis. Cuproptosis is a recently proposed new type of cell death. Copper-induced cell death regulates by lipoylated components mediated via mitochondrial ferredoxin 1; that is, copper binds directly to the lipoylated components of the tricarboxylic acid cycle, resulting in lipoylated protein accumulation and subsequent loss of iron-sulfur cluster proteins, leading to proteotoxic stress and eventually cell death. Therapeutic options for tumor disorders include targeting the intracellular toxicity of copper and cuproptosis. The hypoxic environment in bone and the metabolic pathway of glycolysis to provide energy in cells can inhibit cuproptosis, which may promote the survival and proliferation of various cells, including osteoblasts, osteoclasts, effector T cells, and macrophages, thereby mediating the osteoporosis process. As a result, our group tried to explain the relationship between the role of cuproptosis and its essential regulatory genes, as well as the pathological mechanism of osteoporosis and its effects on various cells. This study intends to investigate a new treatment approach for the clinical treatment of osteoporosis that is beneficial to the treatment of osteoporosis.
Collapse
Affiliation(s)
- Dinglin Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghua Gao
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Li Y, Zuo X, Ji N, Zhang J, Wang K, Jin P, Zheng Y. PpMYB1 and PpNPR1 interact to enhance the resistance of peach fruit to Rhizopus stolonifer infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107682. [PMID: 37060868 DOI: 10.1016/j.plaphy.2023.107682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
MYB transcription factors play important role in stress-resistance of plants. Nevertheless, the function of MYB TFs in peach Rhizopus rot remains poorly understood. Herein, Pichia guilliermondii treatment activated resistance against Rhizopus stolonifer, as illustrated by reductions in the incidence rate and severity of Rhizopus rot disease, increased enzyme activities and gene expression of chitinase (CHI) and β-1,3-glucanase (GLU), and enhancement of energy production by inducing the activities and expression of H+-ATPase and Ca2+-ATPase, succinate dehydrogenase (SDH), and cytochrome c oxidase (CCO). Moreover, an R1-type MYB, PpMYB1, from peach fruit was induced during R. stolonifer infection and in response to P. guilliermondii treatment. PpMYB1 activated the transcription of PpCHI-EP3 and PpGLU-like genes and the energy metabolism-related gene PpH+-ATPase1 by directly targeting the MBS element. Importantly, PpMYB1 interacted with PpNPR1 to form a heterodimer, which was conducive to enhancing the activation of target gene transcription. Collectively, our findings suggest that PpMYB1 cooperates with PpNPR1 to positively regulate disease resistance by activating the disease defense system and energy metabolism in peaches.
Collapse
Affiliation(s)
- Yanfei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaoxia Zuo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Nana Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jinglin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Kaituo Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
6
|
Sodium silicate accelerates the deposition of lignin and silicon by activating the biosynthesis of lignin monolignols and increasing the relative silicon content in muskmelon wounds. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
7
|
Han Y, Yang R, Wang Q, Wang B, Prusky D. Sodium silicate promotes wound healing by inducing the deposition of suberin polyphenolic and lignin in potato tubers. FRONTIERS IN PLANT SCIENCE 2022; 13:942022. [PMID: 36092440 PMCID: PMC9453558 DOI: 10.3389/fpls.2022.942022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Wound healing is a postharvest characteristic of potato tubers through accumulating suberin and lignin, which could reduce decay and water loss during storage. This study aimed to explore the impact and mechanisms of sodium silicate on wound healing of potatoes. After being wounded, "Atlantic" potato tubers were treated with water or 50 mM sodium silicate. The results showed that sodium silicate treatment accelerated the formation of wound healing structures and significantly reduced the weight loss and disease index of tubers. Furthermore, sodium silicate induced the genes expression and enzyme activity of phenylalanine ammonia lyase (PAL), 4-coumarate: coenzyme A ligase (4CL), and cinnamyl alcohol dehydrogenase (CAD) involved in the phenylpropane metabolism, enhancing the synthesis of the main precursors of suberin polyphenolic (SPP) and lignin, such as coniferyl alcohol, sinapyl alcohol, and cinnamyl alcohol. Meanwhile, the gene expression of StPOD and StNOX was activated, and the production of O2- and H2O2 was promoted, which could be used for injury signal transmission and oxidative crosslinking of SPP monomers and lignin precursors. Besides, antimicrobial compounds, total phenolics, and flavonoids were also induced. We suggest that sodium silicate could promote wound healing by inducing the deposition of SPP, lignin, and antimicrobial compounds in potato tubers.
