1
|
Mi W, Liu S. Tetrodotoxin and the state-of-the-art progress of its associated analytical methods. Front Microbiol 2024; 15:1413741. [PMID: 39290516 PMCID: PMC11407752 DOI: 10.3389/fmicb.2024.1413741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Tetrodotoxin (TTX), which is found in various marine organisms, including pufferfish, shellfish, shrimp, crab, marine gastropods, and gobies, is an effective marine toxin and the cause of many seafood poisoning incidents. Owing to its toxicity and threat to public health, the development of simple, rapid, and efficient analytical methods to detect TTX in various food matrices has garnered increasing interest worldwide. Herein, we reviewed the structure and properties, origin and sources, toxicity and poisoning, and relevant legislative measures of TTX. Additionally, we have mainly reviewed the state-of-the-art progress of analytical methods for TTX detection in the past five years, such as bioassays, immunoassays, instrumental analysis, and biosensors, and summarized their advantages and limitations. Furthermore, this review provides an in-depth discussion of the most advanced biosensors, including cell-based biosensors, immunosensors, and aptasensors. Overall, this study provides useful insights into the future development and wide application of biosensors for TTX detection.
Collapse
Affiliation(s)
- Wei Mi
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Sha Liu
- School of Public Health, Binzhou Medical University, Yantai, China
| |
Collapse
|
2
|
Reverté J, Rambla-Alegre M, Sanchez-Henao A, Mandalakis M, Peristeraki P, Molgó J, Diogène J, Sureda FX, Campàs M. Toxicity Equivalency Factors for Tetrodotoxin Analogues Determined with Automated Patch Clamp on Voltage-Gated Sodium Channels in Neuro-2a Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18192-18200. [PMID: 39102522 DOI: 10.1021/acs.jafc.4c04321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Tetrodotoxin (TTX) is a potent marine neurotoxin, responsible for numerous poisoning incidents and some human fatalities. To date, more than 30 TTX analogues have been identified, but their individual toxicities and roles in poisoning remain largely unknown. In this work, the toxicity equivalency factors (TEFs) of five TTX analogues were determined by assessing the blockade of voltage-gated sodium channels in Neuro-2a cells using automated patch clamp (APC). All TTX analogues were less toxic than TTX. The derived TEFs were applied to the individual TTX analogues concentrations measured in pufferfish samples, using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). A comparison of these results with those obtained from APC analysis demonstrated that TEFs can be effectively used to translate LC-MS/MS analytical data into meaningful toxicological information. This is the first study to utilize APC device for the toxicological assessment of TTX analogues, highlighting its potential as a bioanalytical tool for seafood safety management and human health protection.
Collapse
Affiliation(s)
- Jaume Reverté
- IRTA, Ctra, Poble Nou km 5.5, 43540 La Ràpita, Spain
- Basic Medical Sciences Department, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), C/St. Llorenç 21, 43201 Reus, Spain
| | | | - Andres Sanchez-Henao
- IRTA, Ctra, Poble Nou km 5.5, 43540 La Ràpita, Spain
- University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR), 71003 Heraklion, Greece
| | - Panagiota Peristeraki
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research (HCMR), 71003 Heraklion, Greece
| | - Jordi Molgó
- French Alternative Energies and Atomic Energy Commission (CEA), University of Paris-Saclay, INRAE, DMTS, SIMoS, EMR CNRS 9004, 91191 Gif sur Yvette, France
| | - Jorge Diogène
- IRTA, Ctra, Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Francesc X Sureda
- Basic Medical Sciences Department, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), C/St. Llorenç 21, 43201 Reus, Spain
| | - Mònica Campàs
- IRTA, Ctra, Poble Nou km 5.5, 43540 La Ràpita, Spain
| |
Collapse
|
3
|
Lin C, Li Q, Liu D, Feng Q, Zhou H, Shi B, Zhang X, Hu Y, Jiang X, Sun X, Wang D. Recent research progress in tetrodotoxin detection and quantitative analysis methods. Front Chem 2024; 12:1447312. [PMID: 39206441 PMCID: PMC11349515 DOI: 10.3389/fchem.2024.1447312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Tetrodotoxin (TTX) is a highly potent and widely distributed ion-channel marine neurotoxin; it has no specific antidote and poses a great risk to human health. Therefore, detecting and quantifying TTX to effectively implement prevention strategies is important for food safety. The development of novel and highly sensitive, highly specific, rapid, and simple techniques for trace TTX detection has attracted widespread attention. This review summarizes the latest advances in the detection and quantitative analysis of TTX, covering detection methods based on biological and cellular sensors, immunoassays and immunosensors, aptamers, and liquid chromatography-mass spectrometry. It further discusses the advantages and applications of various detection technologies developed for TTX and focuses on the frontier areas and development directions of TTX detection, providing relevant information for further investigations.
Collapse
Affiliation(s)
- Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dong Liu
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Bohe Shi
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Xinxin Zhang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yurui Hu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Xinmiao Jiang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Xiaoming Sun
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
4
|
Bian Y, Zhang Y, Feng XS, Gao HY. Marine toxins in seafood: Recent updates on sample pretreatment and determination techniques. Food Chem 2024; 438:137995. [PMID: 38029684 DOI: 10.1016/j.foodchem.2023.137995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023]
Abstract
Marine toxins can lead to varying degrees of human poisoning, often resulting in fatal symptoms and causing significant economic losses in seafood-producing regions. To gain a deeper comprehension of the role of marine toxins in seafood and their impact on the environment, it is imperative to develop rapid, cost-effective, environmentally friendly, and efficient methods for sample pretreatment and determination to mitigate adverse impacts of marine toxins. This review presents a comprehensive overview of advancements made in sample pretreatment and determination techniques for marine toxins since 2017. The advantages and disadvantages of various technologies were critically examined. Additionally, the current challenges and future development strategies for the analysis of marine toxins are provided.
Collapse
Affiliation(s)
- Yu Bian
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Hui-Yuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
5
|
Ulman A, Abd Rabou AFN, Al Mabruk S, Bariche M, Bilecenoğlu M, Demirel N, Galil BS, Hüseyinoğlu MF, Jimenez C, Hadjioannou L, Kosker AR, Peristeraki P, Saad A, Samaha Z, Stoumboudi MT, Temraz TA, Karachle PK. Assessment of Human Health Impacts from Invasive Pufferfish (Attacks, Poisonings and Fatalities) across the Eastern Mediterranean. BIOLOGY 2024; 13:208. [PMID: 38666820 PMCID: PMC11048499 DOI: 10.3390/biology13040208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
The silver-cheeked toadfish Lagocephalus sceleratus (Gmelin 1789), and to a lesser degree the orange spotted toadfish Torquigener hypselogeneion (Bleeker, 1852), pose threats to human health from physical attacks and poisonings in the Eastern Mediterranean Sea. This study reviewed human health-related impacts resulting from these pufferfish, compiling and assessing records from online sources, the peer-reviewed literature, medical records, personal interviews, and observations across the Eastern Mediterranean in the years 2004 to 2023. A total of 198 events impacting human health were documented: 28 records of physical attacks, at least 144 non-lethal poisoning episodes, and 27 human fatalities resulting from consumption. The majority of the reported incidences occurred in Syria, Türkiye, and Lebanon. Most physical attacks occurred in summer, while most poisoning events occurred during winter. The number of recorded incidents greatly increased after 2019, especially with regard to poisonings, yet whether this is related to greater media attention, or to increased fish abundance is unclear. This is the first comprehensive study to collate findings on attacks, poisonings and fatalities caused by these pufferfish in the Mediterranean Sea, and may help in improving national health policies. We urge the continuation of national campaigns to caution residents and tourists of these species' high toxicities and potential aggressiveness.
