1
|
Li H, Fan X, Guo X, Yan W, Yu X, Deng X, Zhang J. Changes in meat quality of Esox Lucius during postmortem storage: Based on the lysosomal-mitochondrial apoptotic pathway. Food Chem 2025; 463:141522. [PMID: 39383794 DOI: 10.1016/j.foodchem.2024.141522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
In this study, we explored the correlation between the lysosome-mitochondrial apoptosis pathway and fish softening, as well as the correlation between ferritin degradation and lysosomal iron changes. The results indicated that ferritin levels gradually decreased, lysosomal iron first increased and then decreased and tended to stabilize, and lysosomal membrane stability significantly decreased (p < 0.05). Spearman's analysis suggested that an increase in lysosomal iron was associated with ferritin degradation. Lysosomal instability promoted the release of cathepsin D, thereby increasing the release of Bid and Bax, and inhibiting the expression of Bcl-2. Subsequently, caspase-9/-3 was activated. In addition, transmission electron microscopy revealed ultrastructural damage to mitochondria and cell nuclei, which are morphological features of apoptosis during post-mortem storage. Moreover, TUNEL staining confirmed the occurrence of apoptosis. We concluded that the lysosome- mitochondrial apoptosis pathway was active during the storage of Esox Lucius, in which ferritin degradation and increased lysosomal iron were key factors inducing lysosomal damage, and cathepsin D released by lysosomes was a key factor connecting lysosomes and mitochondria.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xuemei Fan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xin Guo
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenbo Yan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xinyao Yu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiaorong Deng
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Jian Zhang
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
2
|
Yang X, Cai B, Zhang Z, Mo Y, Zhou Z, Wu R, Kong S, Cai D, Zhang R, Li Z, Nie Q. Exploring variances in meat quality between Qingyuan partridge chicken and Cobb broiler: Insights from combined multi-omics analysis. Poult Sci 2024; 104:104666. [PMID: 39721276 DOI: 10.1016/j.psj.2024.104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Previously, animal breeding prioritized enhancing key economic traits to improve production efficiency, leading to a gradual difference in meat quality. However, the genetic factors influencing meat quality remain unclear. To identify key genetic pathways contributing to meat quality, native Chinese yellow-feathered chicken (Qingyuan Partridge Chicken, QPC; female, n=10), and commercial chicken broiler (Cobb broiler, CB; female, n=10) were used for meat quality assessment through metabolomics, proteomics, and phosphoproteomics sequencing. The results show that QPC had lower pH (93.12%), shear force (81.46%), cooking loss (69.29%), moisture content (93.24%) and muscle fiber area (46.04%), but higher meat color values (a*(163.65%) and b*(250.27%)), drip loss (146.32%), and intramuscular fat content (382.01%) than CB (p < 0.05). Metabolomic, proteomic, and phosphoproteomic analyses were jointly conducted, revealing significant differences in energy metabolism strategies. Higher glycolytic enzyme activity was observed in QPC (ENO1, GAPDH, GPI, PFKM, PKM, and TPI1, p < 0.05), while more energetic phosphate compounds were stored in CB. CB had higher Na+/K+ Pump protein abundance (SCN4A, LOC107051305, ATP1B4, ATP12A, ATP1A1, and ATP1A2, p < 0.05) and phosphorylation (ATP1A2-Ser662, p < 0.05) and Ca2+ channel protein abundance (ATP2B4, SRL, CACNB1, CACNA1S, CACNA2D1, CAMK2G, LOC107050717 and TNNC2, p < 0.05) than QPC. In QPC, CAMKII autophosphorylation activated downstream protein and increased Ca2+. These results suggest CB is more contractile than QPC, contributing to meat quality between CB and QPC.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China
| | - Bolin Cai
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China
| | - Zhaofeng Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China
| | - Yu Mo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China
| | - Zhen Zhou
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China
| | - Ruiquan Wu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China
| | - Shaofen Kong
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China
| | - Danfeng Cai
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China
| | - Ruitong Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China
| | - Zhenhui Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China.
| |
Collapse
|
3
|
Yu Y, Wei Y, Chen S, Wang Y, Huang H, Li C, Wang D, Shi W, Li J, Zhao Y. Correlation analysis of phosphorylation of myofibrillar protein and muscle quality of tilapia during storage in ice. Food Chem 2024; 451:139502. [PMID: 38701732 DOI: 10.1016/j.foodchem.2024.139502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
In this study, the correlation between protein phosphorylation and deterioration in the quality of tilapia during storage in ice was examined by assessing changes in texture, water-holding capacity (WHC), and biochemical characteristics of myofibrillar protein throughout 7 days of storage. The hardness significantly decreased from 471.50 to 252.17 g, whereas cooking and drip losses significantly increased from 26.5% to 32.6% and 2.9% to 9.1%, respectively (P < 0.05). Myofibril fragmentation increased, while myofibrillar protein sulfhydryl content and Ca2+-ATPase activity decreased from 119.33 to 89.29 μmol/g prot and 0.85 to 0.46 μmolPi/mg prot/h, respectively (P < 0.05). Correlation analysis revealed that the myofibrillar protein phosphorylation level was positively correlated with hardness and Ca2+-ATPase activity but negatively correlated with WHC. Myofibrillar protein phosphorylation affects muscle contraction by influencing the dissociation of actomyosin, thereby regulating hardness and WHC. This study provides novel insights for the establishment of quality control strategies for tilapia storage based on protein phosphorylation.
