1
|
Liu Y, Liu Z, Xing T, Li J, Zhang L, Zhao L, Gao F. Effects of chronic heat stress on Ca 2+ homeostasis, apoptosis, and protein carbonylation profiles in the breast muscle of broilers. Poult Sci 2024; 103:104342. [PMID: 39369492 PMCID: PMC11491962 DOI: 10.1016/j.psj.2024.104342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024] Open
Abstract
Heat stress (HS) largely impairs the quality of broiler breast meat through protein oxidative modification. This study aimed to investigate the carbonylation pattern of Ca2+ channels and apoptotic proteins in the breast muscle of heat-stressed broilers. A total of 144 twenty-eight-day-old male Arbor Acres broilers were randomly divided into three treatment groups. The normal control (NC) group was kept at 22°C and provided with unlimited feed. The HS group was exposed to 32°C and provided with unlimited feed. The pair-fed (PF) group was kept at 22°C and given an amount of feed equivalent to that consumed by the HS group on the previous day. Results showed that broilers under HS conditions had a higher respiratory rate than those in NC and PF groups (P < 0.05). HS disrupted the morphology and structure of breast muscle fibers by decreasing the average diameters and average density of myofibers compared to the NC group (P < 0.05). HS increased the mean fluorescence intensity of the positive carbonyl signal in breast muscle compared with the NC group (P < 0.05). Besides, the pectoral Ca2+ concentration in the sarcoplasmic reticulum, cytoplasm, and mitochondria was elevated by HS when compared with the NC group (P < 0.05). In comparison to the NC and PF groups, HS increased the apoptosis rate and caspase-3 activity in the breast muscle (P < 0.05). Furthermore, HS elevated the relative protein expressions of plasma membrane Ca2+-ATPase, Na+/Ca2+ exchanger 1, and sarco/endoplasmic reticulum calcium transport ATPase 1 compared to the NC group (P < 0.05). Higher relative protein expression of μ-calpain and lower relative protein expression of cytosolic cytochrome complex were found in the HS group than the NC group (P < 0.05). HS decreased the carbonylation levels of transient receptor potential canonical 1 and inositol 1,4,5-trisphosphate receptor compared to the NC group (P < 0.05). Additionally, the carbonylation levels of cleaved caspase-3 and precursor caspase-9 were increased and decreased, respectively, by HS treatment compared to the NC group (P < 0.05). In conclusion, HS damages the myofiber based on Ca2+ dyshomeostasis and apoptosis, which are potentially associated with protein carbonylation. These results shed new light on the possible mechanism behind the development of poor meat quality in broilers due to HS.
Collapse
Affiliation(s)
- Yingsen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaolong Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Oke OE, Akosile OA, Oni AI, Opowoye IO, Ishola CA, Adebiyi JO, Odeyemi AJ, Adjei-Mensah B, Uyanga VA, Abioja MO. Oxidative stress in poultry production. Poult Sci 2024; 103:104003. [PMID: 39084145 PMCID: PMC11341942 DOI: 10.1016/j.psj.2024.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Oxidative stress (OS) is a major concern that impacts the overall health of chickens in modern production systems. It is characterized by an imbalance between antioxidant defence mechanisms and the production of reactive oxygen species (ROS). This literature review aims to provide a comprehensive overview of oxidative stress in poultry production, with an emphasis on its effects on growth performance, immune responses, and reproductive outcomes. This review highlights the intricate mechanisms underlying OS and discusses how various factors, including dietary components, genetic predispositions, and environmental stressors can exacerbate the production of ROS. Additionally, the impact of oxidative stress on the production performance and physiological systems of poultry is examined. The study also emphasizes the relationship between oxidative stress and poultry diseases, highlighting how impaired antioxidant defenses increase bird's susceptibility to infections. The review assesses the existing approaches to reducing oxidative stress in chickens in response to these challenges. This includes managing techniques to lower stress in the production environment, antioxidant supplements, and nutritional interventions. The effectiveness of naturally occurring antioxidants, including plant extracts, minerals, and vitamins to improve poultry resistance to oxidative damage is also examined. To improve the antioxidant defenses of poultry under stress conditions, the activation of cellular homeostatic networks termed vitagenes, such as Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is necessary for the synthesis of protective factors that can counteract the increased production of ROS and RNS. Future studies into novel strategies for managing oxidative stress in chicken production would build on these research advances and the knowledge gaps identified in this review.
Collapse
Affiliation(s)
- O E Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria; Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo.
| | - O A Akosile
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - A I Oni
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - I O Opowoye
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - C A Ishola
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - J O Adebiyi
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - A J Odeyemi
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - B Adjei-Mensah
- Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo
| | - V A Uyanga
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - M O Abioja
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
3
|
Liu Y, Sun D, Xu C, Liu X, Tang M, Ying S. In-depth transcriptome profiling of Cherry Valley duck lungs exposed to chronic heat stress. Front Vet Sci 2024; 11:1417244. [PMID: 39104549 PMCID: PMC11298465 DOI: 10.3389/fvets.2024.1417244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Amidst rising global temperatures, chronic heat stress (CHS) is increasingly problematic for the poultry industry. While mammalian CHS responses are well-studied, avian-specific research is lacking. This study uses in-depth transcriptome sequencing to evaluate the pulmonary response of Cherry Valley ducks to CHS at ambient temperatures of 20°C and a heat-stressed 29°C. We detailed the CHS-induced gene expression changes, encompassing mRNAs, lncRNAs, and miRNAs. Through protein-protein interaction network analysis, we identified central genes involved in the heat stress response-TLR7, IGF1, MAP3K1, CIITA, LCP2, PRKCB, and PLCB2. Subsequent functional enrichment analysis of the differentially expressed genes and RNA targets revealed significant engagement in immune responses and regulatory processes. KEGG pathway analysis underscored crucial immune pathways, specifically those related to intestinal IgA production and Toll-like receptor signaling, as well as Salmonella infection and calcium signaling pathways. Importantly, we determined six miRNAs-miR-146, miR-217, miR-29a-3p, miR-10926, miR-146b-5p, and miR-17-1-3p-as potential key regulators within the ceRNA network. These findings enhance our comprehension of the physiological adaptation of ducks to CHS and may provide a foundation for developing strategies to improve duck production under thermal stress.
Collapse
Affiliation(s)
- Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dongyue Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Congcong Xu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiaoyong Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shijia Ying
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
4
|
Gao Z, Zhang D, Wu R, He J, Ma J, Sun X, Gu M, Wang Z. Fluctuation of flavor quality in roasted duck: The consequences of raw duck preform's repetitive freeze-thawing. Food Res Int 2024; 187:114424. [PMID: 38763675 DOI: 10.1016/j.foodres.2024.114424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
This study aimed to investigate the changes in flavor quality of roasted duck during repetitive freeze-thawing (FT, -20 ℃ for 24 h, then at 4 ℃ for 24 h for five cycles) of raw duck preforms. HS-SPME/GC-MS analysis showed that more than thirty volatile flavor compounds identified in roasted ducks fluctuated with freeze-thawing of raw duck preforms, while hexanal, nonanal, 1-octen-3-ol, and acetone could as potential flavor markers. Compared with the unfrozen raw duck preforms (FT-0), repetitive freeze-thawing increased the protein/lipid oxidation and cross-linking of raw duck preforms by maintaining the higher carbonyl contents (1.40 ∼ 3.30 nmol/mg), 2-thiobarbituric acid reactive substances (0.25 ∼ 0.51 mg/kg), schiff bases and disulfide bond (19.65 ∼ 30.65 μmol/g), but lower total sulfhydryl (73.37 ∼ 88.94 μmol/g) and tryptophan fluorescence intensity. Moreover, A lower protein band intensity and a transformation from α-helixes to β-sheets and random coils were observed in FT-3 ∼ FT-5. The obtained results indicated that multiple freeze-thawing (more than two cycles) of raw duck preforms could be detrimental to the flavor quality of the roasted duck due to excessive oxidation and degradation.