Collapse
Affiliation(s)
- Aylin Ulman
- Mersea Marine Consulting, 48300 Fethiye, Türkiye;
| | | | - Sara Al Mabruk
- Nursing Department, Higher Institute of Science and Technology-Cyrene, Shahat 6036, Libya;
| | - Michel Bariche
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
| | - Murat Bilecenoğlu
- Department of Biology, Faculty of Science, Aydın Adnan Menderes University, 09010 Aydın, Türkiye;
| | - Nazli Demirel
- Institute of Marine Sciences and Management, Istanbul University, Fatih, 34134 Istanbul, Türkiye;
| | - Bella S. Galil
- The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, Tel Aviv 69978, Israel;
| | | | - Carlos Jimenez
- Enalia Physis Environmental Research Centre, 2101 Nicosia, Cyprus;
| | | | - Ali Rıza Kosker
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Türkiye;
| | - Panagiota Peristeraki
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, P.O. Box 2214, 71300 Heraklion, Greece;
| | - Adib Saad
- Directorate of Scientific Research and Publishing, Al-Manara University, Lattakia HQ28 RFM, Syria;
| | - Ziad Samaha
- General Fisheries Commission for the Mediterranean (GFCM—FAO), Palazzo Blumenstihl, Via Vittoria Colonna 1, 00193 Rome, Italy
| | - Maria Th. Stoumboudi
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 576 Vouliagmenis Ave., 16452 Argyroupoli, Greece;
| | - Tarek A. Temraz
- Department of Marine Sciences, Faculty of Science, Suez Canal University, Ismailia 8366004, Egypt;
| | - Paraskevi K. Karachle
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 576 Vouliagmenis Ave., 16452 Argyroupoli, Greece;
| |
Collapse
|
6
|
Liu S, Huo Y, Hu Z, Cao G, Gao Z. A label-free ratiometric fluorescent aptasensor based on a peroxidase-mimetic multifunctional ZrFe-MOF for the determination of tetrodotoxin. Mikrochim Acta 2023; 191:57. [PMID: 38153525 DOI: 10.1007/s00604-023-06118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023]
Abstract
A Fe/Zr bimetal-organic framework (ZrFe-MOF) is utilized to establish a ratiometric fluorescent aptasensor for the determination of tetrodotoxin (TTX). The multifunctional ZrFe-MOF possesses inherent fluorescence at 445 nm wavelength, peroxidase-mimetic activity, and specific recognition and adsorption capabilities for aptamers, owing to its organic ligand, and Fe and Zr nodes. The peroxidation of o-phenylenediamine (OPD) substrate generates fluorescent 2,3-diaminophenazine (OPDox) at 555 nm wavelength, thus quenching the inherent fluorescence of ZrFe-MOF because of the fluorescence resonance energy transfer (FRET) effect. TTX aptamers, which are absorbed on the material surface without immobilization or fluorescent labeling, inhibit the peroxidase-mimetic activity of ZrFe-MOF. It causes the decreased OPDox fluorescence at 555 nm wavelength and the inverse restoration of ZrFe-MOF fluorescence at 445 nm wavelength. With TTX, the aptamers specifically bind to TTX, triggering rigid complex release from ZrFe-MOF surface and reactivating its peroxidase-mimetic activity. Consequently, the two fluorescence signals exhibit opposite changes. Employing this ratiometric strategy, the determination of TTX is achieved with a detection limit of 0.027 ng/mL and a linear range of 0.05-500 ng/mL. This aptasensor also successfully determines TTX concentrations in puffer fish and clam samples, demonstrating its promising application for monitoring trace TTX in food safety.
Collapse
Affiliation(s)
- Sha Liu
- Binzhou Medical University, Yantai, 264003, China
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yapeng Huo
- Yantai Center for Disease Control and Prevention, Yantai, 264003, China
| | - Zhiyong Hu
- Binzhou Medical University, Yantai, 264003, China
| | - Gaofang Cao
- Binzhou Medical University, Yantai, 264003, China.
| | - Zhixian Gao
- Binzhou Medical University, Yantai, 264003, China.
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
7
|
Kosker AR, Karakus M, Katikou P, Dal İ, Durmus M, Ucar Y, Ayas D, Özogul F. Monthly Variation of Tetrodotoxin Levels in Pufferfish ( Lagocephalus sceleratus) Caught from Antalya Bay, Mediterranean Sea. Mar Drugs 2023; 21:527. [PMID: 37888462 PMCID: PMC10608123 DOI: 10.3390/md21100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
The silver-cheeked toadfish (Lagocephalus sceleratus), an invasive alien pufferfish species that has rapidly settled throughout the Mediterranean region, poses significant threats not only to native marine species and fisheries but also to public health due to the tetrodotoxin (TTX) they harbor. In this study, TTX concentrations in L. sceleratus from Antalya Bay in the Northeastern Mediterranean Sea were investigated using Q-TOF-LC-MS on a monthly basis over a one-year period. Pufferfish were caught by angling from May 2018 to April 2019. The TTX levels in three different tissues (gonads, liver, and muscle) of 110 pufferfish in total were determined in both male and female individuals caught for 11 months. The highest TTX mean levels generally occurred in the gonads and the lowest in the muscle samples. As regards the maximum TTX contents, the highest concentrations determined were 68.2, 34.2, and 7.8 µg/g in the gonad, liver, and muscle tissues, respectively. The highest levels were generally observed in late autumn to winter (especially in November and December) in all tissues from both genders. Female individuals were generally found to be more toxic than male individuals. The TTX levels found confirm that the consumption of L. sceleratus from Antalya Bay remains dangerous throughout the year, and thus L. sceleratus constantly constitutes an important risk source for public health.