Collapse
Affiliation(s)
- Ye Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Ya Wei
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Hui Huang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Di Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China.
| |
Collapse
|
4
|
Shi C, Wang L, Xu J, Li A, Wang C, Zhu X, Wang W, Yu Q, Han L. Effect of glycolysis on water holding capacity during postmortem aging of Jersey cattle-yak meat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3039-3046. [PMID: 38057148 DOI: 10.1002/jsfa.13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Postmortem muscle moisture loss leads to a decrease in carcass weight and can adversely impact overall meat quality. Therefore, it is critical to investigate water holding capacity (WHC) to enhance meat quality. Current research has primarily focused on examining the correlation between signaling molecules and meat quality in relation to the glycolysis effect on muscle WHC. But there exists a significant knowledge gap regarding the mechanism of WHC in Jersey cattle-yak meat. RESULTS Jersey cattle-yak meat pH decreased and then increased during postmortem aging. Lactate content, cooking loss, pressing loss, drip loss and centrifuging loss of Jersey cattle-yak meat increased and then decreased during postmortem aging. The glycogen content of Jersey cattle-yak meat was significantly higher than that of yak meat at 6-120 h, being 8.40% higher than that of yak meat at 120 h. The activity of key glycolytic enzymes hexokinase (HK), pyruvate kinase (PK), phosphofructokinase (PFK) and lactate dehydrogenase (LDH) in Jersey cattle-yak meat was lower than that in yak meat. Correlation analysis showed that Jersey cattle-yak meat WHC was positively correlated with the activity of HK, PK, PFK and LDH. CONCLUSIONS The WHC of Jersey cattle-yak meat was higher than that of Gannan yak meat, and it was significantly positively correlated with the activity of key enzymes of the glycolytic signaling pathway. Therefore, the glycolysis rate can be reduced by inhibiting enzyme activity to improve Jersey cattle-yak meat WHC and meat quality. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chaoxue Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Linlin Wang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Jin Xu
- Gannan Tibetan Autonomous Prefecture Animal Husbandry Technical Service Center, Gannan, China
| | - Aixia Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Changfeng Wang
- Wudu District Market Supervision Administration, Longnan, China
| | - Xijin Zhu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Wanlin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Huang C, Zhang D, Blecker C, Zhao Y, Xiang C, Wang Z, Li S, Chen L. Effects of phosphoglycerate kinase 1 and pyruvate kinase M2 on metabolism and physiochemical changes in postmortem muscle. Food Chem X 2024; 21:101125. [PMID: 38292674 PMCID: PMC10827398 DOI: 10.1016/j.fochx.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The objective of this work was to investigate the influence of phosphoglycerate kinase-1 (PGK1) and pyruvate kinase-M2 (PKM2) activity on glycolysis, myofibrillar proteins, calpain system, and apoptosis pathways of postmortem muscle. The activity of PGK1 and PKM2 was regulated by their inhibitors and activators to construct the postmortem glycolysis vitro model and then incubated at 4 °C for 24 h. The results showed that compared to PGK1 and PKM2 inhibitors groups, the addition of PGK1 and PKM2 activators could accelerate glycogen consumption, ATP and lactate production, while declining pH value. Moreover, the addition of PGK1 and PKM2 activators could increase desmin degradation, μ-calpain activity, and caspase-3 abundance. Interestingly, troponin-T degradation was significantly increased both in PKM2 inhibitor and activator groups. It was suggested that PGK1 and PKM2 might be used as robust indicators to regulate meat quality by affecting the glycolysis, myofibrillar proteins, μ-calpain and apoptosis pathways in postmortem muscle.