Collapse
Affiliation(s)
- Ziwu Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Ruiyun Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Jinhua He
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Jiale Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xiangxiang Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Minghui Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
5
|
Fu B, Fang C, Li Z, Zeng Z, He Y, Chen S, Yang H. The Effect of Heat Stress on Sensory Properties of Fresh Oysters: A Comprehensive Study Using E-Nose, E-Tongue, Sensory Evaluation, HS-SPME-GC-MS, LC-MS, and Transcriptomics. Foods 2024; 13:2004. [PMID: 38998512 PMCID: PMC11241022 DOI: 10.3390/foods13132004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Heat stress has received growing concerns regarding the impact on seafood quality. However, the effects of heat stress on the sensory properties of seafood remain unknown. In this study, the sensory properties of fresh oyster (Crassostrea ariakensis) treated with chronic heat stress (30 °C) for 8 weeks were characterized using electronic nose, electronic tongue, sensory evaluation, HS-SPME-GC-MS, LC-MS and transcriptomics. Overall, chronic heat stress reduced the overall sensory properties of oysters. The metabolic network constructed. based on enrichment results of 423 differential metabolites and 166 differentially expressed genes, showed that the negative effects of chronic heat stress on the sensory properties of oysters were related to oxidative stress, protein degradation, lipid oxidation, and nucleotide metabolism. The results of the study provide valuable insights into the effects of heat stress on the sensory properties of oysters, which are important for ensuring a sustainable supply of high-quality seafood and maintaining food safety.
Collapse
Affiliation(s)
- Bing Fu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Chang Fang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Zhongzhi Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Zeqian Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yinglin He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Shijun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| |
Collapse
|
6
|
Gu T, Duan M, Chen L, Tian Y, Xu W, Zeng T, Lu L. Proteomic-metabolomic combination analysis reveals novel biomarkers of meat quality that differ between young and older ducks. Poult Sci 2024; 103:103530. [PMID: 38417328 PMCID: PMC10909889 DOI: 10.1016/j.psj.2024.103530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 03/01/2024] Open
Abstract
In order to explore the difference and its underlying mechanism between young and older ducks, 60-day-old (D60) and 300-day-old (D300) of young ducks and 900-day-old ducks (D900) of older ducks were selected and studied. HE staining indicated that breast muscle fibers in the D900 group were more inseparable than D60 and D300 groups and the greater redness were showed in D300 and D900 groups. Quantitative proteomic analyses were conducted to further identify differences between young and older ducks that 61 proteins overlapped in the comparative analysis of the D900 vs. D60 and D900 vs. D300 groups. Furthermore, metabolomics analysis from the D900 group showed marked differences from the results of the D60 and D300 groups in 31 unique metabolites. In particular, lower guanosine, hypoxanthine, guanine, and doxefazepam levels indicated the increased nutritional value of older ducks. Integrated proteomics and metabolomics analysis showed that purine metabolism was specifically enriched, indicating that NME3, RRM2B, AMPD1, and AMPD3 might mainly affect meat from older ducks. In conclusion, our results indicated that meat from 900-day-old ducks possessed a unique biochemical signature that could provide candidate biomarkers to distinguish young ducks from older ducks.
Collapse
Affiliation(s)
- Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Mingcai Duan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China.
| |
Collapse
|
7
|
Dong Y, Zhang H, Guo M, Mei J, Xie J. Effect of different slaughter/stunning methods on stress response, quality indicators and susceptibility to oxidation of large yellow croaker (Larimichthys crocea). Vet Res Commun 2023; 47:1879-1891. [PMID: 37171556 DOI: 10.1007/s11259-023-10136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023]
Abstract
This study aimed to investigate the effects of different slaughter methods (immersion in ice/water slurry, T1; gill cut, T2; CO2 asphyxia, T3; percussion (hit on the head with a stick), T4; Melissa officinalis L. essential oil + CO2, T5) on physiological stress, oxidative stress, and muscle quality in large yellow croaker. In terms of physiological stress, the levels of glucose (GLU), lactate dehydrogenase (LDH), and catalase (CAT) in CO2 asphyxia samples were significantly lower than those in other samples (p < 0.05). The level of cortisol (COR) in T1 sample was 1.25-1.84 times higher than that of other samples. The GLU level of T1 group was 3.2 times higher than that of T3 sample, and significantly higher than that of other samples. The creatine phosphokinase (CPK) and CAT levels of T2 samples were the highest (2.03 ng/mL and 8.34 U/mL, respectively). Furthermore, the superoxide dismutase (SOD) and glutathione peroxidase (GPx) analysis revealed that T3 and T4 samples could maintain good antioxidant enzyme activity during cold storage. The T3 samples maintained the stability of the protein (the lowest carbonyls and surface hydrophobicity) and reduced lipid oxidation (lower TBARS). In addition, the analysis of pH and water-holding capacity (WHC) revealed that T3 samples had better muscle quality. The muscle of T2 samples kept better color due to bloodletting treatment. The samples obtained after addition of Melissa officinalis L. essential oil had poorer indexes in all aspects compared to the T3 samples, which might be caused by the long anesthesia time of the essential oil.
Collapse
Affiliation(s)
- Yixuan Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Hongzhi Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Meijie Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, 201306, China.
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, 201306, China.
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, 201306, China.
| |
Collapse
|
8
|
Dong Y, Zhang H, Mei J, Xie J. Effect of different stunning methods on antioxidant status, myofibrillar protein oxidation, and gelation properties of large yellow croaker during postmortem. Food Chem X 2023; 18:100709. [PMID: 37252209 PMCID: PMC10213177 DOI: 10.1016/j.fochx.2023.100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/23/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Post-mortem muscle biochemical processes play a crucial role on fish fillets quality and they are strictly linked to stunning methods. The improper stunning methods before slaughter could cause the fish to deteriorate more quickly during cold storage. This study aimed to investigate the effect of stunning methods (hit on the head, T1; gill cut, T2; immersion in ice/water slurry, T3; CO2 narcosis, T4; 40% CO2 + 30 % N2 + 30% O2, T5) on myofibrillar proteins (MPs) of large yellow croaker. The results indicated that T2 and T3 samples were significantly damaged compared with other samples, which reflected that the activities of total superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were significantly damaged during cold storage in T2 and T3 samples. And the gill cut and immersion in ice/water slurry resulted in the generation of protein carbonyl, the decrease of Ca2+-ATPase, free ammonia and protein solubility, and the production of dityrosine during storage. In addition, MPs gel of T2 and T3 samples showed the decrease of water hold capacity (WHC) and whiteness, structure destruction, and water migration. The T4 samples had the least damage of MPs and gel structure during cold storage.