Collapse
Affiliation(s)
- Ali Rıza Kosker
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey; (M.D.); (F.Ö.)
| | - Merve Karakus
- Mediterranean Fisheries Research Production and Training Institute, Demre Unit, 07570 Antalya, Turkey; (M.K.); (İ.D.)
| | - Panagiota Katikou
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organization—DIMITRA, Ktima Thermis, 57001 Thessaloniki, Greece
| | - İsmail Dal
- Mediterranean Fisheries Research Production and Training Institute, Demre Unit, 07570 Antalya, Turkey; (M.K.); (İ.D.)
| | - Mustafa Durmus
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey; (M.D.); (F.Ö.)
| | - Yılmaz Ucar
- Vocational School of Aladag, Department of Forestry, Cukurova University, 01720 Adana, Turkey;
| | - Deniz Ayas
- Fisheries Faculty, Mersin University, 33169 Mersin, Turkey;
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey; (M.D.); (F.Ö.)
- Biotechnology Research and Application Center, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
8
|
Zhong Y, Zhang X, Yang Q, Wang Q. Hepatorenal Toxicity after 7-Day Oral Administration of Low-Dose Tetrodotoxin and Its Distribution in the Main Tissues in Mice. Toxins (Basel) 2023; 15:564. [PMID: 37755990 PMCID: PMC10538156 DOI: 10.3390/toxins15090564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Tetrodotoxin (TTX) is a highly toxic compound detected in various edible marine animals even in European waters. To characterize the hazard by oral exposure to TTX, its tissue distribution was evaluated after single (75 μg/kg) or 7-day (25-125 μg/kg) oral administration in mice. Moreover, TTX liver and renal toxicity was evaluated after 7-day oral administration. The elimination cycle of a single oral dose of TTX (75 µg/kg) was found to be approximately 168 h (7 days). Daily oral administration of TTX at doses of 25, 75, and 125 µg/kg for 7 consecutive days revealed dose-dependent toxic effects on the liver and kidney. Histopathological examination showed increased inflammatory cell infiltration in the liver and kidney with higher TTX doses, along with disorganization of the hepatic cord and renal tubular cell arrangement. The study results indicated that TTX had more hepatotoxicity than nephrotoxicity in mice. These findings provide insights into the unintentional ingestion of a low dose of TTX in mammals, including humans, and emphasize the importance of food safety.
Collapse
Affiliation(s)
- Yaqian Zhong
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.Z.); (Q.Y.); (Q.W.)
- Laboratory of Aquatic Product Processing and Quality Safety, Zhejiang Marine Fisheries Research Institute, Zhoushan 316100, China
| | - Xiaojun Zhang
- Laboratory of Aquatic Product Processing and Quality Safety, Zhejiang Marine Fisheries Research Institute, Zhoushan 316100, China
| | - Qiyu Yang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.Z.); (Q.Y.); (Q.W.)
- Laboratory of Aquatic Product Processing and Quality Safety, Zhejiang Marine Fisheries Research Institute, Zhoushan 316100, China
| | - Qianfeng Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.Z.); (Q.Y.); (Q.W.)
- Laboratory of Aquatic Product Processing and Quality Safety, Zhejiang Marine Fisheries Research Institute, Zhoushan 316100, China
| |
Collapse
|
9
|
Alkassar M, Sanchez-Henao A, Reverté J, Barreiro L, Rambla-Alegre M, Leonardo S, Mandalakis M, Peristeraki P, Diogène J, Campàs M. Evaluation of Toxicity Equivalency Factors of Tetrodotoxin Analogues with a Neuro-2a Cell-Based Assay and Application to Puffer Fish from Greece. Mar Drugs 2023; 21:432. [PMID: 37623713 PMCID: PMC10455759 DOI: 10.3390/md21080432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023] Open
Abstract
Tetrodotoxin (TTX) is a potent marine neurotoxin involved in poisoning cases, especially through the consumption of puffer fish. Knowledge of the toxicity equivalency factors (TEFs) of TTX analogues is crucial in monitoring programs to estimate the toxicity of samples analyzed with instrumental analysis methods. In this work, TTX analogues were isolated from the liver of a Lagocephalus sceleratus individual caught on South Crete coasts. A cell-based assay (CBA) for TTXs was optimized and applied to the establishment of the TEFs of 5,11-dideoxyTTX, 11-norTTX-6(S)-ol, 11-deoxyTTX and 5,6,11-trideoxyTTX. Results showed that all TTX analogues were less toxic than the parent TTX, their TEFs being in the range of 0.75-0.011. Then, different tissues of three Lagocephalus sceleratus individuals were analyzed with CBA and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The obtained TEFs were applied to the TTX analogues' concentrations obtained by LC-MS/MS analysis, providing an indication of the overall toxicity of the sample. Information about the TEFs of TTX analogues is valuable for food safety control, allowing the estimation of the risk of fish products to consumers.
Collapse
Affiliation(s)
- Mounira Alkassar
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain; (M.A.); (A.S.-H.); (J.R.); (L.B.); (M.R.-A.); (S.L.); (J.D.)
| | - Andres Sanchez-Henao
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain; (M.A.); (A.S.-H.); (J.R.); (L.B.); (M.R.-A.); (S.L.); (J.D.)
| | - Jaume Reverté
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain; (M.A.); (A.S.-H.); (J.R.); (L.B.); (M.R.-A.); (S.L.); (J.D.)
| | - Lourdes Barreiro
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain; (M.A.); (A.S.-H.); (J.R.); (L.B.); (M.R.-A.); (S.L.); (J.D.)
| | - Maria Rambla-Alegre
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain; (M.A.); (A.S.-H.); (J.R.); (L.B.); (M.R.-A.); (S.L.); (J.D.)
| | - Sandra Leonardo
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain; (M.A.); (A.S.-H.); (J.R.); (L.B.); (M.R.-A.); (S.L.); (J.D.)
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003 Heraklion, Greece;
| | - Panagiota Peristeraki
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 71003 Heraklion, Greece;
| | - Jorge Diogène
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain; (M.A.); (A.S.-H.); (J.R.); (L.B.); (M.R.-A.); (S.L.); (J.D.)
| | - Mònica Campàs
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain; (M.A.); (A.S.-H.); (J.R.); (L.B.); (M.R.-A.); (S.L.); (J.D.)
| |
Collapse
|
10
|
Malloggi C, Rizzo B, Giusti A, Guardone L, Gasperetti L, Dall’Ara S, Armani A. First Toxicological Analysis of the Pufferfish Sphoeroides pachygaster Collected in Italian Waters (Strait of Sicily): Role of Citizens Science in Monitoring Toxic Marine Species. Animals (Basel) 2023; 13:1873. [PMID: 37889799 PMCID: PMC10252100 DOI: 10.3390/ani13111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 10/29/2023] Open
Abstract
Pufferfish (Tetraodontidae) inhabiting the Mediterranean Sea may represent an emerging public health risk due to the possible accumulation of marine neurotoxins such as tetrodotoxin (TTXs) and saxitoxin (STXs) in their tissues. In this study, the presence of pufferfish species in the Strait of Sicily (Lampedusa Island, Italy) was investigated using a citizen science (CS) approach, involving local fishermen. Samples (liver, intestine, gonads, muscle, skin) from 20 specimens were sent to the National Reference Laboratory on Marine Biotoxins for TTXs detection using a validated HILIC-MS/MS method on fish tissue. The presence of STXs was also screened in part of the specimens. Overall, 56 specimens identified as Sphoeroides pachygaster (Müller &Troschel, 1848) were collected. Data on their total length, body weight, fishing method and catch area (with relative depth temperature and salinity) were analyzed and compared with the S. pachygaster records reported in literature which were updated to 2022. All the analysed tissues were found to be negative for both TTXs and STXs. CS played an essential role in monitoring potentially toxic marine species in this investigation. Outcomes from this study, which is the first investigating S. pachygaster toxicity in Italian waters, may provide useful data for the proper assessment of this emerging risk.