Collapse
Affiliation(s)
- Caiyan Huang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d’Agronomie 2, Gembloux B-5030, Belgium
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d’Agronomie 2, Gembloux B-5030, Belgium
| | - Yingxin Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Can Xiang
- Institute of Food Science and Biotechnology, Department of Flavor Chemistry, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shaobo Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
6
|
Liu J, Han L, Hou S, Gui L, Yuan Z, Sun S, Wang Z, Yang B. Integrated metabolome and microbiome analysis reveals the effect of rumen-protected sulfur-containing amino acids on the meat quality of Tibetan sheep meat. Front Microbiol 2024; 15:1345388. [PMID: 38389537 PMCID: PMC10883651 DOI: 10.3389/fmicb.2024.1345388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction This study investigated the effects of rumen-protected sulfur-containing amino acids (RPSAA) on the rumen and jejunal microbiota as well as on the metabolites and meat quality of the longissimus lumborum (LL) in Tibetan sheep. Methods By combining 16S rDNA sequencing with UHPLC-Q-TOF MS and Pearson correlation analysis, the relationship between gastrointestinal microbiota, muscle metabolites and meat quality was identified. Results The results showed that feeding RPSAA can increase the carcass weight, abdominal fat thickness (AP-2 group), and back fat thickness (AP-2 and AP-3 group) of Tibetan sheep. The water holding capacity (WHC), texture, and shear force (SF) of LL in the two groups also increased although the fatty acids content and brightness (L*) value significantly decreased in the AP-2 group. Metabolomics and correlation analysis further showed that RPSAA could significantly influence the metabolites in purine metabolism, thereby affecting L* and SF. In addition, RPSAA was beneficial for the fermentation of the rumen and jejunum. In both groups, the abundance of Prevotella 1, Lachnospiraceae NK3A20 group, Prevotella UCG-003, Lachnospiraceae ND3007 group in the rumen as well as the abundance of Eubacterium nodatum group and Mogibacterium group in the jejunum increased. In contrast, that of Turicibacter pathogens in the jejunum was reduced. The above microorganisms could regulate meat quality by regulating the metabolites (inosine, hypoxanthine, linoleic acid, palmitic acid, etc.) in purine and fatty acids metabolism. Discussion Overall, reducing the levels of crude proteins in the diet and feeding RPSAA is likely to improve the carcass quality of Tibetan sheep, with the addition of RPMET (AP-2) yielding the best edible quality, possibly due to its ability to influence the gastrointestinal microbiota to subsequently regulate muscle metabolites.
Collapse
Affiliation(s)
- JiQian Liu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Lijuan Han
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Shengnan Sun
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Baochun Yang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| |
Collapse
|
7
|
Ren C, Chen L, Bai Y, Hou C, Li X, Schroyen M, Zhang D. Comparative effects of phosphorylation and acetylation on glycolysis and myofibrillar proteins degradation in postmortem muscle. Int J Biol Macromol 2024; 257:128567. [PMID: 38061521 DOI: 10.1016/j.ijbiomac.2023.128567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
The study investigated the different effects between protein phosphorylation and acetylation on glycolytic enzyme activity and myofibrillar protein degradation. Lamb longissimus thoracis lumborum muscles were homogenized and then inhibitors were added for incubation at 4 °C. Phosphatase inhibitor was added to produce a high phosphorylation level (PI group) and lysine deacetylase inhibitor was added to produce a high acetylation level (DI group). The lactate and ATP content in the PI group was inhibited compared with that in the DI group (P < 0.05). Phosphofructokinase (PFK) activity was negatively related with the phosphorylation level and was positively related with the acetylation level in the DI group (P < 0.05). The degradation of troponin T and desmin of the DI group were restrained when compared to that in the PI group (P < 0.05). Compared with initial PFK and desmin, the simulation of phosphorylation and acetylation of PFK and desmin showed different electrostatic potential at the surface and a more unstable structure. The phosphorylation level of the DI group was increased, suggesting that the changes of protein acetylation altered protein phosphorylation. In conclusion, compared with protein phosphorylation, protein acetylation had a greater effect on promoting glycolysis and inhibiting protein degradation.
Collapse
Affiliation(s)
- Chi Ren
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux, Belgium
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yuqiang Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux, Belgium
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| |
Collapse
|
8
|
Wu Y, Zhao C, Zhao X, Yang L, Liu C, Jiang L, Liu G, Liu P, Luo L. Multi-omics-based identification of purple acid phosphatases and metabolites involved in phosphorus recycling in stylo root exudates. Int J Biol Macromol 2023; 241:124569. [PMID: 37100319 DOI: 10.1016/j.ijbiomac.2023.124569] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Stylo (Stylosanthes guianensis) is a tropical forage and cover crop that possesses low phosphate (Pi) tolerance traits. However, the mechanisms underlying its tolerance to low-Pi stress, particularly the role of root exudates, remain unclear. This study employed an integrated approach using physiological, biochemical, multi-omics, and gene function analyses to investigate the role of stylo root exudates in response to low-Pi stress. Widely targeted metabolomic analysis revealed that eight organic acids and one amino acid (L-cysteine) were significantly increased in the root exudates of Pi-deficient seedlings, among which tartaric acid and L-cysteine had strong abilities to dissolve insoluble-P. Furthermore, flavonoid-targeted metabolomic analysis identified 18 flavonoids that were significantly increased in root exudates under low-Pi conditions, mainly belonging to the isoflavonoid and flavanone subclasses. Additionally, transcriptomic analysis revealed that 15 genes encoding purple acid phosphatases (PAPs) had upregulated expression in roots under low-Pi conditions. Among them, SgPAP10 was characterized as a root-secreted phosphatase, and overexpression of SgPAP10 enhanced organic-P utilization by transgenic Arabidopsis. Overall, these findings provide detailed information regarding the importance of stylo root exudates in adaptation to low-Pi stress, highlighting the plant's ability to release Pi from organic-P and insoluble-P sources through root-secreted organic acids, amino acids, flavonoids, and PAPs.