Collapse
Affiliation(s)
- Yixuan Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hongzhi Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
9
|
Li Q, Sun X, Mubango E, Zheng Y, Liu Y, Zhang Y, Tan Y, Luo Y, Hong H. Effects of protein and lipid oxidation on the water holding capacity of different parts of bighead carp: Eye, dorsal, belly and tail muscles. Food Chem 2023; 423:136238. [PMID: 37156139 DOI: 10.1016/j.foodchem.2023.136238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/10/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
The quality of fish can change due to differences in the lipid and protein oxidation rates in different muscles. This study examined vacuum-packed eye muscle (EM), dorsal muscle (DM), belly muscle (BM), and tail muscle (TM) of bighead carp frozen for 180 days. The results reveal that EM had the highest lipid content and the lowest protein content, while DM had the lowest lipid content and the highest protein content. EM also showed the highest values of centrifugal loss and cooking loss, and the correlation analysis showed that these losses were positively correlated with dityrosine content and negatively correlated with conjugated triene content. The content of carbonyl, disulfide bond, and surface hydrophobicity of myofibrillar protein (MP) also increased with time, with DM having the highest values. The microstructure of EM was looser than other muscles. Therefore, DM had the fastest oxidation rate and EM had the lowest water holding capacity.
Collapse
Affiliation(s)
- Qing Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyue Sun
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Elliot Mubango
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yueyue Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yihan Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
10
|
Sávio de Almeida Assunção A, Aparecida Martins R, Cavalcante Souza Vieira J, Campos Rocha L, Kaiser de Lima Krenchinski F, Afonso Rabelo Buzalaf M, Roberto Sartori J, de Magalhães Padilha P. Shotgun proteomics reveals changes in the pectoralis major muscle of broilers supplemented with passion fruit seed oil under cyclic heat stress conditions. Food Res Int 2023; 167:112731. [PMID: 37087218 DOI: 10.1016/j.foodres.2023.112731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
The aim of this study was to characterize the proteins differentially expressed in the pectoralis major muscle of broilers supplemented with passion fruit seed oil (PFSO) under cyclic heat stress conditions. Ninety one-day-old male chicks were housed in cages arranged in a climatic chamber, where they were kept under cyclic heat stress for eight hours a day from the beginning to the end of the experiment. The birds were divided into two experimental groups, one group supplemented with 0.9% PFSO and a control group (CON) without PFSO supplementation. At 36 days of age, 18 birds were slaughtered to collect muscle samples. From pools of breast fillet samples from each group, proteolytic cleavage of the protein extracts was performed, and later, the peptides were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The 0.9% PFSO supplementation revealed the modulation of 57 proteins in the pectoralis major muscle of broilers exposed to cyclic heat stress. Among them, four proteins were upregulated, and 46 proteins were downregulated. In addition, seven proteins were expressed only in the CON group. These results suggest that PFSO may increase heat tolerance, with a possible reduction in oxidative stress, activation of neuroprotective mechanisms, protection against apoptosis, decrease in inflammatory responses, and regulation of energy metabolism.
Collapse
Affiliation(s)
| | - Renata Aparecida Martins
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Leone Campos Rocha
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - José Roberto Sartori
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | |
Collapse
|
11
|
Effects of iron-catalyzed oxidation and methemoglobin oxidation systems on endogenous enzyme activity and myofibrillar protein degradation in yak meat. Food Chem 2023; 404:134647. [DOI: 10.1016/j.foodchem.2022.134647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/24/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022]
|
12
|
Mao T, Xia C, Zeng T, Xia Q, Zhou C, Cao J, He J, Pan D, Wang D. The joint effects of ultrasound and modified atmosphere packaging on the storage of sauced ducks. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Wang R, Guo Y, Shi Z, Qin S. A quantitative proteomic analyses of primary myocardial cell injury induced by heat stress in chicken embryo. J Therm Biol 2023; 112:103461. [PMID: 36796906 DOI: 10.1016/j.jtherbio.2023.103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
In this study, the model of heat stress was constructed in primary chick embryonic myocardial cells at 42 °C for 4 h. Proteome analysis using DIA identified 245 differentially expressed proteins (DEPs) (Q-value <0.05, fold change >1.5), of which 63 proteins were up-regulated and 182 proteins were down-regulated. Many were related to metabolism, oxidative stress, oxidative phosphorylation and apoptosis. Gene Ontology (GO) analysis showed that many DEPs under heat stress were involved in regulating metabolites and energy, cellular respiration, catalytic activity and stimulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEPs were enriched in metabolic pathways, oxidative phosphorylation, citrate cycle (TCA cycle), cardiac muscle contraction, and carbon metabolism. The results could help understanding of the effect of heat stress on myocardial cells and even the heart and possible action mechanism at the protein level.
Collapse
Affiliation(s)
- Rui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Yanli Guo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zhaoguo Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Shizhen Qin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
14
|
Zhang M, Liu K. Lipid and Protein Oxidation of Brown Rice and Selenium-Rich Brown Rice during Storage. Foods 2022; 11:foods11233878. [PMID: 36496686 PMCID: PMC9737139 DOI: 10.3390/foods11233878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Selenium-rich rice has become one of the effective ways to increase people's selenium intake. Selenium-containing proteins have higher antioxidant properties, which may lead to selenium-rich brown rice (Se-BR) having better storage stability than ordinary brown rice (BR). By measuring the peroxidation value, fatty acid value, carbonyl value and protein secondary structure, it was found that Se-BR had higher oxidation resistance stability than BR. The biological function of the differential proteins (DEPs) between ordinary brown rice stored for 0 days (BR-0) and 180 days (BR-6) as well as Se-rich brown rice stored for 0 days (Se-0) and 180 days (Se-6) was investigated by using iTRAQ. A total of 237, 235, 113 and 213 DEPs were identified from group A (BR-0/BR-6), group B (Se-0/Se-6), group C (BR-0/Se-0) and group D (BR-6/Se-6), respectively. Kyoto Encyclopedia of Genes and Genomes analysis showed that the DEPs were mainly enriched in glucose metabolism, tricarboxylic acid cycle, fatty acid biosynthesis and degradation, glutathione metabolism, sulfur metabolism, peroxisome and other metabolic pathways. This study provides theoretical support for the study of protein oxidation kinetics and storage quality control of brown rice during storage.