Collapse
Affiliation(s)
- Chiara Malloggi
- FishLab, Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (C.M.); (A.G.); (L.G.)
| | - Biagio Rizzo
- FishLab, Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (C.M.); (A.G.); (L.G.)
| | - Alice Giusti
- FishLab, Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (C.M.); (A.G.); (L.G.)
| | - Lisa Guardone
- FishLab, Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (C.M.); (A.G.); (L.G.)
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy
| | - Laura Gasperetti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, 00178 Roma, Italy;
| | - Sonia Dall’Ara
- Fondazione Centro Ricerche Marine, National Reference Laboratory on Marine Biotoxins, Viale A. Vespucci 2, 47042 Cesenatico, Italy;
| | - Andrea Armani
- FishLab, Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (C.M.); (A.G.); (L.G.)
| |
Collapse
|
11
|
Reverté J, Alkassar M, Diogène J, Campàs M. Detection of Ciguatoxins and Tetrodotoxins in Seafood with Biosensors and Other Smart Bioanalytical Systems. Foods 2023; 12:foods12102043. [PMID: 37238861 DOI: 10.3390/foods12102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of marine toxins such as ciguatoxins (CTXs) and tetrodotoxins (TTXs) in non-endemic regions may pose a serious food safety threat and public health concern if proper control measures are not applied. This article provides an overview of the main biorecognition molecules used for the detection of CTXs and TTXs and the different assay configurations and transduction strategies explored in the development of biosensors and other biotechnological tools for these marine toxins. The advantages and limitations of the systems based on cells, receptors, antibodies, and aptamers are described, and new challenges in marine toxin detection are identified. The validation of these smart bioanalytical systems through analysis of samples and comparison with other techniques is also rationally discussed. These tools have already been demonstrated to be useful in the detection and quantification of CTXs and TTXs, and are, therefore, highly promising for their implementation in research activities and monitoring programs.
Collapse
Affiliation(s)
- Jaume Reverté
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Mounira Alkassar
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Jorge Diogène
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Mònica Campàs
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| |
Collapse
|
12
|
Yao J, Jin Z, Zhao Y. Electroactive and SERS-Active Ag@Cu 2O NP-Programed Aptasensor for Dual-Mode Detection of Tetrodotoxin. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10240-10249. [PMID: 36749896 DOI: 10.1021/acsami.2c21424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Dual-mode nanotags with noninterference sensing signals improved the detection accuracy and sensitivity for the applications of tetrodotoxin (TTX) monitoring. Electroactive and surface-enhanced Raman scattering (SERS)-active Ag@Cu2O nanoparticles (NPs) were fabricated and displayed two electrooxidation signals at -0.13 and 0.17 V, attributed to the oxidization process of Cu+ and Ag0, respectively. Ag@Cu2O NPs were also found to exhibit stronger SERS performances than individual Ag NPs. The dielectric Cu2O shell with a large dielectric constant inhibited the attenuation of electromagnetic (EM) waves of Ag NPs, which strengthened the EM fields for SERS enhancement. The electron transfer from Ag to Cu2O to 4-aminothiophenol (4-ATP) also contributed to the SERS performances. Ag@Cu2O NPs were modified by TTX aptamers and assembled with MXene nanosheets (NSs) due to the large surface, good conductivity, and inherent Raman properties. The assemblies showed two-peaked electrooxidation signals and prominent SERS activity. An electrochemical detection curve was established by using the total peak intensity at -0.13 and 0.17 V as detection signals, and a ratiometric SERS detection curve was developed by applying the intensity at 1078 cm-1 (4-ATP) as the detection signal and 730 cm-1 (MXene NSs) as the reference signal. An electrochemical and SERS signal-programed dual-mode aptasensor was proposed for accurate TTX detection, with the limits of detection of 31.6 pg/mL for the electrochemical signal and 38.3 pg/mL for the SERS signal. The rational design of plasmonic metal-semiconductor heterogeneous nanocomposites had important prospects in establishing a multimodal biosensing platform for the quantitative and accurate detection of analytes in complex systems.
Collapse
Affiliation(s)
- Jie Yao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhao Jin
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
13
|
Hu C, Zhang Y, Zhou Y, Xiang YJY, Liu ZF, Wang ZH, Feng XS. Tetrodotoxin and Its Analogues in Food: Recent Updates on Sample Preparation and Analytical Methods Since 2012. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12249-12269. [PMID: 36153990 DOI: 10.1021/acs.jafc.2c04106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tetrodotoxin (TTX), found in various organisms including pufferfish, is an extremely potent marine toxin responsible for numerous food poisoning accidents. Due to its serious toxicity and public health threat, detecting TTX and its analogues in diverse food matrices with a simple, fast, efficient method has become a worldwide concern. This review summarizes the advances in sample preparation and analytical methods for the determination of TTX and its analogues, focusing on the latest development over the past five years. Current state-of-the-art technologies, such as solid-phase microextraction, online technology, novel injection technology, two-dimensional liquid chromatography, high-resolution mass spectrometry, newly developed lateral flow immunochromatographic strips, immunosensors, dual-mode aptasensors, and nanomaterials-based approaches, are thoroughly discussed. The advantages and limitations of different techniques, critical comments, and future perspectives are also proposed. This review is expected to provide rewarding insights to the future development and broad application of pretreatment and detection methods for TTX and its analogues.
Collapse
Affiliation(s)
- Cong Hu
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yang-Jia-Yi Xiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhi-Hong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
14
|
Li Y, Song M, Gao R, Lu F, Liu J, Huang Q. Repurposing of thermally stable nucleic-acid aptamers for targeting tetrodotoxin (TTX). Comput Struct Biotechnol J 2022; 20:2134-2142. [PMID: 35832627 PMCID: PMC9092388 DOI: 10.1016/j.csbj.2022.04.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 01/03/2023] Open
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Centre of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Menghua Song
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Centre of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ruihua Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Feng Lu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jianping Liu
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Centre of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Corresponding authors at: State Key Laboratory of Genetic Engineering, MOE Engineering Research Centre of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China (Q. Huang).