Collapse
Affiliation(s)
- Ye Han
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ruirui Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qihui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Bin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
8
|
Li C, Sun L, Zhu J, Ji X, Huang R, Fan Y, Guo M, Ge Y. Trehalose Regulates Starch, Sorbitol, and Energy Metabolism to Enhance Tolerance to Blue Mold of "Golden Delicious" Apple Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5658-5667. [PMID: 35499968 DOI: 10.1021/acs.jafc.2c01102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The efficacy of trehalose on the lesion diameter of apples (cv. Golden Delicious) inoculated with Penicillium expansum was evaluated to screen the optimal concentration. The changes in gene expression and activity of the enzyme in starch, sorbitol, and energy metabolism were also investigated in apples after trehalose treatment. The results revealed that trehalose dipping reduced the lesion diameter of apples inoculated with P. expansum. Trehalose suppressed the activities and gene expressions of β-amylase, NAD-sorbitol dehydrogenase, and NADP-sorbitol dehydrogenase, whereas it decreased the sorbitol 6-phosphate dehydrogenase gene expression and amylose, amylopectin, total starch, and reducing sugar contents. Additionally, trehalose improved the gene expressions and activities of α-amylase, starch-branching enzymes, total amylase, H+-ATPase, and Ca2+-ATPase, as well as soluble sugar, adenosine triphosphate, and adenosine diphosphate contents and energy charge in apples. These findings imply that trehalose could induce tolerance to the blue mold of apple fruit by regulating starch, sorbitol, and energy metabolism.
Collapse
Affiliation(s)
- Canying Li
- College of Food Science and Engineering Bohai University, Jinzhou 121013, P.R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, P.R. China
| | - Lei Sun
- College of Food Science and Engineering Bohai University, Jinzhou 121013, P.R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, P.R. China
| | - Jie Zhu
- College of Food Science and Engineering Bohai University, Jinzhou 121013, P.R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, P.R. China
| | - Xiaonan Ji
- College of Food Science and Engineering Bohai University, Jinzhou 121013, P.R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, P.R. China
| | - Rui Huang
- College of Food Science and Engineering Bohai University, Jinzhou 121013, P.R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, P.R. China
| | - Yiting Fan
- College of Food Science and Engineering Bohai University, Jinzhou 121013, P.R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, P.R. China
| | - Mi Guo
- College of Food Science and Engineering Bohai University, Jinzhou 121013, P.R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, P.R. China
| | - Yonghong Ge
- College of Food Science and Engineering Bohai University, Jinzhou 121013, P.R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, P.R. China
| |
Collapse
|
9
|
Silica Nanoparticles Enhance the Disease Resistance of Ginger to Rhizome Rot during Postharvest Storage. NANOMATERIALS 2022; 12:nano12091418. [PMID: 35564127 PMCID: PMC9099806 DOI: 10.3390/nano12091418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023]
Abstract
Silica nanoparticles (SiNPs) offer an ecofriendly and environmentally safe alternative for plant disease management. However, the mechanisms of SiNPs-induced disease resistance are largely unknown. This research evaluated the application of SiNPs in controlling the postharvest decay of ginger rhizomes inoculated with Fusarium solani. In vitro study showed that SiNP had little inhibitory effect on mycelial growth and spore germination of F. solani and did not significantly change mycelium’s MDA content and SDH activity. In vivo analysis indicated that SiNPs decreased the degree of decay around the wounds and decreased the accumulation of H2O2 after long-term pathogenic infection through potentiating the activities of antioxidant enzymes such as SOD, APX, PPO, and CAT. SiNP150 increased the CHI, PAL, and GLU activity at the onset of the experiment. Moreover, SiNP150 treatment increased total phenolics contents by 1.3, 1.5, and 1.2-times after 3, 5, and 7 days of treatment, and increased total flavonoids content throughout the experiment by 9.3%, 62.4%, 26.9%, 12.8%, and 60.8%, respectively. Furthermore, the expression of selected phenylpropanoid pathway-related genes was generally enhanced by SiNPs when subjected to F. solani inoculation. Together, SiNPs can effectively reduce the fungal disease of ginger rhizome through both physical and biochemical defense mechanisms.