Collapse
Affiliation(s)
- Minghui Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-371-67758850
| |
Collapse
|
15
|
Oluwagbenga EM, Tetel V, Schober J, Fraley GS. Chronic heat stress part 1: Decrease in egg quality, increase in cortisol levels in egg albumen, and reduction in fertility of breeder pekin ducks. Front Physiol 2022; 13:1019741. [PMID: 36439270 PMCID: PMC9692011 DOI: 10.3389/fphys.2022.1019741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/31/2022] [Indexed: 10/20/2023] Open
Abstract
Global warming poses detrimental effects on poultry production leading to substantial economic losses. The goal of our experiment was to test the hypothesis that heat stress (HS) would alter welfare and egg quality (EQ) of breeder ducks. Furthermore, we wanted to test if HS would increase cortisol levels in egg albumen. Adult Pekin ducks were randomly assigned to two different rooms at 85% lay with 60 hens and 20 drakes per room. Baseline data including body weight, body condition scores (BCS), and egg production/quality were collected the week preceding heat treatment. Ducks were subjected to cyclic HS of 35°C for 10h/day and 29.5°C for the remaining 14h/day for 3 weeks while the control room was maintained at 22°C. Eggs were collected daily and analyzed weekly for quality assessment, and for albumen glucocorticoid (GCs) levels using mass spectrometry. One week before the exposure to HS, 10 hens and 5 drakes were euthanized and the same number again after 3 weeks and birds necropsied. Data analyses were done by 1- or 2-way ANOVA as appropriate with a Tukey-Kramer post hoc test. BCS were analyzed using a chi-squared test. A p ≤ 0.05 was considered significant. Circulating levels of corticosterone were significantly (p < 0.01) elevated at week 1 only in the HS hens. The circulating levels of cortisol increased significantly at week 1 and 2 (p < 0.05), and week 3 (p < 0.01) in the hens and at weeks 2 and 3 only (p < 0.05) in the drakes. Feather quality scores (p < 0.01), feather cleanliness scores (p < 0.001) and footpad quality scores (p < 0.05) increased significantly in the HS group. HS elicited a significant (p < 0.001) decrease in egg production at weeks 1 and 3. Hens in the HS group showed significantly decreased BW (p < 0.001) and number of follicles (p < 0.05). Shell weight decreased significantly at week 1 only (p < 0.05) compared to controls. Yolk weight decreased significantly at week 3 (p < 0.01) compared to controls. HS elicited a significant increase in albumen cortisol levels at week 1 (p < 0.05) and week 3 (p < 0.05). Thus, cortisol may provide critical information to further understand and to improve welfare.
Collapse
Affiliation(s)
| | | | | | - G. S. Fraley
- Animal Sciences, Purdue University, West Lafayette, IN, UnitedStates
| |
Collapse
|
16
|
Cheng S, He Y, Zeng T, Wang D, He J, Xia Q, Zhou C, Pan D, Cao J. Heat stress induces various oxidative damages to myofibrillar proteins in ducks. Food Chem 2022; 390:133209. [DOI: 10.1016/j.foodchem.2022.133209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/01/2022]
|
17
|
Hu C, Xie J. Tandem mass tag-based proteomics analysis of protein changes in the freezing and thawing cycles of Trachurus murphyi. J Food Sci 2022; 87:3938-3952. [PMID: 35880689 DOI: 10.1111/1750-3841.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/19/2022] [Accepted: 05/05/2022] [Indexed: 12/01/2022]
Abstract
We investigated the proteome variations in Trachurus murphyi with different cycles of freezing and thawing (FT) under frozen storage. A total of 2,482 proteins were assessed quantitatively, of which 269 proteins were recognized as differential abundance proteins during the second FT cycle until the eighth FT cycle. Bioinformatics analysis on gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway analyses of Differential Analysis of Proteins (DAPs) indicated multiple DAPs engaged with the protein structure, metabolic enzymes, and protein turnover. In addition, some of the observed proteins were probably the underlying markers of protein oxidation (PO). The analysis of PO sites revealed the sites of PO, such as amino adipic semialdehydes, γ-glutamic semialdehydes, and Schiff bases. Bioinformatics analyses demonstrated the involvement of differentially expressed proteins in the Hippo signaling pathway (Ko04390), indicating strong protein degradation with greater numbers of FT cycles under frozen storage. It provides an insight into quality stability from a proteomics quality perspective at the molecular level. The results obtained have deepened our current understandings of the mechanisms that reveal variations in proteomes and quality, as well as help promote quality control of T. murphyi across the cold transportation chain. PRACTICAL APPLICATION: Temperature fluctuation is one of the core issues during frozen food storage and distribution faced by the frozen food industry. Fluctuation may result in microstructural changes, ice recrystallization, and protein change in frozen food products. Tandem mass tag-based methods were adopted to study proteome variations in Trachurus murphyi muscles under different cycles of freezing and thawing under frozen storage conditions in this paper. The results obtained have deepened our current understandings of the mechanisms that reveal variations in proteomes and quality, as well as help promote quality control of T. murphyi across the cold transportation chain.
Collapse
Affiliation(s)
- Chunlin Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China.,Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian, China
| |
Collapse
|
18
|
Shen S, Liu F, Chen Y, Xie H, Hu H, Ren S, Ding Z, Bu Q. Insight into the molecular mechanism of texture improvement of sturgeon fillets treated by low temperature vacuum heating technology using label-free quantitative proteomics. Food Res Int 2022; 157:111251. [DOI: 10.1016/j.foodres.2022.111251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022]
|
19
|
Banerjee R, Maheswarappa NB, Mohan K, Biswas S, Batabyal S. Proteomic Technologies and their Application for Ensuring Meat Quality,
Safety and Authenticity. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210114113306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Proteomic tools were extensively used to understand the relationship between muscle
proteome and conversion of muscle to meat, post-mortem proteolysis, meat texture, and variation
in meat color. Developments in proteomic tools have also resulted in their application for addressing
the safety and authenticity issues including meat species identification, detection of animal byproducts,
non-meat ingredients and tissues in meat products, traceability, identification of genetically
modified ingredients, chemical residues and other harmful substances. Proteomic tools are also
being used in some of the potential areas like understanding the effect of animal transportation,
stunning, slaughter stress, halal authentication and issues related to animal welfare. Emerging advances
in proteomic and peptidomic technologies and their application in traceability, meat microbiology,
safety and authentication are taking a major stride as an interesting and complementary alternative
to DNA-based methods currently in use. Future research in meat science need to be
linked to emerging metabolomic, lipidomic and other omic technologies for ensuring integrated
meat quality and safety management. In this paper, a comprehensive overview of the use of proteomics
for the assessment of quality and safety in the meat value chain and their potential application
is discussed.
Collapse
Affiliation(s)
- Rituparna Banerjee
- ICAR-National Research Centre on Meat, Chengicherla, Hyderabad, 500092, India
| | | | - Kiran Mohan
- Department of Livestock Products
Technology, Veterinary College, KVAFSU, Bidar, Karnataka 585401, India
| | - Subhasish Biswas
- Department of Livestock Products
Technology, West Bengal University of Animal and Fishery Sciences, Kolkata700037, India
| | - Subhasish Batabyal
- Department of Veterinary
Biochemistry, West Bengal University of Animal and Fishery Sciences, Kolkata700037, India
| |
Collapse
|
20
|
Effect of protein oxidation in meat and exudates on the water holding capacity in bighead carp (Hypophthalmichthys nobilis) subjected to frozen storage. Food Chem 2022; 370:131079. [PMID: 34788946 DOI: 10.1016/j.foodchem.2021.131079] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/24/2021] [Accepted: 09/04/2021] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the effect of myofiber changes and protein oxidation on water holding capacity (WHC) of bighead carp fillets stored at -20 °C. WHC, microstructure, protein oxidation parameters, and specific modifications of oxidized amino acids were analyzed during 9 months of frozen storage. Results indicated that WHC decreased accompanied by myofibers' structural changes (including the formation of cavities among myofibers, breakage of myofibrils and myofibers, and shortening of sarcomeres) and protein oxidation. SDS-PAGE and carbonyl and sulfhydryl content determination of myofibrillar proteins and exudates gave a detailed description of the protein oxidation. LC-MS/MS analysis demonstrated that oxidation, di-oxidation, and 4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA) adduction were the top four oxidative modifications of proteins. Oxidative modifications impaired configuration and polarity of proteins, which may further affect WHC. This study provides plausible explanations to support the role of protein oxidation in the decrease of WHC in frozen fillets.