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Centre of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 201203, China
- Corresponding authors at: State Key Laboratory of Genetic Engineering, MOE Engineering Research Centre of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China (Q. Huang).
| |
Collapse
|
15
|
Ye H, Xi Y, Tian L, Huang D, Huang X, Shen X, Cai Y, Wangs Y. Simultaneous Determination of Tetrodotoxin in the Fresh and Heat-Processed Aquatic Products by High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Foods 2022; 11:925. [PMID: 35407011 PMCID: PMC8997983 DOI: 10.3390/foods11070925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022] Open
Abstract
Tetrodotoxin (TTX) was simultaneously detected in the fresh and heat-processed aquatic products by high-performance liquid chromatography-tandem mass spectrometry method. The detection conditions were investigated, including the chromatography column and mobile phase. Based on the optimized parameters, a sensitive determination method of TTX was established. The proposed method featured the merits of a good linear relationship between signal and TTX concentration (R2 = 0.9998), a wide detection matrix-based range of 0.2-100 ng/g, and a low detection limit of 0.2 ng/g, etc. The spiked assays evidenced its accuracy and reliability with recoveries of 90.5-107.2%. Finally, the developed method was simultaneously successfully applied in the determination of TTX in various fresh and heat-processed aquatic products.
Collapse
Affiliation(s)
- Hongli Ye
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.X.); (L.T.); (D.H.); (X.H.); (X.S.); (Y.C.)
- Key Laboratory of Control of Safety and Quality for Aquatic Product, Ministry of Agriculture and Rural Affairs, Beijing 100141, China
| | - Yinfeng Xi
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.X.); (L.T.); (D.H.); (X.H.); (X.S.); (Y.C.)
- Key Laboratory of Control of Safety and Quality for Aquatic Product, Ministry of Agriculture and Rural Affairs, Beijing 100141, China
| | - Liangliang Tian
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.X.); (L.T.); (D.H.); (X.H.); (X.S.); (Y.C.)
- Key Laboratory of Control of Safety and Quality for Aquatic Product, Ministry of Agriculture and Rural Affairs, Beijing 100141, China
| | - Dongmei Huang
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.X.); (L.T.); (D.H.); (X.H.); (X.S.); (Y.C.)
| | - Xuanyun Huang
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.X.); (L.T.); (D.H.); (X.H.); (X.S.); (Y.C.)
| | - Xiaosheng Shen
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.X.); (L.T.); (D.H.); (X.H.); (X.S.); (Y.C.)
| | - Youqiong Cai
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.X.); (L.T.); (D.H.); (X.H.); (X.S.); (Y.C.)
- Key Laboratory of Control of Safety and Quality for Aquatic Product, Ministry of Agriculture and Rural Affairs, Beijing 100141, China
| | - Yuan Wangs
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.X.); (L.T.); (D.H.); (X.H.); (X.S.); (Y.C.)
- Key Laboratory of Control of Safety and Quality for Aquatic Product, Ministry of Agriculture and Rural Affairs, Beijing 100141, China
| |
Collapse
|
16
|
Concentrations of Tetrodotoxin (TTX) and Its Analogue 4,9-Anhydro TTX in Different Tissues of the Silver-Cheeked Pufferfish (Lagocephalus sceleratus, Gmelin, 1789) Caught in the South-Eastern Mediterranean Sea, Lebanon. Toxins (Basel) 2022; 14:toxins14020123. [PMID: 35202150 PMCID: PMC8877804 DOI: 10.3390/toxins14020123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
Pufferfishes are among the best-known marine organisms that accumulate marine biotoxins such as Tetrodotoxin (TTX). In the Mediterranean Sea, the silver-cheeked toadfish Lagocephalus sceleratus is the most reported TTX-bearer, causing many fatal and non-fatal cases. In Lebanon, no previous studies have measured TTX levels although the possibility of TTX-poisoning is high since L. sceleratus is caught in different sizes and can be mistaken with other small fishes. Hence, this study reports TTX and its analogue 4,9-anhydro TTX in L. sceleratus collected from Lebanese waters in the Eastern Mediterranean Sea. The results show that TTX concentrations in fish tissues varied between 0.10 and 252.97 µg/g, while those of 4,9-anhydro TTX oscillated between 0.01 and 43.01 µg/g. Internal organs of L. sceleratus were the most toxic parts of its body, with the highest TTX levels found in gonads (mainly ovaries) and liver, followed by the muscles and skin with concentrations always exceeding the safety level. Toxicity fluctuations of L. sceleratus, its expansion, ecological and economic effects were also elucidated. Based on the present findings, it has been confirmed that L. sceleratus constitutes a health, ecological and economic risks, and therefore its trade in seafood markets should be banned to avoid any potential intoxication.
Collapse
|
17
|
Katikou P, Gokbulut C, Kosker AR, Campàs M, Ozogul F. An Updated Review of Tetrodotoxin and Its Peculiarities. Mar Drugs 2022; 20:md20010047. [PMID: 35049902 PMCID: PMC8780202 DOI: 10.3390/md20010047] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Tetrodotoxin (TTX) is a crystalline, weakly basic, colorless organic substance and is one of the most potent marine toxins known. Although TTX was first isolated from pufferfish, it has been found in numerous other marine organisms and a few terrestrial species. Moreover, tetrodotoxication is still an important health problem today, as TTX has no known antidote. TTX poisonings were most commonly reported from Japan, Thailand, and China, but today the risk of TTX poisoning is spreading around the world. Recent studies have shown that TTX-containing fish are being found in other regions of the Pacific and in the Indian Ocean, as well as the Mediterranean Sea. This review aims to summarize pertinent information available to date on the structure, origin, distribution, mechanism of action of TTX and analytical methods used for the detection of TTX, as well as on TTX-containing organisms, symptoms of TTX poisoning, and incidence worldwide.
