1
|
Ma S, Li Y, Peng Y, Wang W. Toward commercial applications of LED and laser-induced fluorescence techniques for food identity, quality, and safety monitoring: A review. Compr Rev Food Sci Food Saf 2023; 22:3620-3646. [PMID: 37458292 DOI: 10.1111/1541-4337.13196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 09/13/2023]
Abstract
The assessment of food safety and quality is a matter of paramount importance, especially considering the challenges posed by climate change. Convenient, eco-friendly, and non-destructive techniques have attracted extensive attention in the food industry because they can retain food safety and quality. Fluorescence radiation, the process by which fluorophore emits light upon the absorption of ultraviolet or visible light, offers the advantages of high sensitivity and selectivity. The use of excitation-emission matrix (EEM) has been extensively explored in the food industry, but on-site detection of EEMs remain a challenge. To address this limitation, laser-induced fluorescence (LIF) and light emitting diode-induced fluorescence (LED-IF) have been implemented in many cases to facilitate the transition of fluorescence measurements from the laboratory to commercial applications. This review provides an overview of the application of commercially available LIF/LED-IF devices for non-destructive food measurement and recent studies that focus on the development of LIF/LED-IF devices for commercial applications. These studies were categorized into two stages: the preliminary exploration stage, which emphasizes the selection of an appropriate excitation wavelength based on the combination of EEM and chemometrics, and the pre-application stage, where experiments were conducted on scouting with specific excitation wavelength. Although commercially available devices have emerged in many research fields, only a limited number have been reported for use in the food industry. Future studies should focus on enhancing the diversity of test samples and parameters that can be measured by a single device, exploring the application of LIF techniques for detecting low-concentration substances in food, investigating more quantitative approaches, and developing embedded computing devices.
Collapse
Affiliation(s)
- Shaojin Ma
- College of Engineering, China Agricultural University, Beijing, China
| | - Yongyu Li
- College of Engineering, China Agricultural University, Beijing, China
| | - Yankun Peng
- College of Engineering, China Agricultural University, Beijing, China
| | - Wei Wang
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Liu S, Jiang S, Yao Z, Liu M. Aflatoxin detection technologies: recent advances and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79627-79653. [PMID: 37322403 DOI: 10.1007/s11356-023-28110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Aflatoxins have posed serious threat to food safety and human health. Therefore, it is important to detect aflatoxins in samples rapidly and accurately. In this review, various technologies to detect aflatoxins in food are discussed, including conventional ones such as thin-layer chromatography (TLC), high performance liquid chromatography (HPLC), enzyme linked immunosorbent assay (ELISA), colloidal gold immunochromatographic assay (GICA), radioimmunoassay (RIA), fluorescence spectroscopy (FS), as well as emerging ones (e.g., biosensors, molecular imprinting technology, surface plasmon resonance). Critical challenges of these technologies include high cost, complex processing procedures and long processing time, low stability, low repeatability, low accuracy, poor portability, and so on. Critical discussion is provided on the trade-off relationship between detection speed and detection accuracy, as well as the application scenario and sustainability of different technologies. Especially, the prospect of combining different technologies is discussed. Future research is necessary to develop more convenient, more accurate, faster, and cost-effective technologies to detect aflatoxins.
Collapse
Affiliation(s)
- Shenqi Liu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| | - Minhua Liu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
3
|
Kifle E, Loiko P, Berthelot T, Rault T, Bodin L, Pau F, Recoque G, Georges T, Camy P. Deep-red double-clad fiber laser at 717 nm. OPTICS LETTERS 2023; 48:1494-1497. [PMID: 36946961 DOI: 10.1364/ol.485333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
We report on a double-clad fiber laser operating on the 3P0 → 3F4 Pr3+ transition (in the deep-red spectral range) pumped by a GaN diode laser at ∼442 nm. It employs a 0.8-mol% PrF3-doped ZBLAN double-clad fiber with a 7.5-µm core, a double D-shaped inner cladding, and a length of 3.0 m. The laser delivers a maximum output power of 0.71 W at 716.7 nm with a slope efficiency of 9.0% (versus the launched pump power) and a laser threshold of 0.90 W. The laser emission is partially polarized. The laser performance is simulated providing a guideline for watt-level deep-red fiber laser sources.