Collapse
|
21
|
Liu FJ, Shen SK, Chen YW, Dong XP, Han JR, Xie HJ, Ding ZW. Quantitative proteomics reveals the relationship between protein changes and off-flavor in Russian sturgeon (Acipenser gueldenstaedti) fillets treated with low temperature vacuum heating. Food Chem 2022; 370:131371. [PMID: 34656021 DOI: 10.1016/j.foodchem.2021.131371] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/06/2023]
Abstract
This study aimed to reveal the molecular mechanisms associated with off-flavor generation in sturgeon fillets treated by low temperature vacuum heating (LTVH). Label-free quantitative proteomics was used to identify 120 favor-related proteins, 27 proteins were screened as differentially expressed for bioinformatics analysis. 17 of KEGG pathways were identified. Particularly, proteins involved in proteasome and peroxisome were highly correlated with off-flavor formation. They were primarily implicated in the structures of proteins, including binding and proteasome pathways. The results indicated that the LTVH reduced the binding sites by down-regulating protease and superoxide dismutase expression. LTVH increased the myofibrillar protein and sulfhydryl content and decreased the total volatile basic nitrogen and thiobarbituric acid reactive substance, which confirmed that protein oxidation was related to off-flavor. This proteomics study provided new insights into the off-flavor of sturgeon with LTVH, and proposed potential link between biological processes and off-flavor formation.
Collapse
Affiliation(s)
- Fei-Jian Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, People's Republic of China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, People's Republic of China
| | - Shi-Ke Shen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, People's Republic of China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, People's Republic of China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, People's Republic of China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, People's Republic of China.
| | - Xiu-Ping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China; National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China
| | - Jia-Run Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, People's Republic of China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, People's Republic of China
| | - Hu-Jun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, People's Republic of China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, People's Republic of China
| | - Zhi-Wen Ding
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, People's Republic of China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, People's Republic of China
| |
Collapse
|
22
|
The Quality Changes and Proteomic Analysis of Cattle Muscle Postmortem during Rigor Mortis. Foods 2022; 11:foods11020217. [PMID: 35053949 PMCID: PMC8775072 DOI: 10.3390/foods11020217] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/26/2021] [Accepted: 01/08/2022] [Indexed: 01/19/2023] Open
Abstract
Rigor mortis occurs in a relatively early postmortem period and is a complex biochemical process in the conversion of muscle to meat. Understanding the quality changes and biomarkers during rigor mortis can provide a theoretical basis for maintaining and improving meat quality. Herein, a tandem mass tag proteomic method is used to investigate the effects of differentially expressed proteins on the meat quality of cattle Longissimus lumborum muscle postmortem (0, 6, and 24 h). The pH, total sulfhydryl content and sarcomere length decrease significantly during storage. In contrast, meat color values (L*, a*, and b*) and the myofibril fragmentation index increase significantly. Altogether, 147 differentially expressed proteins are identified, most being categorized as metabolic enzymes, mitochondrial proteins, necroptosis and ferroptosis proteins and structural proteins. The results also reveal additional proteins that are potentially involved in rigor mortis, such as cardiac phospholamban, acetyl-coenzyme A acyltransferase, and ankyrin repeat domain 2. The current results provide proteomic insights into the changes in meat quality during rigor mortis.
Collapse
|
23
|
Wang M, Gong C, Amakye W, Ren J. Exploring the Mechanisms of Anti-Aβ42 Aggregation Activity of Walnut-derived Peptides using Transcriptomics and Proteomics in vitro. EFOOD 2022. [DOI: 10.53365/efood.k/144885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Inhibiting β-amyloid (Aβ) aggregation is of significance in finding potential candidates for Alzheimer’s disease (AD) treatment. Accumulating evidence suggests that nutrition is important for improving cognition and reducing AD risk. Walnut has been widely used as a functional food for brain health; however the underlying mechanisms remain unknown. Here, we investigated the molecular level alteration in Arctic mutant Aβ42 induced aggregation cell model by RNA-seq and iTRAQ approaches after walnut-derived peptides Pro-Pro-Lys-Asn-Trp (PW5) and Trp-Pro-Pro-Lys-Asn (WN5) interventions. PW5 or WN5 could significantly decrease abnormal Aβ42 aggregates. However, resultant alterations in transcriptome (substantially unchanged) were inconsistent with proteomic data (marked change). Proteomic analysis revealed 184 and 194 differentially expressed proteins unique to PW5 and WN5 treatment, respectively, for inhibiting Aβ42 protein production or increasing protein degradation via the mismatch repair pathways. Our study provides new insights into the effectiveness of food-derived peptides for anti-Aβ42 aggregation in AD.
Collapse
|
24
|
Yang T, Liu R, Yang L, Yang W, Li K, Qin M, Ge Q, Yu H, Wu M, Zhou X. Improvement strategies for quality defects and oxidation of pale, soft and exudative (PSE)-like chicken meat: effects of domestic cooking and core temperature. RSC Adv 2022; 12:7485-7496. [PMID: 35424665 PMCID: PMC8982239 DOI: 10.1039/d2ra00392a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
In practice, this study will help to better elucidate the relationship between oxidation profile and meat quality, and provide consumers with recommendations for consuming PSE-like meat.
Collapse
Affiliation(s)
- Tianyi Yang
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Rui Liu
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Lun Yang
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Wenxue Yang
- Public Administration, Hohai University, Nanjing 210024, China
| | - Keyue Li
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Man Qin
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qingfeng Ge
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Hai Yu
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Mangang Wu
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaoyan Zhou
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
25
|
Acetylation inhibition alleviates energy metabolism in muscles of minipigs varying with the type of muscle fibers. Meat Sci 2021; 184:108699. [PMID: 34700176 DOI: 10.1016/j.meatsci.2021.108699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/31/2021] [Accepted: 10/16/2021] [Indexed: 11/22/2022]
Abstract
In this study, we investigated whether preslaughter chemical-induced acetylation affected postmortem energy metabolism and pork quality. Thirty pigs were randomly assigned to control, acetyltransferase inhibitor (ATi) or deacetyltransferase inhibitor treatments. Serum, trapezius, longissimus lumborum, psoas major, semimembranosus and semitendinosus muscles were taken for analyses. The results indicated that ATi treatment significantly reduced the activities of lactate dehydrogenase and creatine kinase and heat shock protein 70 in serum (P < 0.05). ATi treatment increased ATP and glycogen content, but decreased lactic acid content in trapezius, psoas major and semitendinosus muscles (P < 0.05). A total of 13 acetylated proteins bands were identified and the deacetylation of creatine kinase may play a key role in slowing down the postmortem energy metabolism in ATi-treated group. In addition, ATi treatment reduced the rate of postmortem glycolysis in muscles with higher oxidative but lower glycolytic fibers. These findings provide a new insight into the underlying mechanism on muscle-specific postmortem changes of pork quality.