Collapse
Affiliation(s)
- Panagiota Katikou
- Ministry of Rural Development and Food, Directorate of Research, Innovation and Education, Hapsa & Karatasou 1, 54626 Thessaloniki, Greece
- Correspondence: (P.K.); (F.O.)
| | - Cengiz Gokbulut
- Department of Pharmacology, Faculty of Medicine, Balikesir University, Balikesir 10145, Turkey;
| | - Ali Rıza Kosker
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
| | - Mònica Campàs
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain;
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
- Correspondence: (P.K.); (F.O.)
| |
Collapse
|
18
|
Liu S, Huo Y, Deng S, Li G, Li S, Huang L, Ren S, Gao Z. A facile dual-mode aptasensor based on AuNPs@MIL-101 nanohybrids for ultrasensitive fluorescence and surface-enhanced Raman spectroscopy detection of tetrodotoxin. Biosens Bioelectron 2021; 201:113891. [PMID: 34999522 DOI: 10.1016/j.bios.2021.113891] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 01/01/2023]
Abstract
The development of ultrasensitive, reliable, and facile detection technologies for trace tetrodotoxin (TTX) is challenging. We presented a facile dual-mode aptamer-based biosensor (aptasensor) for ultrasensitive fluorescence and surface-enhanced Raman spectroscopy (SERS) detection of TTX by using gold nanoparticles (AuNPs)-embedded metal-organic framework (MOF) nanohybrids (AuNPs@MIL-101) because of their superior properties. A TTX-specific aptamer labelled with fluorescence and Raman reporter cyanine-3 (Cy3-aptamer) was selected as the recognition element and signal probe. Without immobilisation processing steps, Cy3-aptamers were effectively adsorbed onto the surface of AuNPs@MIL-101, thereby generating both fluorescence quenching and SERS enhancement. The preferential binding of TTX towards the Cy3-aptamer triggered the release of rigid Cy3-aptamer-TTX complexes from the AuNPs@MIL-101 surface, which resulted in recovered fluorescence signals and weakened SERS signals. Switched fluorescence and SERS intensities exhibited excellent linear relationships with logarithms of TTX concentrations of 0.01-300 ng/mL, and ultrahigh detection sensitivities of 6 and 8 pg/mL, respectively, were obtained. Furthermore, two quantitative detection approaches for TTX-spiked puffer fish and clam samples obtained satisfactory spiked recoveries and coefficient of variation (CV) values. Notably, the dual-mode aptasensor also successfully determined natural TTX-contaminated samples, showing excellent practical applications. The results indicated that this dual-mode measurement not only was ultrasensitive and simple but also markedly boosted analysis reliability and precision. This study is the first to propose a dual-mechanism AuNPs@MIL-101-based aptasensor for detection of trace TTX and provides a favourable pathway for developing multimode sensing platforms for various applications.
Collapse
Affiliation(s)
- Sha Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yapeng Huo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Sumei Deng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Guanghua Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Lei Huang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
19
|
Christidis G, Mandalakis M, Anastasiou TI, Tserpes G, Peristeraki P, Somarakis S. Keeping Lagocephalus sceleratus off the Table: Sources of Variation in the Quantity of TTX, TTX Analogues, and Risk of Tetrodotoxication. Toxins (Basel) 2021; 13:toxins13120896. [PMID: 34941733 PMCID: PMC8706384 DOI: 10.3390/toxins13120896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
The invasion of the tetrodotoxin (TTX)-bearing silver-cheeked toadfish and potential poisoning due to its consumption (tetrodotoxication) threatens public safety in the Mediterranean Sea. In this study, TTX and TTX analogues of Lagocephalus sceleratus (Gmelin, 1789) were measured using liquid chromatography tandem mass spectrometry (LC-MS/MS) in fish collected off the island of Crete (Southern Mediterranean). We tested the synergistic effect of a suite of factors potentially affecting toxins' levels and tetrodotoxication risk using general and generalized linear models, respectively. The type of tissue, geographic origin (Cretan Sea, Libyan Sea), sex, and fish maturity stage were significant predictors of toxin concentrations. Mean TTX was higher in gonads and lower in muscles, higher in the Libyan Sea and in female fish, and lower in juvenile (virgin) fish. The concentration of TTX was also significantly and positively correlated with the concentration of several TTX analogues (4-epiTTX, 4,9-anhydroTTX, 11-deoxyTTX, 5,11/6,11-dideoxyTTX, 5,6,11-trideoxyTTX, 11-norTTX-6-ol). The analysis showed that fish originating from the Libyan Sea had significantly higher probability to cause tetrodotoxication in case of consumption. The variability explained by the models developed in this study was relatively low, indicating that toxin levels are hard to predict and the consumption of L. sceleratus should therefore be avoided.
Collapse
Affiliation(s)
- Georgios Christidis
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research (HCMR), 71500 Heraklion, Greece; (G.T.); (P.P.); (S.S.)
- Biology Department, University of Crete, 70013 Heraklion, Greece
- Correspondence: (G.C.); (M.M.)
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center of Marine Research (HCMR), 71500 Heraklion, Greece;
- Correspondence: (G.C.); (M.M.)
| | - Thekla I. Anastasiou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center of Marine Research (HCMR), 71500 Heraklion, Greece;
| | - George Tserpes
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research (HCMR), 71500 Heraklion, Greece; (G.T.); (P.P.); (S.S.)
| | - Panagiota Peristeraki
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research (HCMR), 71500 Heraklion, Greece; (G.T.); (P.P.); (S.S.)
| | - Stylianos Somarakis
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research (HCMR), 71500 Heraklion, Greece; (G.T.); (P.P.); (S.S.)
| |
Collapse
|
20
|
Shkembi X, Skouridou V, Svobodova M, Leonardo S, Bashammakh AS, Alyoubi AO, Campàs M, O Sullivan CK. Hybrid Antibody-Aptamer Assay for Detection of Tetrodotoxin in Pufferfish. Anal Chem 2021; 93:14810-14819. [PMID: 34697940 PMCID: PMC8581965 DOI: 10.1021/acs.analchem.1c03671] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The marine toxin
tetrodotoxin (TTX) poses a great risk to public
health safety due to its severe paralytic effects after ingestion.
Seafood poisoning caused by the consumption of contaminated marine
species like pufferfish due to its expansion to nonendemic areas has
increased the need for fast and reliable detection of the toxin to
effectively implement prevention strategies. Liquid chromatography-mass
spectrometry is considered the most accurate method, although competitive
immunoassays have also been reported. In this work, we sought to develop
an aptamer-based assay for the rapid, sensitive, and cost-effective
detection of TTX in pufferfish. Using capture-SELEX combined with
next-generation sequencing, aptamers were identified, and their binding
properties were evaluated. Finally, a highly sensitive and user-friendly
hybrid antibody–aptamer sandwich assay was developed with superior
performance compared to several assays reported in the literature
and commercial immunoassay kits. The assay was successfully applied
to the quantification of TTX in pufferfish extracts, and the results
obtained correlated very well with a competitive magnetic bead-based
immunoassay performed in parallel for comparison. This is one of the
very few works reported in the literature of such hybrid assays for
small-molecule analytes whose compatibility with field samples is
also demonstrated.