Collapse
Affiliation(s)
- Yuanhang Wu
- College of Tropical Crops, Hainan University, Haikou 570228, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Cang Zhao
- College of Tropical Crops, Hainan University, Haikou 570228, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Xingkun Zhao
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Liyun Yang
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Chun Liu
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Lingyan Jiang
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Guodao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Pandao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Lijuan Luo
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China.
| |
Collapse
|
9
|
Wang K, Li Q, Fan Y, Fang P, Zhou H, Huang J. OBHS Drives Abnormal Glycometabolis Reprogramming via GLUT1 in Breast Cancer. Int J Mol Sci 2023; 24:ijms24087136. [PMID: 37108300 PMCID: PMC10138908 DOI: 10.3390/ijms24087136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Due to the poor metabolic conditions fomenting the emergence of the Warburg effect (WE) phenotype, abnormal glycometabolism has become a unique and fundamental research topic in the field of tumor biology. Moreover, hyperglycemia and hyperinsulinism are associated with poor outcomes in patients with breast cancer. However, there are a few studies on anticancer drugs targeting glycometabolism in breast cancer. We hypothesized that Oxabicycloheptene sulfonate (OBHS), a class of compounds that function as selective estrogen receptor modulators, may hold potential in a therapy for breast cancer glycometabolism. Here, we evaluated concentrations of glucose, glucose transporters, lactate, 40 metabolic intermediates, and glycolytic enzymes using an enzyme-linked immunosorbent assay, Western blotting, and targeted metabolomic analysis in, in vitro and in vivo breast cancer models. OBHS significantly inhibited the expression of glucose transporter 1 (GLUT1) via PI3K/Akt signaling pathway to suppress breast cancer progression and proliferation. Following an investigation of the modulatory effect of OBHS on breast cancer cells, we found that OBHS suppressed the glucose phosphorylation and oxidative phosphorylation of glycolytic enzymes, leading to the decreased biological synthesis of ATP. This study was novel in highlighting the role of OBHS in the remodeling of tumor glycometabolism in breast cancer, and this is worth further investigation of breast cancer in clinical trials.
Collapse
Affiliation(s)
- Kexin Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Bayi Road, Wuhan 430072, China
| | - Qiuzi Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Bayi Road, Wuhan 430072, China
| | - Yufeng Fan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Bayi Road, Wuhan 430072, China
| | - Pingping Fang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Haibing Zhou
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Donghu Road, Wuhan 430071, China
| | - Jian Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Bayi Road, Wuhan 430072, China
| |
Collapse
|
10
|
Sabari S, Julmohammad N, Jahurul HAM, Matanjun P, Ab. Wahab N. In Vitro Infant Digestion of Whey Proteins Isolate-Lactose. Foods 2023; 12:667. [PMID: 36766193 PMCID: PMC9914322 DOI: 10.3390/foods12030667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
The model in vitro protein digestion technique has received greater attention due to providing significant advantages compared to in vivo experiments. This research employed an in vitro infant digestive static model to examine the protein digestibility of whey proteins isolate-lactose (WPI-Lac). The polyacrylamide gel electrophoresis (PAGE) pattern for alpha-lactalbumin of WPI at 60 min showed no detectable bands, while the alpha-lactalbumin of the WPI-Lac was completely digested after 5 min of gastric digestion. The beta-lactoglobulin of the WPI-Lac was found to be similar to the beta-lactoglobulin of the WPI, being insignificant at pH 3.0. The alpha-lactalbumin of the WPI decreased after 100 min of duodenal digestion at pH 6.5, and the WPI-Lac was completely digested after 60 min. The peptides were identified as ~2 kilodalton (kDa) in conjugated protein, which indicated that the level of degradation of the protein was high, due to the hydrolysis progress. The conjugated protein increased the responsiveness to digestive proteolysis, potentially leading to the release of immunogenic protein by lactose, and to the creation of hypoallergenic protein.