Collapse
|
26
|
Chen HY, Zhou ZY, Luo YL, Luo Q, Fan JT. Knockdown of YKL-40 inhibits angiogenesis through regulation of VEGF/VEGFR2 and ERK1/2 signaling in endometrial cancer. Cell Biol Int 2021; 45:2557-2566. [PMID: 34498339 DOI: 10.1002/cbin.11699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 11/12/2022]
Abstract
Studies have demonstrated that small interfering RNA (siRNA) targeting YKL-40 (siYKL-40) inhibits the proliferation, migration, invasion, and induces antiapoptotic abilities of endometrial cancer (EC) HEC-1A cells. However, its effect on angiogenesis is unclear. The present study aimed to investigate the role of YKL-40 in endometrial cancer and the related molecular mechanisms. YKL-40 was knocked down by transfection with siYKL-40 and the effects on angiogenesis, cell viability, and signaling pathways were investigated. The results showed that siYKL-40 inhibited VEGFA levels and tube formation in endothelial cells. Additionally, inhibition of YKL-40 decreased the expression levels of vascular endothelial growth factor (VEGF), phosphorylated vascular endothelial growth factor receptor 2 (pVEGFR2), and phosphorylated extracellular signal-regulated kinases 1 and 2 (pERK1/2). Furthermore, a nude mice xenograft model of EC showed that siYKL-40 inhibited tumor growth. Inhibition of YKL-40 led to suppression of angiogenesis and reduction of microvessel density through VEGF/VEGFR2 and ERK1/2 signaling in endometrial cancer cells. Taken together, this study demonstrated novel molecular mechanisms for role of YKL-40 in EC.
Collapse
Affiliation(s)
- Hong-Yan Chen
- Department of Obstetrics and Gynecology, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi Province, P. R. China
| | - Zhao-Yu Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, P. R. China
| | - Yan-Lu Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, P. R. China
| | - Qin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, P. R. China
| | - Jiang-Tao Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, P. R. China
| |
Collapse
|
27
|
Comparative Proteomic Profiling: Cellular Metabolisms Are Mainly Affected in Senecavirus A-Inoculated Cells at an Early Stage of Infection. Viruses 2021; 13:v13061036. [PMID: 34072643 PMCID: PMC8226903 DOI: 10.3390/v13061036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 02/03/2023] Open
Abstract
Senecavirus A (SVA), also known as Seneca Valley virus, belongs to the genus Senecavirus in the family Picornaviridae. SVA can cause vesicular disease and epidemic transient neonatal losses in pigs. This virus efficiently propagates in some non-pig-derived cells, like the baby hamster kidney (BHK) cell line and its derivate (BSR-T7/5). Conventionally, a few proteins or only one protein is selected for exploiting a given mechanism concerning cellular regulation after SVA infection in vitro. Proteomics plays a vital role in the analysis of protein profiling, protein-protein interactions, and protein-directed metabolisms, among others. Tandem mass tag-labeled liquid chromatography-tandem mass spectrometry combined with the parallel reaction monitoring technique is increasingly used for proteomic research. In this study, this combined method was used to uncover separately proteomic profiles of SVA- and non-infected BSR-T7/5 cells. Furthermore, both proteomic profiles were compared with each other. The proteomic profiling showed that a total of 361 differentially expressed proteins were identified, out of which, 305 and 56 were upregulated and downregulated in SVA-infected cells at 12 h post-inoculation, respectively. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses showed that cellular metabolisms were affected mainly in SVA-inoculated cells at an early stage of infection. Therefore, an integrated metabolic atlas remains to be explored via metabolomic methods.
Collapse
|
28
|
Cai WQ, Chen YW, Dong XP, Shi YG, Wei JL, Liu FJ. Protein oxidation analysis based on comparative proteomic of Russian sturgeon (Acipenser gueldenstaedti) after sous-vide cooking. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Proteomic Analysis of the Protective Effect of Early Heat Exposure against Chronic Heat Stress in Broilers. Animals (Basel) 2020; 10:ani10122365. [PMID: 33321873 PMCID: PMC7764366 DOI: 10.3390/ani10122365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Heat stress affects the livestock industry, especially in poultry. Screening for metabolic changes after early and chronic heat exposure in poultry would be beneficial in resolving the production issues. In this study, we identified differentially expressed proteins that affected early heat exposure during chronic heat stress. Chronic heat stress affected 277 proteins, of which 95 differed in expression by early heat exposure. Differentially expressed proteins were related to actin metabolism and also involved in carbohydrate and carbon metabolism. According to our results, early heat exposed liver of broilers activates the different physiological mechanisms for protection from later heat stress. Abstract The increasing trend of global warming has affected the livestock industry through the heat stress, especially in poultry. Therefore, a better understanding of the mechanisms of heat stress in poultry would be helpful for maintaining the poultry production. Three groups were designed to determine early heat stress effects during chronic heat stress: CC, raised at a comfortable temperature; CH, chronic heat exposure at 35 °C for 21–35 days continuously; and HH, early heat exposure at 40 °C for 24 h at 5 days old with 35 °C temperature for 21–35 days continuously. In this study, proteome analysis was carried out to identify differentially expressed proteins in the liver tissue of broilers under chronic and early heat exposure. There were eight differentially expressed proteins from early heat stress during chronic heat exposure, which were related to actin metabolism. According to KEGG (Kyoto encyclopedia of genes and genomes) analysis, the proteins involved in carbohydrate metabolism were expressed to promote the metabolism of carbohydrates under chronic heat stress. Early heat reduced the heat stress-induced expression changes of select proteins. Our study has shown that early heat exposure suggests that the liver of broilers has various physiological mechanisms for regulating homeostasis to aid heat resistance.
Collapse
|
30
|
Xia C, He Y, Cheng S, He J, Pan D, Cao J, Sun Y. Free fatty acids responsible for characteristic aroma in various sauced-ducks. Food Chem 2020; 343:128493. [PMID: 33158671 DOI: 10.1016/j.foodchem.2020.128493] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/27/2020] [Accepted: 10/25/2020] [Indexed: 11/26/2022]
Abstract
To investigate the effects of various duck sources on the lipid oxidation and aroma flavor of sauced-ducks, Mallard (ML), Sheldrake (SD), Muscovy (MC), and Cherry-Valley (CV) ducks were used in sauced-duck processing. The results showed significantly different thiobarbituric acid reactive substances (TBARS) values of the four samples (SD > CV > ML > MC, p < 0.05), while the contents of unsaturated fatty acids (UFAs) were ML > SD/CV > MC (p < 0.05). Altogether, 105 volatile flavor compounds were detected in sauced-ducks, including acids, alcohols, aldehydes, ketones, esters, hydrocarbons, furans, nitrogen compounds, and others. The volatile compounds were observed differentially composed in the four products, and nineteen potential characteristic biomarkers were explored. The correlation analysis indicated that the characteristic aroma flavor of sauced-ducks were significantly associated with specific free fatty acids. These information are useful for learning aroma formation and meat selection and identification in duck products.
Collapse
Affiliation(s)
- Chenlan Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, PR China
| | - Yuxin He
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, PR China
| | - Shuang Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, PR China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, PR China.