Collapse
|
10
|
Peng H, Hu H, Xi K, Zhu X, Zhou J, Yin J, Guo F, Liu Y, Zhu Y. Silicon Nanoparticles Enhance Ginger Rhizomes Tolerance to Postharvest Deterioration and Resistance to Fusarium solani. FRONTIERS IN PLANT SCIENCE 2022; 13:816143. [PMID: 35371177 PMCID: PMC8965286 DOI: 10.3389/fpls.2022.816143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Postharvest deterioration of ginger rhizome caused by microorganisms or wound infections causes significant economic losses. Fusarium solani is one of the important causal agents of prevalent ginger disease soft rot across the world. The massive and continuous use of chemical fungicides in postharvest preservation pose risks to human health and produce environmental contamination. Hence, new alternative tools are required to reduce postharvest deterioration and extend the postharvest life of ginger. In this study, the use of silicon nanoparticles (SiNPs) on the storability of ginger rhizomes during postharvest storage and their resistance to Fusarium solani was investigated. The results showed that 50, 100, and 150 mg L-1 of SiNPs increased the firmness of the ginger rhizome during storage but decreased the decay severity, water loss, total color difference, and the reactive oxygen species (ROS; H2O2 and superoxide anion) accumulation. Specifically, 100 mg L-1 (SiNP100) demonstrated the best effect in the extension of postharvest life and improved the quality of the ginger rhizomes. SiNP100 application increased the activities of antioxidant enzymes (SOD and CAT) and the total phenolics and flavonoid contents, thereby reducing the ROS accumulation and malondialdehyde (MDA) content. Meanwhile, SiNP100 treatment negatively impacts the peroxidase (POD) and polyphenol oxidase (PPO) activities, which may have contributed to the lower level of lignin and decreased total color difference. SiNP100 likely decreased water loss and the transfer of water by altering the expression of aquaporin genes. Moreover, SiNP100 modulated the expression of lignin synthesis and phytopathogenic responses genes including MYB and LysM genes. Furthermore, SiNP100 inhibited Fusarium solani by preventing the penetration of hyphae into cells, thus decreasing the severity of postharvest pathogenic decay. In summary, this study revealed the physiology and molecular mechanisms of SiNPs-induced tolerance to postharvest deterioration and resistance to disease, which provides a foundation for using SiNPs resources as a promising alternative tool to maintain ginger quality and control postharvest diseases.
Collapse
Affiliation(s)
- Huimin Peng
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, College of Agriculture, Yangtze University, Jingzhou, China
| | - Haijun Hu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, College of Agriculture, Yangtze University, Jingzhou, China
| | - Keyong Xi
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiongmeng Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, College of Agriculture, Yangtze University, Jingzhou, China
| | - Jie Zhou
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, College of Agriculture, Yangtze University, Jingzhou, China
| | - Junliang Yin
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fengling Guo
- Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yiqing Liu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, College of Agriculture, Yangtze University, Jingzhou, China
| | - Yongxing Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
11
|
Chen C, Cai N, Wan C, Kai W, Chen J. Carvacrol delays Phomopsis stem-end rot development in pummelo fruit in relation to maintaining energy status and antioxidant system. Food Chem 2022; 372:131239. [PMID: 34627096 DOI: 10.1016/j.foodchem.2021.131239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 09/25/2021] [Indexed: 02/07/2023]
Abstract
Pummelo fruit rapidly depreciate in commodity value due to postharvest fungal decay and fruit quality deterioration. Here, we used carvacrol (CVR) to control Phomopsis stem-end rot (SER) caused by Diaporthe citri in pummelo fruit stored at 25 °C. Antifungal activity of CVR inhibited D. citri growth and Phomopsis SER development. Harvested pummelo fruit treated with CVR delayed firmness loss and lowered electrolyte leakage, and retarded hydrogen peroxide (H2O2) and malondialdehyde (MDA) accumulation. Unlike the control fruit, the CVR-treated fruit maintained higher levels of adenosine triphosphate and energy charge, and increased ATPase, succinate dehydrogenase (SDH), malate dehydrogenase (MDH), and cytochrome C oxidase (CCO) activities, along with up-regulated expression levels of the respective genes. CVR improved the antioxidant capacity, as evidenced by higher non-enzymatic antioxidants amounts, higher activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX) and glutathione reductase (GR), and up-regulated expression levels of ROS-scavenging-related genes. Collectively, CVR treatment maintained the energy status and antioxidant capacity in D. citri-infected pummelo fruit, which revealed antifungal mechanisms critical for controlling postharvest fungal diseases.