Collapse
Affiliation(s)
- Xhensila Shkembi
- Interfibio, Nanobiotechnology and Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Paisos Catalans 26, 43007 Tarragona, Spain
| | - Vasso Skouridou
- Interfibio, Nanobiotechnology and Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Paisos Catalans 26, 43007 Tarragona, Spain
| | - Marketa Svobodova
- Interfibio, Nanobiotechnology and Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Paisos Catalans 26, 43007 Tarragona, Spain
| | - Sandra Leonardo
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Abdulaziz S Bashammakh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Kingdom of Saudi Arabia
| | - Abdulrahman O Alyoubi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Kingdom of Saudi Arabia
| | - Mònica Campàs
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Ciara K O Sullivan
- Interfibio, Nanobiotechnology and Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Paisos Catalans 26, 43007 Tarragona, Spain.,Institució Catalana de Recerca I Estudis Avancats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
21
|
Ulman A, Yildiz T, Demirel N, Canak O, Yemişken E, Pauly D. The biology and ecology of the invasive silver-cheeked toadfish (Lagocephalus sceleratus), with emphasis on the Eastern Mediterranean. NEOBIOTA 2021. [DOI: 10.3897/neobiota.68.71767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive species pose threats to either human health or inflict ecological and/or economic damage. The silver-cheeked toadfish (Lagocephalus sceleratus), a Lessepsian species, is one of the most harmful species in the Mediterranean Sea, because of its potent neurotoxin, impacts on marine biodiversity, and the increased costs and labor they inflict on fishers. Since the catch and consumption of this pufferfish is prohibited by almost all countries bordering the Mediterranean, they have now expanded into the entire Mediterranean and Black Sea. We performed a comprehensive study of L. sceleratus covering ecological aspects, growth, reproduction, diet and trophic level based on samples from southwestern coasts of Turkey. The estimated growth parameters were L∞ = 88.7 cm, K = 0.27 year-1, C = 0.6 and WP = 0.1. Their sex-ratio was M/F = 1:0.69. Lagocephalus sceleratus appears to be a batch spawner with discontinuous oocyte recruitment and has different spawning seasons in the Eastern Mediterranean which seem to be based on temperature cues which get shorter in duration as one moves north from the Suez. We also report their first positive ecological trait, that they are controlling some other invasive species through their diets, such as lionfish, Red Sea goatfish, rabbitfish and longspine sea urchins, in addition to controlling themselves through cannibalism, which appears to be density-dependent. They are indeed a top predator in the region with a trophic level of 4.1. We suggest that targeted fishing using improved gear-types to reduce fishing gear damages are initiated, and that finding commercial markets for pufferfish could help to naturally fund ongoing control efforts.
Collapse
|
22
|
Okabe T, Saito R, Yamamoto K, Watanabe R, Kaneko Y, Yanaoka M, Furukoshi S, Yasukawa S, Ito M, Oyama H, Suo R, Suzuki M, Takatani T, Arakawa O, Sugita H, Itoi S. The role of toxic planocerid flatworm larvae on tetrodotoxin accumulation in marine bivalves. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105908. [PMID: 34273772 DOI: 10.1016/j.aquatox.2021.105908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Tetrodotoxin (TTX), also known as pufferfish toxin, has been detected in marine edible bivalves worldwide. In this study, several bivalve species, Azumapecten farreri subsp. akazara, Patinopecten yessoensis and Mytilus galloprovincialis, collected from the Pacific side of the northern Japanese Islands, were studied for the accumulation of TTX in the presence of toxic planocerid larvae. LC-MS/MS analysis demonstrated that TTX was detected only in the midgut gland of A. farreri subsp. akazara. Toxic flatworm-specific PCR and direct sequencing of the amplicons showed that the DNA fragments of the Planocera multitentaculata COI gene were detected in the gut contents of the toxified bivalves. The planocerid larvae were also detected in the environmental seawaters. Toxification experiments in the aquarium demonstrated that the mussel M. galloprovincialis was also toxified by feeding on the toxic flatworm larvae. These results suggest that the source of TTX accumulation in edible bivalves is toxic flatworm larvae.
Collapse
Affiliation(s)
- Taiki Okabe
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Rion Saito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Kohei Yamamoto
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Riku Watanabe
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Yoshiki Kaneko
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Mutsumi Yanaoka
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Seika Furukoshi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Shino Yasukawa
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Masaaki Ito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Miwa Suzuki
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Tomohiro Takatani
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Osamu Arakawa
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
23
|
Bédry R, de Haro L, Bentur Y, Senechal N, Galil BS. Toxicological risks on the human health of populations living around the Mediterranean Sea linked to the invasion of non-indigenous marine species from the Red Sea: A review. Toxicon 2021; 191:69-82. [PMID: 33359388 DOI: 10.1016/j.toxicon.2020.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/07/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
The Mediterranean region is, by far, a prime travel destination, having hosted more than 330 million tourists in 2016, mostly for seaside holidays. A greatly increased influx of thermophilic Red Sea species, introduced through the Suez Canal in a process referred to as Lessepsian invasion (in honor of Ferdinand de Lesseps who instigated the building of the Suez Canal), have raised awareness among scientists, medical personnel, and the public, of health risks caused by some venomous and poisonous marine species. The main species of concern are the poisonous Lagocephalus sceleratus, and the venomous Plotosus lineatus, Siganus luridus, Siganus rivulatus, Pterois miles, Synancea verrucosa, Rhopilema nomadica, Macrorhynchia philippina and Diadema setosum. Recognizing that the main factors that drive the introduction and dispersal of Red Sea biota in the Mediterranean, i.e., Suez Canal enlargements and warming seawater, are set to increase, and international tourist arrivals are forecasted to increase as well, to 500 million in 2030, an increase in intoxications and envenomations by alien marine species is to be expected and prepared for.
Collapse
Affiliation(s)
- R Bédry
- UHSI, Pellegrin University Hospital, 33000, Bordeaux, France.
| | - L de Haro
- Centre Antipoison de Marseille, Hôpital Sainte Marguerite, 13009, Marseille, France
| | - Y Bentur
- Israel Poison Information Center, Rambam Health Care Campus, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - N Senechal
- Bordeaux University, UMR EPOC, 5805, Pessac, France
| | - B S Galil
- Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
A fast magnetic bead-based colorimetric immunoassay for the detection of tetrodotoxins in shellfish. Food Chem Toxicol 2020; 140:111315. [DOI: 10.1016/j.fct.2020.111315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/03/2020] [Accepted: 03/31/2020] [Indexed: 11/23/2022]
|
25
|
Boente-Juncal A, Otero P, Rodríguez I, Camiña M, Rodriguez-Vieytes M, Vale C, Botana LM. Oral Chronic Toxicity of the Safe Tetrodotoxin Dose Proposed by the European Food Safety Authority and Its Additive Effect with Saxitoxin. Toxins (Basel) 2020; 12:E312. [PMID: 32397553 PMCID: PMC7291010 DOI: 10.3390/toxins12050312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/25/2022] Open
Abstract
Tetrodotoxin (TTX) is a potent natural toxin causative of human food intoxications that shares its mechanism of action with the paralytic shellfish toxin saxitoxin (STX). Both toxins act as potent blockers of voltage-gated sodium channels. Although human intoxications by TTX were initially described in Japan, nowadays increasing concern about the regulation of this toxin in Europe has emerged due to its detection in fish and mollusks captured in European waters. Currently, TTX is only regularly monitored in Dutch fishery products. However, the European Food Safety Authority (EFSA) has established a safety level of 44 µg/kg TTX as the amount of toxin that did not cause adverse effects in humans. This level was extrapolated considering initial data on its acute oral toxicity and EFSA remarked the need for chronic toxicity studies to further reduce the uncertainty of future toxin regulations. Thus, in this work, we evaluated the oral chronic toxicity of TTX using the safety levels initially recommended by EFSA in order to exclude potential human health risks associated with the worldwide expanding presence of TTX. Using internationally recommended guidelines for the assessment of oral chronic toxicity, the data provided here support the proposed safety level for TTX as low enough to prevent human adverse effects of TTX even after chronic daily exposure to the toxin. However, the combination of TTX with STX at doses above the maximal exposure level of 5.3 µg/kg body weight derived by EFSA increased the lethality of TTX, thus confirming that both TTX and paralytic shellfish toxins should be taken into account to assess human health risks.