Collapse
|
4
|
Hu F, Hu J, Dai R, Guan Y, Shen X, Gao B, Wang K, Liu Y, Yao X. Selection of characteristic wavelengths using SMA for laser induced fluorescence spectroscopy of power transformer oil. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122140. [PMID: 36450191 DOI: 10.1016/j.saa.2022.122140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
As the core component of the power system, the accurate analysis of its state and fault type is very important for the maintenance and repair of the transformer. The detection method represented by the transformer oil dissolved gas has the disadvantages of complicated processing steps and high operation requirements. Here, laser induced fluorescence (LIF) spectroscopy was applied for the analysis of transformer oil. Specifically, the slime mould algorithm (SMA) was used to select the characteristic wavelengths of the transformer oil fluorescence spectrum, and on this basis, a transformer fault diagnosis model was constructed. First, samples of transformer oil in different states were collected, and the fluorescence spectrum of the transformer oil was obtained with the help of the LIF acquisition system. Then, different spectral pretreatments were performed on the original fluorescence spectra, and it was found that the pretreatment effect of Savitzky-Golay smoothing (SG) was the best. Then, SMA was used to screen the characteristic wavelengths of the fluorescence spectrum, and 137 characteristic wavelengths were screened out to realize the accurate identification of the fluorescence spectrum of the transformer oil. In addition, the advantages of SMA for feature wavelength screening of transformer oil fluorescence spectra were demonstrated by comparing with traditional feature extraction strategies using principal components analysis (PCA). The research results show that it is effective to use SMA to screen the characteristic wavelengths of the LIF spectroscopy of transformer oil and use it for transformer fault diagnosis, which is of great significance for promoting the development of transformer fault diagnosis technology.
Collapse
Affiliation(s)
- Feng Hu
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
| | - Jian Hu
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China.
| | - Rongying Dai
- Langxi Power Supply Company, State Grid Anhui Electric Power Co. Ltd., Xuancheng 242100, Anhui, China
| | - Yuqi Guan
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
| | - Xianfeng Shen
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
| | - Bo Gao
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
| | - Kun Wang
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
| | - Yu Liu
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
| | - Xiaokang Yao
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
| |
Collapse
|
5
|
Qiao K, Xia J, Wu L. Iron(Ⅲ)-modified resin YZS60 combined with laser-induced fluorescence spectra for the detection of phosphorus after solid-phase extraction in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Bartolić D, Mutavdžić D, Carstensen JM, Stanković S, Nikolić M, Krstović S, Radotić K. Fluorescence spectroscopy and multispectral imaging for fingerprinting of aflatoxin-B 1 contaminated (Zea mays L.) seeds: a preliminary study. Sci Rep 2022; 12:4849. [PMID: 35318372 PMCID: PMC8940939 DOI: 10.1038/s41598-022-08352-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
Cereal seeds safety may be compromised by the presence of toxic contaminants, such as aflatoxins. Besides being carcinogenic, they have other adverse health effects on humans and animals. In this preliminary study, we used two non-invasive optical techniques, optical fiber fluorescence spectroscopy and multispectral imaging (MSI), for discrimination of maize seeds naturally contaminated with aflatoxin B1 (AFB1) from the uncontaminated seeds. The AFB1-contaminated seeds exhibited a red shift of the emission maximum position compared to the control samples. Using linear discrimination analysis to analyse fluorescence data, classification accuracy of 100% was obtained to discriminate uncontaminated and AFB1-contaminated seeds. The MSI analysis combined with a normalized canonical discriminant analysis, provided spectral and spatial patterns of the analysed seeds. The AFB1-contaminated seeds showed a 7.9 to 9.6-fold increase in the seed reflectance in the VIS region, and 10.4 and 12.2-fold increase in the NIR spectral region, compared with the uncontaminated seeds. Thus the MSI method classified successfully contaminated from uncontaminated seeds with high accuracy. The results may have an impact on development of spectroscopic non-invasive methods for detection of AFs presence in seeds, providing valuable information for the assessment of seed adulteration in the field of food forensics and food safety.