Collapse
Affiliation(s)
- Sarizan Sabari
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Norliza Julmohammad
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Haque Akanda Md Jahurul
- Department of Agriculture, School of Agriculture, University of Arkansas, 1200 North University Dr., M/S 4913, Pine Bluff, AR 71601, USA
| | - Patricia Matanjun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Noorakmar Ab. Wahab
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
11
|
Protein phosphorylation profile of Atlantic cod (Gadus morhua) in response to pre-slaughter pumping stress and postmortem time. Food Chem 2023; 402:134234. [DOI: 10.1016/j.foodchem.2022.134234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 11/19/2022]
|
12
|
Identification and Functional Prediction of Long Non-Coding RNA in Longissimus Dorsi Muscle of Queshan Black and Large White Pigs. Genes (Basel) 2023; 14:genes14010197. [PMID: 36672938 PMCID: PMC9858627 DOI: 10.3390/genes14010197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Long non-coding RNA (lncRNA) participates in the regulation of various biological processes, but its function and characteristics in intramuscular fat (IMF) deposition in different breeds of pigs have not been fully understood. IMF content is one of the important factors affecting pork quality. In the present study, the differentially expressed lncRNAs (DE lncRNAs) and their target genes were screened by comparing Queshan Black (QS) and Large White (LW) pigs based on RNA-seq. The results displayed 55 DE lncRNAs between QS and LW, 29 upregulated and 26 downregulated, with 172 co-located target genes, and 6203 co-expressed target genes. The results of GO and KEGG analysis showed that the target genes of DE lncRNAs were involved in multiple pathways related to lipogenesis and lipid metabolism, such as the lipid biosynthetic process, protein phosphorylation, activation of MAPK activity, and the Jak-STAT signaling pathway. By constructing regulatory networks, lincRNA-ZFP42-ACTC1, lincRNA-AMY2-STAT1, and/or lincRNA-AMY2/miR-204/STAT1 were sieved, and the results indicate that lncRNA could participate in IMF deposition through direct regulation or ceRNA. These findings provide a basis for analyzing the molecular mechanism of IMF deposition in pigs and lay a foundation for developing and utilizing high-quality resources of local pig breeds.
Collapse
|
13
|
Li Y, Fan K, Shen J, Wang Y, Jeyaraj A, Hu S, Chen X, Ding Z, Li X. Glycine-Induced Phosphorylation Plays a Pivotal Role in Energy Metabolism in Roots and Amino Acid Metabolism in Leaves of Tea Plant. Foods 2023; 12:foods12020334. [PMID: 36673426 PMCID: PMC9858451 DOI: 10.3390/foods12020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Phosphorylation is the most extensive post-translational modification of proteins and thus regulates plant growth. However, the regulatory mechanism of phosphorylation modification on the growth of tea plants caused by organic nitrogen is still unclear. In order to explore the phosphorylation modification mechanism of tea plants in response to organic nitrogen, we used glycine as the only nitrogen source and determined and analyzed the phosphorylated proteins in tea plants by phosphoproteomic analysis. The results showed that the phosphorylation modification induced by glycine-supply played important roles in the regulation of energy metabolism in tea roots and amino acid metabolism in tea leaves. In roots, glycine-supply induced dephosphorylation of proteins, such as fructose-bisphosphate aldolase cytoplasmic isozyme, glyceraldehyde-3-phosphate dehydrogenase, and phosphoenolpyruvate carboxylase, resulted in increased intensity of glycolysis and decreased intensity of tricarboxylic acid cycle. In leaves, the glycine-supply changed the phosphorylation levels of glycine dehydrogenase, aminomethyltransferase, glutamine synthetase, and ferredoxin-dependent glutamate synthase, which accelerated the decomposition of glycine and enhanced the ability of ammonia assimilation. In addition, glycine-supply could improve the tea quality by increasing the intensity of amino acids, such as theanine and alanine. This research clarified the important regulatory mechanism of amino acid nitrogen on tea plant growth and development through protein phosphorylation.
Collapse
Affiliation(s)
- Yuchen Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Anburaj Jeyaraj
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunkai Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaotang Ding
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Correspondence: (Z.D.); (X.L.); Tel.: +86-(53)-288030231 (Z.D.); +86-(25)-84396651 (X.L.)
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.D.); (X.L.); Tel.: +86-(53)-288030231 (Z.D.); +86-(25)-84396651 (X.L.)
| |
Collapse
|
14
|
Chen C, Guo Z, Shi X, Guo Y, Ma G, Ma J, Yu Q. H 2O 2-induced oxidative stress improves meat tenderness by accelerating glycolysis via hypoxia-inducible factor-1α signaling pathway in postmortem bovine muscle. Food Chem X 2022; 16:100466. [PMID: 36225213 PMCID: PMC9550526 DOI: 10.1016/j.fochx.2022.100466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
Abstract
Reactive oxygen species (ROS) affect meat quality through multiple biochemical pathways. To investigate the effect of ROS on postmortem glycolysis and tenderness of bovine muscle, ROS content, glycolytic potential, glycolysis rate-limiting enzyme activities, expression of hypoxia-inducible factor-1α (HIF-1α), phosphatidylinositol 3-kinase (PI3K), serine-threonine kinase (AKT), phosphorylated AKT (p-AKT), and tenderness were determined in the H2O2 group and control group. Results showed that the H2O2 group exhibited significantly higher ROS content within 48 h, coupled with increased glycolytic potential, pH decline, hexokinase (HK), and phosphofructokinase activities (PFK) early postmortem. These were attributed to ROS-induced PI3K/AKT signaling pathway activation and resultant HIF-1α accumulation. Moreover, shear force in the H2O2 group reached the peak 12 h earlier and decreased obviously after 24 h, accompanied by a significantly higher myofibril fragmentation index (MFI). These findings suggested that ROS drive HIF-1α accumulation by activating PI3K/AKT signaling pathway, thereby accelerating glycolysis and tenderization of postmortem bovine muscle.