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, PR China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, PR China
| |
Collapse
|
31
|
Comparative Transcriptome Analysis Reveals the Protective Mechanism of Glycyrrhinic Acid for Deoxynivalenol-Induced Inflammation and Apoptosis in IPEC-J2 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5974157. [PMID: 33163144 PMCID: PMC7604610 DOI: 10.1155/2020/5974157] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Deoxynivalenol (DON) is the most common mycotoxin that frequently contaminates human food and animal feed, resulting in intestinal diseases and systemic immunosuppression. Glycyrrhinic acid (GA) exhibits various pharmacological activities. To investigate the protective mechanism of GA for DON-induced inflammation and apoptosis in IPEC-J2 cells, RNA-seq analysis was used in the current study. The IPEC-J2 cells were treated with the control group (CON), 0.5 μg/mL DON, 400 μg/mL GA, and 400 μg/mL GA+0.5 μg/mL DON (GAD) for 6 h. Results showed that 0.5 μg/mL DON exposure for 6 h could induce oxidative stress, inflammation, and apoptosis in IPEC-J2 cells. GA addition could specifically promote the proliferation of DON-induced IPEC-J2 cells in a dose- and time-dependent manner. In addition, GA addition significantly increased Bcl-2 gene expression (P < 0.05) and superoxide dismutase and catalase activities (P < 0.01) and decreased lactate dehydrogenase release, the contents of malonaldehyde, IL-8, and NF-κB (P < 0.05), the relative mRNA abundances of IL-6, IL-8, TNF-α, COX-2, NF-κB, Bax, and caspase 3 (P < 0.01), and the protein expressions of Bax and TNF-α. Moreover, a total of 1576, 289, 1398, and 154 differentially expressed genes were identified in CON vs. DON, CON vs. GA, CON vs. GAD, and DON vs. GAD, respectively. Transcriptome analysis revealed that MAPK, TNF, and NF-κB signaling pathways and some chemokines played significant roles in the regulation of inflammation and apoptosis induced by DON. GA may alleviate DON cytotoxicity via the TNF signaling pathway by downregulating IL-15, CCL5, and other gene expressions. These results indicated that GA could alleviate DON-induced oxidative stress, inflammation, and apoptosis via the TNF signaling pathway in IPEC-J2 cells.
Collapse
|
32
|
Men L, Li Y, Wang X, Li R, Zhang T, Meng X, Liu S, Gong X, Gou M. Protein biomarkers associated with frozen Japanese puffer fish (Takifugu rubripes) quality traits. Food Chem 2020; 327:127002. [PMID: 32438262 DOI: 10.1016/j.foodchem.2020.127002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/15/2023]
Abstract
This study was designed to investigate proteome changes in Japanese puffer fish (Takifugu rubripes) during short- and long-term frozen storage. In total, 1484 proteins were quantified, and 164 proteins were identified as differential abundance proteins (DAPs) in Japanese puffer fish from two frozen storage treatment groups (14 days and 60 days) compared with the fresh control group. Correlation analysis between the DAPs and quality traits of the puffer fish muscle showed that 106 proteins were correlated closely with colour and texture (hardness, elasticity, and chewiness). Bioinformatics analysis revealed and Western blot analysis verified that Putative prothymosin alpha species, Bridging integrator 3, NADH: the ubiquinone oxidoreductase subunit and Mx species are candidate biomarkers for puffer fish properties. This study offers valuable evidence to improve the quality control and monitoring of Japanese puffer fish during transportation and storage.
Collapse
Affiliation(s)
- Lei Men
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Yunzhi Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Ruijun Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Tao Zhang
- Dalian Tianzheng Industrial Corporation Limited, Dalian 116011, China
| | - Xuesong Meng
- Dalian Tianzheng Industrial Corporation Limited, Dalian 116011, China
| | - Shengcong Liu
- Dalian Tianzheng Industrial Corporation Limited, Dalian 116011, China
| | - Xiaojie Gong
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Meng Gou
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
33
|
Zhang M, Song S, Zhao D, Shi J, Xu X, Zhou G, Li C. High intake of chicken and pork proteins aggravates high-fat-diet-induced inflammation and disorder of hippocampal glutamatergic system. J Nutr Biochem 2020; 85:108487. [PMID: 32827667 DOI: 10.1016/j.jnutbio.2020.108487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 06/09/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022]
Abstract
High-fat diets have been associated with neurodegenerative diseases, which are also largely related to the type and amount of dietary proteins. However, to our knowledge, it is little known how dietary proteins affect neurodegenerative changes. In this study, we investigated the effects of dietary proteins in a high-fat diet on hippocampus functions related to enteric glial cells (EGCs) in Wistar rats that were fed either 40% or 20% (calorie) casein, chicken protein or pork protein for 12 weeks (n=10 each group). Inflammatory factors, glutamatergic system, EGCs, astrocytes and nutrient transporters were measured. A high-chicken-protein diet significantly increased the levels of systemic inflammatory factors, Tau protein and amyloid precursor protein mRNA level in the rat hippocampus. The type and level of dietary proteins in high-fat diets did not affect the gene expression of glial fibrillary acidic protein and α-synuclein (P>.05), indicating a negligible effect on astrocyte activity. However, the high-protein diets up-regulated glutamate transporters compared with the low-protein diets (P<.05), while they reduced the γ-aminobutyric acid content in high-chicken and -pork-protein diets (P<.05). Thus, compared with a low-protein diet (20%), a high-chicken or -pork-protein diet (40%) under a high-fat background could alter the balance between glutamatergic system and neurotransmitter and have a stronger effect on the interactions between hippocampal glutamatergic system and EGCs.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University; 210095, Nanjing, PR China
| | - Shangxin Song
- School of Food Science, Nanjing Xiaozhuang University, 211171, Nanjing, PR China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University; 210095, Nanjing, PR China
| | - Jie Shi
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University; 210095, Nanjing, PR China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University; 210095, Nanjing, PR China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University; 210095, Nanjing, PR China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University; 210095, Nanjing, PR China.
| |
Collapse
|
34
|
Proteomic study of hypothalamus in pigs exposed to heat stress. BMC Vet Res 2020; 16:286. [PMID: 32787853 PMCID: PMC7424663 DOI: 10.1186/s12917-020-02505-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
Background With evidence of warming climates, it is important to understand the effects of heat stress in farm animals in order to minimize production losses. Studying the changes in the brain proteome induced by heat stress may aid in understanding how heat stress affects brain function. The hypothalamus is a critical region in the brain that controls the pituitary gland, which is responsible for the secretion of several important hormones. In this study, we examined the hypothalamic protein profile of 10 pigs (15 ± 1 kg body weight), with five subjected to heat stress (35 ± 1 °C; relative humidity = 90%) and five acting as controls (28 ± 3 °C; RH = 90%). Result The isobaric tags for relative and absolute quantification (iTRAQ) analysis of the hypothalamus identified 1710 peptides corresponding to 360 proteins, including 295 differentially expressed proteins (DEPs), 148 of which were up-regulated and 147 down-regulated, in heat-stressed animals. The Ingenuity Pathway Analysis (IPA) software predicted 30 canonical pathways, four functional groups, and four regulatory networks of interest. The DEPs were mainly concentrated in the cytoskeleton of the pig hypothalamus during heat stress. Conclusions In this study, heat stress significantly increased the body temperature and reduced daily gain of body weight in pigs. Furthermore, we identified 295 differentially expressed proteins, 147 of which were down-regulated and 148 up-regulated in hypothalamus of heat stressed pigs. The IPA showed that the DEPs identified in the study are involved in cell death and survival, cellular assembly and organization, and cellular function and maintenance, in relation to neurological disease, metabolic disease, immunological disease, inflammatory disease, and inflammatory response. We hypothesize that a malfunction of the hypothalamus may destroy the host physical and immune function, resulting in decreased growth performance and immunosuppression in heat stressed pigs.