Collapse
Affiliation(s)
- Dragana Bartolić
- University of Belgrade, Institute for Multidisciplinary Research, P.O. Box 33, 11030, Belgrade, Serbia
| | - Dragosav Mutavdžić
- University of Belgrade, Institute for Multidisciplinary Research, P.O. Box 33, 11030, Belgrade, Serbia
| | | | - Slavica Stanković
- Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11185, Belgrade, Serbia
| | - Milica Nikolić
- Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11185, Belgrade, Serbia
| | - Saša Krstović
- Department of Animal Science, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Ksenija Radotić
- University of Belgrade, Institute for Multidisciplinary Research, P.O. Box 33, 11030, Belgrade, Serbia.
| |
Collapse
|
7
|
Zhu H, Yang L, Gao J, Gao M, Han Z. Quantitative detection of Aflatoxin B1 by subpixel CNN regression. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120633. [PMID: 34862137 DOI: 10.1016/j.saa.2021.120633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/23/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Aflatoxin is a highly toxic substance dispersed in peanuts, which seriously harms the health of humans and animals. In this paper, we propose a new method for aflatoxin B1(AFB1) detection inspired by quantitative remote sensing. Firstly, we obtained the relative content of AFB1 at the sub-pixel level by subpixel decomposition (endmember extraction, nonnegative matrix decomposition). Then we modified the transfer learning models (LeNet5, AlexNet, VGG16, and ResNet18) to construct a deep learning regression network for quantitative detection of AFB1. There are 67,178 pixels used for training and 67,164 pixels used for testing. After subpixel decomposition, each aflatoxin pixel was determined to contain content, and each pixel had 400 hyperspectral values (415-799 nm). The experimental results showed that, among the four models, the modified ResNet18 model achieved the best effect, with R2 of 0.8898, RMSE of 0.0138, and RPD of 2.8851. Here, we implemented a sub-pixel model for quantitative AFB1 detection and proposed a regression method based on deep learning. Meanwhile, the modified convolution classification model has high predictive ability and robustness. This method provides a new scheme in designing the sorting machine and has practical value.
Collapse
Affiliation(s)
- Hongfei Zhu
- School of Computer Science and Technology, Tiangong University, Tianjin 300387, China.
| | - Lianhe Yang
- School of Computer Science and Technology, Tiangong University, Tianjin 300387, China
| | - Jiyue Gao
- College of Science and Information, Qingdao Agricultural University, Qingdao 266109, China
| | - Mei Gao
- School of Humanities, Tiangong University, Tianjin 300387, China
| | - Zhongzhi Han
- College of Science and Information, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
8
|
He X, Zhang Y, Yang X, Chen M, Pang Y, Shen F, Fang Y, Liu Q, Hu Q. Estimating bulk optical properties of AFB 1 contaminated edible oils in 300-900 nm by combining double integrating spheres technique with laser induced fluorescence spectroscopy. Food Chem 2021; 375:131666. [PMID: 34848090 DOI: 10.1016/j.foodchem.2021.131666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/10/2021] [Accepted: 11/20/2021] [Indexed: 12/24/2022]
Abstract
An optical detection platform based on laser induced spectroscopy and double integrating spheres techniques was developed to obtain absorption (μa), reduced scattering coefficients (μ's) and fluorescence intensity of oil. The validation experiment carried on liquid phantoms showed that the developed system could achieve high linearity, and the results of spectra analysis indicated that the fluorescence intensity has a significant negative correlation with both μa and μ's. A total of 1620 oils with six categories were detected. The reason for the difference of fluorescence and μa spectra was analyzed by comparing the measured chlorophyll, polyphenol and α-tocopherol contents. Linear discriminant analysis combined with principal component analysis based on fluorescence and μa spectra was employed, to calibrate the AFB1 classification models. The discrimination results manifested that by integrating μa with fluorescence signal, the correct classification rate could be improved by more than 10%, and the false negative rate was greatly reduced.