Collapse
Affiliation(s)
- Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaobin Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xixiong Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuxuan Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoyuan Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jibing Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
15
|
Ijaz M, Zhang D, Hou C, Mahmood M, Hussain Z, Zheng X, Li X. Changes in postmortem metabolite profile of atypical and typical DFD beef. Meat Sci 2022; 193:108922. [DOI: 10.1016/j.meatsci.2022.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022]
|
16
|
Ren C, Li X, Bai Y, Schroyen M, Zhang D. Phosphorylation and acetylation of glycolytic enzymes cooperatively regulate their activity and lamb meat quality. Food Chem 2022; 397:133739. [DOI: 10.1016/j.foodchem.2022.133739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/26/2022] [Accepted: 07/16/2022] [Indexed: 11/04/2022]
|
17
|
Rabe P, Gehmlich M, Peters A, Krumbholz P, Nordström A, Stäubert C. Combining metabolic phenotype determination with metabolomics and transcriptional analyses to reveal pathways regulated by hydroxycarboxylic acid receptor 2. Discov Oncol 2022; 13:47. [PMID: 35697980 PMCID: PMC9192902 DOI: 10.1007/s12672-022-00503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The adaptation of cellular metabolism is considered a hallmark of cancer. Oncogenic signaling pathways support tumorigenesis and cancer progression through the induction of certain metabolic phenotypes associated with altered regulation of key metabolic enzymes. Hydroxycarboxylic acid receptor 2 (HCA2) is a G protein-coupled receptor previously shown to act as a tumor suppressor. Here, we aimed to unveil the connection between cellular metabolism and HCA2 in BT-474 cells. Moreover, we intend to clarify how well this metabolic phenotype is reflected in transcriptional changes and metabolite levels as determined by global metabolomics analyses. METHODS We performed both, siRNA mediated knockdown of HCA2 and stimulation with the HCA2-specific agonist monomethyl fumarate. Seahorse technology was used to determine the role of HCA2 in BT-474 breast cancer cell metabolism and its potential to induce a switch in the metabolic phenotype in the presence of different energy substrates. Changes in the mRNA expression of metabolic enzymes were detected with real-time quantitative PCR (RT-qPCR). Untargeted liquid chromatography-mass spectrometry (LC-MS) metabolic profiling was used to determine changes in metabolite levels. RESULTS Knockdown or stimulation of HCA2 induced changes in the metabolic phenotype of BT474 cells dependent on the availability of energy substrates. The presence of HCA2 was associated with increased glycolytic flux with no fatty acids available. This was reflected in the increased mRNA expression of the glycolytic enzymes PFKFB4 and PKM2, which are known to promote the Warburg effect and have been described as prognostic markers in different types of cancer. With exogenous palmitate present, HCA2 caused elevated fatty acid oxidation and likely lipolysis. The increase in lipolysis was also detectable at the transcriptional level of ATGL and the metabolite levels of palmitic and stearic acid. CONCLUSIONS We combined metabolic phenotype determination with metabolomics and transcriptional analyses and identified HCA2 as a regulator of glycolytic flux and fatty acid metabolism in BT-474 breast cancer cells. Thus, HCA2, for which agonists are already widely used to treat diseases such as psoriasis or hyperlipidemia, may prove useful as a target in combination cancer therapy.
Collapse
Affiliation(s)
- Philipp Rabe
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Mareike Gehmlich
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Anna Peters
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Petra Krumbholz
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Anders Nordström
- Swedish Metabolomics Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, 901 87, Umeå, Sweden
| | - Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
18
|
Ijaz M, Li X, Zhang D, Bai Y, Hou C, Hussain Z, Zheng X, Huang C. Sarcoplasmic and myofibrillar phosphoproteins profile of beef M. longissimus thoracis with different pH u at different days postmortem. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2464-2471. [PMID: 34642961 DOI: 10.1002/jsfa.11586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The abnormal ultimate pH (pHu ) in postmortem muscles affect the meat quality and results in substantial economic losses. Dark, firm, and dry (DFD) meat linked with the higher postmortem pHu values and exhibited many quality issues such as dark color, tough texture and shorter shelf life. This research aimed to investigate the effect of protein phosphorylation on variations in beef pHu in order to explore the possible mechanisms underlying DFD meat formation. RESULTS Glycogen and lactate contents were higher, while L* and a* were lower in high pHu beef. Shear force was higher in intermediate pHu group. Global phosphorylation of sarcoplasmic proteins was higher in low pHu samples on day 1 and of myofibrillar proteins was higher in intermediate pHu meat on days 1 and 2 postmortem. Sarcoplasmic protein bands with different phosphorylation levels were identified as containing some glycometabolism and stress response proteins and phosphorylated myofibrillar protein bands were identified sarcomeric and metabolic proteins. CONCLUSIONS Phosphorylation of multiple proteins of glycolytic pathway and contractile machinery may play critical roles in development of DFD beef. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muawuz Ijaz
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- Department of Animal Sciences, CVAS-Jhang 35200, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Yuqiang Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Zubair Hussain
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Xiaochun Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Caiyan Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
19
|
Identification and characterization of phosphoproteins in the striated and smooth adductor muscles of Yesso scallop Patinopecten yessoensis. Food Chem 2022; 372:131242. [PMID: 34818726 DOI: 10.1016/j.foodchem.2021.131242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022]
Abstract
Many proteins are known to be phosphorylated, affecting important regulatory factors of muscle quality in the aquatic animals. The striated and smooth adductor muscles of Yesso scallop Patinopecten yessoensis were used to investigate muscle texture and identify phosphoproteins by histological methods and phosphoproteomic analysis. Our present study reveals that muscle fiber density is in relation to meat texture of the striated and smooth adductor muscles. The phosphoproteomic analysis has identified 764 down-regulated and 569 up-regulated phosphosites on 743 phosphoproteins in the smooth muscle compared to the striated part. The identification of unique phosphorylation sites in glycolytic enzymes may increase the activity of glycolytic enzymes and the rate of glycolysis in the striated adductor muscle. The present findings will provide new evidences on the role of muscle structure and protein phosphorylation in scallop muscle quality and thus help to develop strategies for improving meat quality of scallop products.