Collapse
Affiliation(s)
- Andrea Boente-Juncal
- Laboratorio de Farmacología, Farmacia e Tecnoloxía Farmacéutica, Universidade de Santiago de Compostela, Facultad de Veterinaria, Campus Universitario s/n, 27002 Lugo, Spain; (A.B.-J.); (P.O.)
| | - Paz Otero
- Laboratorio de Farmacología, Farmacia e Tecnoloxía Farmacéutica, Universidade de Santiago de Compostela, Facultad de Veterinaria, Campus Universitario s/n, 27002 Lugo, Spain; (A.B.-J.); (P.O.)
| | - Inés Rodríguez
- Laboratorios Cifga, Benigno Rivera, 56, 27003 Lugo, Spain;
| | - Mercedes Camiña
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (M.C.); (M.R.-V.)
| | - Mercedes Rodriguez-Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (M.C.); (M.R.-V.)
| | - Carmen Vale
- Laboratorio de Farmacología, Farmacia e Tecnoloxía Farmacéutica, Universidade de Santiago de Compostela, Facultad de Veterinaria, Campus Universitario s/n, 27002 Lugo, Spain; (A.B.-J.); (P.O.)
| | - Luis M. Botana
- Laboratorio de Farmacología, Farmacia e Tecnoloxía Farmacéutica, Universidade de Santiago de Compostela, Facultad de Veterinaria, Campus Universitario s/n, 27002 Lugo, Spain; (A.B.-J.); (P.O.)
| |
Collapse
|
26
|
Abstract
Due to the expanding occurrence of marine toxins, and their potential impact on human health, there is an increased need for tools for their rapid and efficient detection. We give an overview of the use of magnetic beads (MBs) for the detection of marine toxins in shellfish and fish samples, with an emphasis on their incorporation into electrochemical biosensors. The use of MBs as supports for the immobilization of toxins or antibodies, as signal amplifiers as well as for target pre-concentration, is reviewed. In addition, the exploitation of MBs in Systematic Evolution of Ligands by Exponential enrichment (SELEX) for the selection of aptamers is presented. These MB-based strategies have led to the development of sensitive, simple, reliable and robust analytical systems for the detection of toxins in natural samples, with applicability in seafood safety and human health protection.
Collapse
|
27
|
Yáñez-Sedeño P, Agüí L, Campuzano S, Pingarrón JM. What Electrochemical Biosensors Can Do for Forensic Science? Unique Features and Applications. BIOSENSORS-BASEL 2019; 9:bios9040127. [PMID: 31671772 PMCID: PMC6956127 DOI: 10.3390/bios9040127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022]
Abstract
This article critically discusses the latest advances in the use of voltammetric, amperometric, potentiometric, and impedimetric biosensors for forensic analysis. Highlighted examples that show the advantages of these tools to develop methods capable of detecting very small concentrations of analytes and provide selective determinations through analytical responses, without significant interferences from other components of the samples, are presented and discussed, thus stressing the great versatility and utility of electrochemical biosensors in this growing research field. To illustrate this, the determination of substances with forensic relevance by using electrochemical biosensors reported in the last five years (2015–2019) are reviewed. The different configurations of enzyme or affinity biosensors used to solve analytical problems related to forensic practice, with special attention to applications in complex samples, are considered. Main prospects, challenges to focus, such as the fabrication of devices for rapid analysis of target analytes directly on-site at the crime scene, or their widespread use and successful applications to complex samples of interest in forensic analysis, and future efforts, are also briefly discussed.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Lourdes Agüí
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - José Manuel Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
28
|
Gao Y, Wang B, Yan Y. Self‐Assembling Bifunctional Hydrophilic Magnetic Nanomaterials for Highly Efficient Enrichment of Parabens in Beverages Sample. ChemistrySelect 2019. [DOI: 10.1002/slct.201902055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yiqian Gao
- School of Materials Science and Chemical EngineeringInstitute of Mass SpectrometryNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Baichun Wang
- School of Materials Science and Chemical EngineeringInstitute of Mass SpectrometryNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Yinghua Yan
- School of Materials Science and Chemical EngineeringInstitute of Mass SpectrometryNingbo University, Ningbo Zhejiang 315211 P. R. China
| |
Collapse
|
29
|
Katikou P. Public Health Risks Associated with Tetrodotoxin and Its Analogues in European Waters: Recent Advances after The EFSA Scientific Opinion. Toxins (Basel) 2019; 11:E240. [PMID: 31035492 PMCID: PMC6562576 DOI: 10.3390/toxins11050240] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022] Open
Abstract
Tetrodotoxin (TTX) and its analogues are naturally occurring toxins responsible worldwide for human intoxication cases and fatalities, mainly associated with pufferfish consumption. In the last decade, TTXs were detected in marine bivalves and gastropods from European waters. As TTXs are not regulated or monitored at EU level, their unexpected occurrence in shellfish raised concerns as a food safety hazard and revealed the necessity of a thorough assessment on the public health risks associated with their presence. For this reason, the European Food Safety Authority (EFSA) was requested by the European Commission to provide a scientific opinion, finally adopted in March 2017, according to which a provisional concentration below 44 μg TTX equivalents/kg shellfish meat, based on a large portion size of 400 g, was considered not to result in adverse effects in humans. The EFSA expert panel, however, recognized a number of shortcomings and uncertainties related to the unavailability of sufficient scientific data and provided relevant recommendations for future research to overcome these data gaps identified in order to further refine the risk assessment on TTXs. The present review aims to summarize the knowledge obtained towards addressing these recommendations in the two years following publication of the EFSA opinion, at the same time highlighting the points requiring further investigation.
Collapse
Affiliation(s)
- Panagiota Katikou
- Ministry of Rural Development and Food, Directorate General of Rural Development, Directorate of Research, Innovation and Education, Hapsa & Karatasou 1, 54626 Thessaloniki, Greece.
| |
Collapse
|