Collapse
Affiliation(s)
- Xueming He
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yue Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaoyun Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Min Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yanyan Pang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fei Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Qin Liu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Qiuhui Hu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
9
|
Soares Mateus AR, Barros S, Pena A, Sanches Silva A. Mycotoxins in Pistachios ( Pistacia vera L.): Methods for Determination, Occurrence, Decontamination. Toxins (Basel) 2021; 13:682. [PMID: 34678975 PMCID: PMC8538126 DOI: 10.3390/toxins13100682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/28/2022] Open
Abstract
The consumption of pistachios (Pistacia vera L.) has been increasing, given their important benefit to human health. In addition to being an excellent nutritional source, they have been associated with chemical hazards, such as mycotoxins, resulting in fungal contamination and its secondary metabolism. Aflatoxins (AFs) are the most common mycotoxins in pistachio and the most toxic to humans, with hepatotoxic effects. More mycotoxins such as ochratoxin A (OTA), fumonisins (FBs), zearalenone (ZEA) and trichothecenes (T2, HT2 and DON) and emerging mycotoxins have been involved in nuts. Because of the low levels of concentration and the complexity of the matrix, the determination techniques must be very sensitive. The present paper carries out an extensive review of the state of the art of the determination of mycotoxins in pistachios, concerning the trends in analytical methodologies for their determination and the levels detected as a result of its contamination. Screening methods based on immunoassays are useful due to their simplicity and rapid response. Liquid chromatography (LC) is the gold standard with new improvements to enhance accuracy, precision and sensitivity and a lower detection limit. The reduction of Aspergillus' and aflatoxins' contamination is important to minimize the public health risks. While prevention, mostly in pre-harvest, is the most effective and preferable measure to avoid mycotoxin contamination, there is an increased number of decontamination processes which will also be addressed in this review.
Collapse
Affiliation(s)
- Ana Rita Soares Mateus
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal; (A.R.S.M.); (A.S.S.)
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal;
| | - Sílvia Barros
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal;
| | - Angelina Pena
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal; (A.R.S.M.); (A.S.S.)
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal
| | - Ana Sanches Silva
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal; (A.R.S.M.); (A.S.S.)
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal;
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, 55142 Oporto, Portugal
| |
Collapse
|
10
|
Zhu M, Long Y, Chen Y, Huang Y, Tang L, Gan B, Yu Q, Xie J. Fast determination of lipid and protein content in green coffee beans from different origins using NIR spectroscopy and chemometrics. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Leng T, Li F, Chen Y, Tang L, Xie J, Yu Q. Fast quantification of total volatile basic nitrogen (TVB-N) content in beef and pork by near-infrared spectroscopy: Comparison of SVR and PLS model. Meat Sci 2021; 180:108559. [PMID: 34049182 DOI: 10.1016/j.meatsci.2021.108559] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022]
Abstract
With application of PLS regression and SVR, quantitation models of near infrared diffuse reflectance spectroscopy were established for the first time to predict the content of volatile basic nitrogen (TVB-N) content in beef and pork. Results indicated that the best PLS model based on the raw spectra showed an excellent prediction performance with a high value of correlation coefficient at 0.9366 and a low root-mean-square error of prediction value of 3.15, and none of those pretreatment methods could improve the prediction performance of the PLS model. Moreover, comparatively the model obtained by SVR showed inferior quantitative predictive ability (R = 0.8314, RMSEP = 4.61). Analysis on VIP selected wavelengths inferred amino bond containing compounds and lipid may play important roles in the development of PLS models for TVB-N. Results from this study demonstrated the potential of using NIR spectroscopy and PLS for the prediction of TVB-N in beef and pork while more efforts are required to improve the performance of SVR models.