Collapse
Affiliation(s)
- Chuying Chen
- Provincial Key Laboratory for Preservation Technology and Non-destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Nan Cai
- Provincial Key Laboratory for Preservation Technology and Non-destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Chunpeng Wan
- Provincial Key Laboratory for Preservation Technology and Non-destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Wenbin Kai
- Provincial Key Laboratory for Preservation Technology and Non-destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jinyin Chen
- Provincial Key Laboratory for Preservation Technology and Non-destructive Testing of Postharvest Fruits & Vegetables in Jiangxi, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 330075, PR China
| |
Collapse
|
12
|
ε-Poly-l-Lysine Enhances Fruit Disease Resistance in Postharvest Longans ( Dimocarpus longan Lour.) by Modulating Energy Status and ATPase Activity. Foods 2022; 11:foods11050773. [PMID: 35267405 PMCID: PMC8909375 DOI: 10.3390/foods11050773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
ε-poly-l-lysine (ε-PL) holds a strong antibacterial property and is widely used for food preservation. However, the application of ε-PL to enhance fruit disease resistance in postharvest longans (Dimocarpus longan Lour.) has not been explored. The objective of this study was to explore the impact of ε-PL treatment on disease occurrence and energy metabolism of longans infected with Phomopsis longanae Chi (P. longanae). It was found that, in comparison with P. longanae-inoculated longans, ε-PL could decrease the fruit disease index and adenosine monophosphate (AMP) content, increase the amounts of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and energy charge, and enhance the activities of adenosine triphosphatase (ATPase) (such as H+-, Mg2+-, and Ca2+-ATPase) in the mitochondria, protoplasm, and vacuole. The results suggest that the higher levels of ATPase activity and energy status played essential roles in disease resistance of postharvest longan fruit. Therefore, the ε-PL treatment can be used as a safe and efficient postharvest method to inhibit the disease occurrence of longan fruit during storage at room temperature.
Collapse
|
13
|
Zhang J, Cheng X, Chang L, Zhang L, Zhang S. Combined treatments of chitosan and sodium silicate to inhibit Alternaria alternata pathogens of postharvest winter jujube. Food Sci Biotechnol 2021; 30:589-597. [PMID: 33936851 DOI: 10.1007/s10068-021-00890-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 01/26/2021] [Accepted: 02/15/2021] [Indexed: 10/21/2022] Open
Abstract
Alternaria alternata is a pathogenic fungus that infects jujube fruit and leads to serious economic losses. In this paper, the antifungal activity of chitosan combined with sodium silicate against A. alternata in vitro and in vivo was investigated, and the possible antimicrobial mechanisms were explored. Results showed that the spore germination and colony expansion of A. alternata were significantly inhibited by chitosan. Chitosan treatment induced the leakages of intercellular electrolytes, nucleic acids, and soluble protein of A. alternata. Meanwhile, chitosan damaged the cell morphology and membrane integrity of A. alternata. The combination of chitosan and sodium silicate was more effective than chitosan alone. In addition, the effect of chitosan and sodium silicate could significantly decrease natural rot rate and delay lesion expansion of winter jujube. Collectively, chitosan combined with sodium silicate had the potential to control postharvest diseases of fruit caused by A. alternata.