Collapse
|
20
|
Han Y, Shi W, Tang Y, Zhou W, Sun H, Zhang J, Yan M, Hu L, Liu G. Microplastics and bisphenol A hamper gonadal development of whiteleg shrimp (Litopenaeus vannamei) by interfering with metabolism and disrupting hormone regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152354. [PMID: 34914981 DOI: 10.1016/j.scitotenv.2021.152354] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Gonadal development is a prerequisite for the reproductive success of an organism, and might be affected by environmental factors such as emergent pollutants. Although marine crustaceans are threatened by ubiquitous emergent pollutants such as microplastics (MPs) and bisphenol A (BPA) under realistic scenarios, studies about the impacts of these pollutants on the gonadal development of crustacean species are rare. In this study, the effects of MPs and BPA, alone or in combination, on gonadal development were investigated in whiteleg shrimp (Litopenaeus vannamei). The results obtained demonstrated that whiteleg shrimp exposed to MPs and BPA had significantly smaller gonad-somatic index (GSI) and an obvious delay in the gonad developmental stage. In addition, exposure of whiteleg shrimp to pollutants tested resulted in a reduction in the oxygen consumption rate, elevation in the ammonia excretion rate, decline in the O: N ratio, and downregulation in the expression of metabolism-related genes, indicating significant disruptions of shrimp metabolism by the pollutants. Furthermore, in addition to a few exceptions, both the in vivo contents of gonadal development-related hormones (GIH and MIH) and the expression of genes encoding regulatory hormones (GIH, MIH, and CHH) were upregulated by the exposure of whiteleg shrimp to the pollutants investigated, suggesting a significant obstruction of endocrine regulation. Moreover, MP-BPA coexposure was shown to be more toxic to whiteleg shrimp than the corresponding single exposures and significantly greater amount of BPA accumulated in the gonads (both testis and ovaries) of shrimp with the coexistence of MPs, which may be caused by the Trojan horse effect and summation of the toxic impacts on common targets. In general, the data obtained in this study demonstrated that MPs and BPA at environmentally realistic concentrations significantly inhibited the gonadal development of whiteleg shrimp probably by interfering with metabolism and disrupting endocrine regulation.
Collapse
Affiliation(s)
- Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiongming Zhang
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, Wenzhou 325005, China; Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Maocang Yan
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, Wenzhou 325005, China; Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Lihua Hu
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, Wenzhou 325005, China; Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Integrated proteomic, phosphoproteomic, and N-glycoproteomic analyses of the longissimus thoracis of yaks. Curr Res Food Sci 2022; 5:1494-1507. [PMID: 36132491 PMCID: PMC9483648 DOI: 10.1016/j.crfs.2022.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/27/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Yaks (Bos mutus) live in the Qinghai–Tibet plateau. The quality of yak meat is unique due to its genetic and physiological characteristics. Identification of the proteome of yak muscle could help to reveal its meat-quality properties. The common proteome, phosphoproteome, and N-glycoproteome of yak longissimus thoracis (YLT) were analyzed by liquid chromatography-tandem mass spectrometry-based shotgun analysis. A total of 1812 common proteins, 1303 phosphoproteins (3918 phosphorylation sites), and 204 N-glycoproteins (285 N-glycosylation sites) were identified in YLT. The common proteins in YLT were involved mainly in myofibril structure and energy metabolism; phosphoproteins were associated primarily with myofibril organization, regulation of energy metabolism, and signaling; N-glycoproteins were engaged mainly in extracellular-matrix organization, cellular immunity, and organismal homeostasis. We reported, for the first time, the “panorama” of the YLT proteome, specifically the N-glycoproteome of YLT. Our results provide essential information for understanding post mortem physiology (rigor mortis and aging) and the quality of yak meat. A total of 2650 proteins were identified in yak longissimus thoracis. Common proteins were involved mainly in myofibril structure and energy metabolism. Phosphoproteins were associated with myofibrils, energy metabolism, and signaling. N-glycoproteins were engaged mainly in ECM organization, immunity, and homeostasis.