Collapse
Affiliation(s)
- Tuo Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Feng Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China.
| | - Lijun Tang
- Food Inspection and Testing Institute of Jiangxi Province, Nanchang 330046, People's Republic of China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| |
Collapse
|
12
|
Du Q, Zhu M, Shi T, Luo X, Gan B, Tang L, Chen Y. Adulteration detection of corn oil, rapeseed oil and sunflower oil in camellia oil by in situ diffuse reflectance near-infrared spectroscopy and chemometrics. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107577] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Luo W, Liu H, Liu X, Liu L, Zhao W. Biocompatibility nanoprobe of MXene N-Ti 3C 2 quantum dot/Fe 3+ for detection and fluorescence imaging of glutathione in living cells. Colloids Surf B Biointerfaces 2021; 201:111631. [PMID: 33639506 DOI: 10.1016/j.colsurfb.2021.111631] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 11/29/2022]
Abstract
MXene quantum dots have attracted much attention due to their great optical performance and excellent water solubility. Glutathione (GSH) plays a key role in living cells. In this study, a biocompatibility nanoprobe was prepared for detecting intracellular GSH based on MXene N-Ti3C2 quantum dots (N-Ti3C2 QDs). The N-Ti3C2 QDs act as the fluorescence reporters and the ferric iron (Fe3+) as the quenchers based on nonradiative electron-hole annihilation. When Fe3+ encounters the amino group of N-Ti3C2 QDs, the electrons of N-Ti3C2 QDs in the excited state will transfer to the half-filled 3d orbitals of Fe3+, leading to the fluorescence quenching of N-Ti3C2 QDs. When the N-Ti3C2 QDs/Fe3+ nanoprobe acts on the cancer cell MCF-7, the abundant GSH in the cancer cells can reduce Fe3+ to Fe2+, which will restore the fluorescence of N-Ti3C2 QDs. The N-Ti3C2 QDs/Fe3+ nanoprobe displays a high sensitivity for GSH with a detection limit of 0.17 μM in range of 0.5-100 μM. It becomes a promising probe for detecting and showing cellular imaging of GSH in MCF-7 cells. The N-Ti3C2 QDs/Fe3+ nanoprobe might provide a new way for imaging-guided precision cancer diagnosis.
Collapse
Affiliation(s)
- Wen Luo
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Huaxiao Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xuan Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Lixiao Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
14
|
Yan C, Wang Q, Yang Q, Wu W. Recent Advances in Aflatoxins Detection Based on Nanomaterials. NANOMATERIALS 2020; 10:nano10091626. [PMID: 32825088 PMCID: PMC7558307 DOI: 10.3390/nano10091626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/31/2022]
Abstract
Aflatoxins are the secondary metabolites of Aspergillus flavus and Aspergillus parasiticus and are highly toxic and carcinogenic, teratogenic and mutagenic. Ingestion of crops and food contaminated by aflatoxins causes extremely serious harm to human and animal health. Therefore, there is an urgent need for a selective, sensitive and simple method for the determination of aflatoxins. Due to their high performance and multipurpose characteristics, nanomaterials have been developed and applied to the monitoring of various targets, overcoming the limitations of traditional methods, which include process complexity, time-consuming and laborious methodologies and the need for expensive instruments. At the same time, nanomaterials provide general promise for the detection of aflatoxins with high sensitivity, selectivity and simplicity. This review provides an overview of recent developments in nanomaterials employed for the detection of aflatoxins. The basic aspects of aflatoxin toxicity and the significance of aflatoxin detection are also reviewed. In addition, the development of different biosensors and nanomaterials for aflatoxin detection is introduced. The current capabilities and limitations and future challenges in aflatoxin detection and analysis are also addressed.
Collapse
Affiliation(s)
- Chunlei Yan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (C.Y.); (Q.W.)
| | - Qi Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (C.Y.); (Q.W.)