Collapse
Affiliation(s)
- Jingru Zhang
- College of Food Science, Shanxi Normal University, 1 Gongyuan Street, Yaodu District, Linfen, 041004 Shanxi China
| | - Xiaowen Cheng
- College of Food Science, Shanxi Normal University, 1 Gongyuan Street, Yaodu District, Linfen, 041004 Shanxi China
| | - Lulu Chang
- College of Food Science, Shanxi Normal University, 1 Gongyuan Street, Yaodu District, Linfen, 041004 Shanxi China
| | - Lele Zhang
- College of Food Science, Shanxi Normal University, 1 Gongyuan Street, Yaodu District, Linfen, 041004 Shanxi China
| | - Shaoying Zhang
- College of Food Science, Shanxi Normal University, 1 Gongyuan Street, Yaodu District, Linfen, 041004 Shanxi China
| |
Collapse
|
14
|
Li X, Chai Y, Yang H, Tian Z, Li C, Xu R, Shi C, Zhu F, Zeng Y, Deng X, Wang P, Cheng Y. Isolation and comparative proteomic analysis of mitochondria from the pulp of ripening citrus fruit. HORTICULTURE RESEARCH 2021; 8:31. [PMID: 33518707 PMCID: PMC7848011 DOI: 10.1038/s41438-021-00470-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 05/03/2023]
Abstract
Mitochondria are crucial for the production of primary and secondary metabolites, which largely determine the quality of fruit. However, a method for isolating high-quality mitochondria is currently not available in citrus fruit, preventing high-throughput characterization of mitochondrial functions. Here, based on differential and discontinuous Percoll density gradient centrifugation, we devised a universal protocol for isolating mitochondria from the pulp of four major citrus species, including satsuma mandarin, ponkan mandarin, sweet orange, and pummelo. Western blot analysis and microscopy confirmed the high purity and intactness of the isolated mitochondria. By using this protocol coupled with a label-free proteomic approach, a total of 3353 nonredundant proteins were identified. Comparison of the four mitochondrial proteomes revealed that the proteins commonly detected in all proteomes participate in several typical metabolic pathways (such as tricarboxylic acid cycle, pyruvate metabolism, and oxidative phosphorylation) and pathways closely related to fruit quality (such as γ-aminobutyric acid (GABA) shunt, ascorbate metabolism, and biosynthesis of secondary metabolites). In addition, differentially abundant proteins (DAPs) between different types of species were also identified; these were found to be mainly involved in fatty acid and amino acid metabolism and were further confirmed to be localized to the mitochondria by subcellular localization analysis. In summary, the proposed protocol for the isolation of highly pure mitochondria from different citrus fruits may be used to obtain high-coverage mitochondrial proteomes, which can help to establish the association between mitochondrial metabolism and fruit storability or quality characteristics of different species and lay the foundation for discovering novel functions of mitochondria in plants.
Collapse
Affiliation(s)
- Xin Li
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yingfang Chai
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hongbin Yang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhen Tian
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chengyang Li
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rangwei Xu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chunmei Shi
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Feng Zhu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yunliu Zeng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiuxin Deng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Pengwei Wang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yunjiang Cheng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
15
|
Sun L, Li C, Zhu J, Jiang C, Li Y, Ge Y. Influences of postharvest ATP treatment on storage quality and enzyme activity in sucrose metabolism of Malus domestica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:87-94. [PMID: 32919213 DOI: 10.1016/j.plaphy.2020.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The respiratory metabolism of apples remains vigorous after harvest, which can accelerate the consumption of sugar, organic acid, and other substances, thus leading to a decline in quality. The influence of postharvest ATP treatment on the changes of quality parameters and sucrose metabolism-related enzyme activity in apples was investigated in this study. The results showed that applying ATP effectively repressed the respiratory rate and weight loss and maintained higher levels of soluble solids content and flesh firmness in apples. In addition, ATP treatment enhanced succinate dehydrogenase, cytochrome oxidase, sucrose phosphate synthase, and sucrose synthase synthesis activities and reduced neutral invertase, acid invertase, and sucrose synthase cleavage activities in apples. These findings suggest that applying ATP after harvest could improve the internal quality of apples by suppressing the respiratory rate and modulating sucrose metabolism.