Collapse
|
22
|
Impact of Chilling Rate on the Evolution of Volatile and Non-Volatile Compounds in Raw Lamb Meat during Refrigeration. Foods 2021; 10:foods10112792. [PMID: 34829073 PMCID: PMC8620043 DOI: 10.3390/foods10112792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate the effect of chilling rate (1.44, 22.2, and 32.4 °C/h) on the evolution of volatile and non-volatile compounds in raw lamb meat during refrigeration (1, 24, 72, and 120 h). Through orthogonal projection to latent structure-discriminant analysis, the calculation of odor activity values (OAV > 1) and taste activity values (TAV > 1) analysis, 1-octen-3-ol, (E, E)-2,4-decadienal, nonanal, hexanal, nona-3,5-dien-2-one, 2,3-octanedione, hexanoic acid, 1-nonen-4-ol, aspartate (Asp), Glutamic Acid (Glu), 5′-GMP, 5′-IMP, and 5′-AMP were regarded as differential flavor or taste compounds for raw meat undergone different chilling rates. With a rapid chilling rate at 24 h after slaughter, the contribution of 1-octen-3-ol decreased, but (E, E)-2,4-decadienal increased. Moreover, at 24 h post-mortem, the equivalent umami concentration of Asp, Glu, 5′-GMP, 5′-IMP and 5′-AMP in raw meat were significantly lower at a chilling rate of 1.44 °C/h than 32.4 °C/h (p < 0.05). Conclusively, under the rapid chilling rate, more fatty odor and umami compounds accumulated in 24 h aged meat.
Collapse
|
23
|
Li X, Zhang D, Ren C, Bai Y, Ijaz M, Hou C, Chen L. Effects of protein posttranslational modifications on meat quality: A review. Compr Rev Food Sci Food Saf 2020; 20:289-331. [PMID: 33443799 DOI: 10.1111/1541-4337.12668] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/14/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Meat quality plays an important role in the purchase decision of consumers, affecting producers and retailers. The formation mechanisms determining meat quality are intricate, as several endogenous and exogenous factors contribute during antemortem and postmortem periods. Abundant research has been performed on meat quality; however, unexpected variation in meat quality remains an issue in the meat industry. Protein posttranslational modifications (PTMs) regulate structures and functions of proteins in living tissues, and recent reports confirmed their importance in meat quality. The objective of this review was to provide a summary of the research on the effects of PTMs on meat quality. The effects of four common PTMs, namely, protein phosphorylation, acetylation, S-nitrosylation, and ubiquitination, on meat quality were discussed, with emphasis on the effects of protein phosphorylation on meat tenderness, color, and water holding capacity. The mechanisms and factors that may affect the function of protein phosphorylation are also discussed. The current research confirms that meat quality traits are regulated by multiple PTMs. Cross talk between different PTMs and interactions of PTMs with postmortem biochemical processes need to be explored to improve our understanding on factors affecting meat quality.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dequan Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chi Ren
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqiang Bai
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muawuz Ijaz
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengli Hou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Chen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Wang Y, Liu R, Hou Q, Tian X, Fan X, Zhang W, Zhou G. Comparison of activity, expression and S-nitrosylation of glycolytic enzymes between pale, soft and exudative and red, firm and non-exudative pork during post-mortem aging. Food Chem 2020; 314:126203. [PMID: 31978718 DOI: 10.1016/j.foodchem.2020.126203] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/09/2019] [Accepted: 01/11/2020] [Indexed: 11/18/2022]
Abstract
The activity, expression and S-nitrosylation of glycogen phosphorylase (GP), phosphofructokinase (PFK) and pyruvate kinase (PK) was compared between pale, soft and exudative (PSE) and red, firm and non-exudative (RFN) pork. The nitric oxide synthase (NOS) activity of RFN pork was higher than PSE pork (P < 0.05). Glycogen and lactic acid content were significantly different between PSE and RFN samples at 1 h postmortem (P < 0.05). Compared to PSE pork, RFN pork had lower activities and higher S-nitrosylation levels of GP, PFK and PK (P < 0.05). Moreover, GP expression in RFN pork was lower (P < 0.05) while no significant differences of PFK and PK expression were observed between these two groups. These data suggest that protein S-nitrosylation can presumably regulate glycolysis by modulating glycolytic enzymes activities and then regulate the development of PSE pork.
Collapse
Affiliation(s)
- Yingying Wang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Qin Hou
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaona Tian
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoquan Fan
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|