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (C.Y.); (Q.W.)
- Correspondence: (Q.Y.); (W.W.)
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (C.Y.); (Q.W.)
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- Correspondence: (Q.Y.); (W.W.)
| |
Collapse
|
15
|
Tang L, Huang Y, Lin C, Qiu B, Guo L, Luo F, Lin Z. Highly sensitive and selective aflatoxin B 1 biosensor based on Exonuclease I-catalyzed target recycling amplification and targeted response aptamer-crosslinked hydrogel using electronic balances as a readout. Talanta 2020; 214:120862. [PMID: 32278415 DOI: 10.1016/j.talanta.2020.120862] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022]
Abstract
The biosensors based on aptamer based stimuli-responsive hydrogels have the characters of high specificity, good stability, portability. Electronic balance is one of the most accurate equipment and can be reached nearly in all labs. Aflatoxin B1 (AFB1) is highly toxic and carcinogenic to humans and animals, it is necessary to develop simple and convenient detection method to apply in resource limited area. In this study, a novel strategy for quantitative detection of AFB1 has been developed by combining the high selectivity and convenient of target-responsive hydrogel and the simple of using electronic balance as readout devices. The AFB1 target responsive double crosslinked hydrogel has been constructed using linear hyaluronic acid grafted single-stranded DNA complex as the backbone, AFB1 aptamer and polyethyleneimine as crosslinkers. And platinum nanoparticles (PtNPs) had been embedded in the hydrogel firstly. The present of AFB1 can bind with the aptamer with high affinity and cause the releasing of aptamer from hydrogel. The addition of Exo I can specifically recognize and cleave the aptamer in AFB1-aptamer complex, resulting in the releasing of AFB1, which can react with the hydrogel again, thereby achieving the target cycle. By this means, the hydrogel will collapse and many pre-embedded PtNPs can be released. The transferring of the released PtNPs to a drainage device which contains H2O2 can results in the increasing of the internal pressure since the production of oxygen through the catalytic decomposition of H2O2 by PtNPs has low solubility. Which will cause the discharging of water from the system and this can be collected and weighed by an electronic balance easily. The weight of water has a linear relationship with AFB1 concentration. Under 30 min catalytic time, the linear range is 31.2 μg/kg - 6.2 mg/kg with the detection limit of 9.4 μg/kg (S/N = 3). The proposed method was successfully applied to the detection of AFB1 in peanut samples.
Collapse
Affiliation(s)
- Linyue Tang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yaying Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Longhua Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
16
|
Singh J, Mehta A. Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Sci Nutr 2020; 8:2183-2204. [PMID: 32405376 PMCID: PMC7215233 DOI: 10.1002/fsn3.1474] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/24/2023] Open
Abstract
Quantification of mycotoxins in foodstuffs is extremely difficult as a limited amount of toxins are known to be presented in the food samples. Mycotoxins are secondary toxic metabolites, made primarily by fungal species, contaminating feeds and foods. Due to the presence in globally used grains, it is an unpreventable problem that causes various acute and chronic impacts on human and animal health. Over the previous few years, however, progress has been made in mycotoxin analysis studies. Easier techniques of sample cleanup and advanced chromatographic approaches have been developed, primarily high-performance liquid chromatography. Few extremely sophisticated and adaptable tools such as high-resolution mass spectrometry and gas chromatography-tandem MS/MS have become more important. In addition, Immunoassay, Advanced quantitative techniques are now globally accepted for mycotoxin analysis. Thus, this review summarizes these traditional and highly advance methods and their characteristics for evaluating mycotoxins.
Collapse
Affiliation(s)
- Jyoti Singh
- Department of Integrative BiologySchool of Biosciences and TechnologyVellore Institute of TechnologyVelloreIndia
| | - Alka Mehta
- Department of Integrative BiologySchool of Biosciences and TechnologyVellore Institute of TechnologyVelloreIndia
| |
Collapse
|