Collapse
Affiliation(s)
- Lei Sun
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Canying Li
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China.
| | - Jie Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Chaonan Jiang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yihan Li
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yonghong Ge
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China.
| |
Collapse
|
16
|
Xiao Y, Zhu Q, Liu X, Jiang M, Hao H, Zhu H, Cowan PJ, He X, Liu Q, Zhou S, Liu Z. High-fat diet selectively decreases bone marrow lin - /CD117 + cell population in aging mice through increased ROS production. J Tissue Eng Regen Med 2020; 14:884-892. [PMID: 32337800 DOI: 10.1002/term.3047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/03/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022]
Abstract
Bone marrow (BM) stem cells (BMSCs) are an important source for cell therapy. The outcome of cell therapy could be ultimately associated with the number and function of donor BMSCs. The present study was to evaluate the effect of long-term high-fat diet (HFD) on the population of BMSCs and the role of reactive oxygen species (ROS) in aging mice. Forty-week-old male C57BL/6 mice were fed with HFD for 3 months with regular diet as control. Experiments were repeated when ROS production was reduced in mice treated with N-acetylcysteine (NAC) or using mice overexpressing antioxidant enzyme network (AON) of superoxide dismutase (SOD)1, SOD3, and glutathione peroxidase. BM and blood cells were analyzed with flowcytometry for lineage negative (lin- ) and Sca-1+ , or lin- /CD117+ , or lin- /CD133+ cells. Lin- /CD117+ cell population was significantly decreased with increased intracellular ROS and apoptosis and decreased proliferation in BM, not in blood, in HFD-treated mice without change for Sca-1+ or CD133+ cell populations in BM or blood. NAC treatment or AON overexpression effectively prevented HFD-induced intracellular ROS production and reduction of BM lin- /CD117+ population. These data suggested that long-term HFD selectively decreased BM lin- /CD117+ cell population in aging mice through increased ROS production.
Collapse
Affiliation(s)
- Yichao Xiao
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Qingyi Zhu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Xuanyou Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Meng Jiang
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Hua Zhu
- Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, USA
| | - Peter J Cowan
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Immunology Research Centre, St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Qiming Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
17
|
Zhao Y, Xu G, Li H, Chang M, Guan Y, Li Y, Wu W, Yao S. Overexpression of endogenous lipoic acid synthase attenuates pulmonary fibrosis induced by crystalline silica in mice. Toxicol Lett 2020; 323:57-66. [PMID: 32017981 DOI: 10.1016/j.toxlet.2020.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 02/05/2023]
Abstract
Oxidative stress and inflammatory processes are proposed to mediate the development of silicosis. However, antioxidant therapy has not produced consistent results during the treatment of silicosis. α-Lipoic acid synthesized by lipoic acid synthase is a powerful anti-oxidant and helps protect mitochondria. Thus far, the effect of endogenous α-Lipoic acid on silicosis has not been elucidated yet. We established an experimental model of silicosis with wildtype and LiasH/H mice, a new antioxidant mouse model which has overexpressed Lias gene (∼150 %) relative to its wild type counterpart. We systemically examined main pathological changes of pulmonary fibrosis, and explored α-lipoic acid effects on oxidative stress, inflammatory and pulmonary fibrosis biomarkers in silica-instillated mice. In LiasH/H mice over-expression of lipoic acid alleviated the severity of major pathological alterations in the early stage of pulmonary fibrosis induced by silica compared with wild type mice. Silica significantly increased oxidative stress in both wild type and LiasH/H mice. The antioxidant defense was strengthen including increased NRF2 and LIAS production in LiasH/H mice. Relieved oxidative stress resulted in decreased inflammatory response and secretion of chemokines. LiasH/H mice reduced chronic inflammatory response and inhibition of NF-κB activity after silica instillation. The LiasH/H mouse model overexpression of lipoic acid synthase gene retarded the development of silica-induced pulmonary fibrosis. Strengthen antioxidant defense by increased lipoic acid synthase is a potential strategy for protection against silica-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Yingzheng Zhao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063009, PR China; School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Haibin Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063009, PR China; School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Meiyu Chang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Yi Guan
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063009, PR China
| | - Yuchun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Sanqiao Yao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063009, PR China; School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China.
| |
Collapse
|