Collapse
|
35
|
Shi J, Zhao D, Song S, Zhang M, Zamaratskaia G, Xu X, Zhou G, Li C. High-Meat-Protein High-Fat Diet Induced Dysbiosis of Gut Microbiota and Tryptophan Metabolism in Wistar Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6333-6346. [PMID: 32432868 DOI: 10.1021/acs.jafc.0c00245] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Meat-diet-induced changes in gut microbiota are often accompanied with the development of various metabolic and inflammatory disorders. The exact biochemical mechanism underlying these effects is not well elucidated. This study aims to evaluate how meat proteins in high-fat diets affect tryptophan metabolism in rats. The high-chicken-protein (HFHCH) or high-pork-protein (HFHP) diets increased levels of skatole and indole in cecal and colonic contents, feces, and subcutaneous adipose tissue. The HFHCH and HFHP diets also increased the abundance of Lactobacillus, the Family XIII AD3011 group, and Desulfovibrio in the cecum and colon, which may be involved in the production of skatole and indole. Additionally, high-meat-protein diets induced lower activity of skatole- and indole-metabolizing enzyme CYP2E1 in liver compared with low-meat-protein diets. This work highlights the negative impact of high meat proteins on physiological responses by inducing dysbiosis of gut microbiota and tryptophan metabolism.
Collapse
Affiliation(s)
- Jie Shi
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Shangxin Song
- School of Food Science, Nanjing Xiaozhuang University, 211171 Nanjing, P. R. China
| | - Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Galia Zamaratskaia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, P. R. China
| |
Collapse
|
36
|
Xu X, Yan G, Chang J, Wang P, Yin Q, Liu C, Liu S, Zhu Q, Lu F. Astilbin ameliorates deoxynivalenol-induced oxidative stress and apoptosis in intestinal porcine epithelial cells (IPEC-J2). J Appl Toxicol 2020; 40:1362-1372. [PMID: 32324309 DOI: 10.1002/jat.3989] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Deoxynivalenol (DON) is a common mycotoxin, which often induces oxidative stress and cytotoxicity in humans and animals. Astilbin (AST), as a natural antioxidant, exhibits multiple pharmacological functions. The aim of this study was to investigate the effects of AST on alleviating DON-induced cytotoxicity in intestinal porcine epithelial cells (IPEC-J2). The results demonstrated that 0.5 μg/mL DON stimulation for 6 hours induced oxidative stress, inflammation and apoptosis in IPEC-J2 cells. AST enhanced the cell viability in a dose- and time-dependent manner. The addition of 20 μg/mL AST significantly increased cell viability, superoxide dismutase and catalase activities, Bcl-2 gene expression and the Bcl-2/Bax ratio (P < .05), and decreased lactate dehydrogenase release, malondialdehyde content and the relative expressions of genes associated with inflammation and apoptosis such as interleukin-6 and -8, tumor necrosis factor-alpha, cyclooxygenase-2, nuclear factor-kappaB, Bax and caspase-3 (P < .05). Simultaneously, zonula occludens-1, claudin-1 and PepT1 gene expressions were upregulated and occludin, ASCT2 and GLUT2 gene expressions were downregulated by the addition of AST, compared with the DON group (P < .05). These results indicated that 20 μg/mL AST could ameliorate oxidative stress, inflammation and apoptosis by enhancing antioxidant enzyme activities and intestinal barrier function, and reducing the expressions of inflammation and apoptosis genes, as well as improve the barrier function and nutrient transport and absorption in DON-induced IPEC-J2 cells.
Collapse
Affiliation(s)
- Xiaoxiang Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juan Chang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ping Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qingqiang Yin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chaoqi Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shuo Liu
- Yexian Animal Disease Control and Prevention Center, Yexian, China
| | - Qun Zhu
- Henan Delin Biological Product Co. Ltd., Xinxiang, China
| | - Fushan Lu
- Henan Puai Feed Co. Ltd., Zhoukou, China
| |
Collapse
|
37
|
Qin J, Deng X, Lei Y, Liu P, Lu S, Zhang J. Effects of µ-calpain oxidation on Coregonus peled myofibrillar protein degradation in vitro. J Food Sci 2020; 85:682-688. [PMID: 31999363 DOI: 10.1111/1750-3841.15048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the effect of µ-calpain oxidation on Coregonus peled myofibrillar protein degradation. In the present study, a hydroxyl radical oxidation system was selected to investigate oxidative modification on µ-calpain activity and its degradation on C. peled myofibrillar protein. When subjected to oxidation, the carbonyl content of µ-calpain significantly increased with the increasing of oxidation levels, and oxidation modification promoted the µ-calpain activity. Incubation of C. peled myofibrillar protein with oxidized µ-calpain resulted in the enhanced degradation of myosin heavy chains, actin, and troponin T, but the degradation of desmin at higher levels of oxidation was slightly inhibited, based on sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blotting. This study suggests that oxidation treatment of µ-calpain could accelerate myofibrillar proteolysis through regulating the enzyme activity during postmortem aging. PRACTICAL APPLICATION: Endogenous proteases, especially µ-calpain, are reported to be involved in fish softening during early postmortem storage, which is critical to muscle quality. The cysteine residues of proteins are particularly sensitive to oxidation. The investigation of the effect of oxidation on µ-calpain (a cysteine protease) activity allows for the monitoring of its role in the postmortem proteolysis of fish myofibrils and the associated softening of fish meat, in an attempt to minimize this softening.
Collapse
Affiliation(s)
- Junwei Qin
- Food College, Shihezi Univ., Shihezi, 832003, China
| | | | - Yongdong Lei
- Food College, Shihezi Univ., Shihezi, 832003, China.,Food Quality Supervision and Testing Center of Ministry of Agriculture, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Pingping Liu
- Food College, Shihezi Univ., Shihezi, 832003, China
| | - Shiling Lu
- Food College, Shihezi Univ., Shihezi, 832003, China
| | - Jian Zhang
- Food College, Shihezi Univ., Shihezi, 832003, China
| |
Collapse
|
38
|
Xie J, Ye H, Du M, Yu Q, Chen Y, Shen M. Mung Bean Protein Hydrolysates Protect Mouse Liver Cell Line Nctc-1469 Cell from Hydrogen Peroxide-Induced Cell Injury. Foods 2019; 9:foods9010014. [PMID: 31877918 PMCID: PMC7023459 DOI: 10.3390/foods9010014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/24/2022] Open
Abstract
Mung bean is nutritious and rich in protein (19.5%–33.1%). However, there are few studies on mung bean protein active peptides so the mung bean protein hydrolysates (MBPHs) were investigated for evaluating their ability to clear intracellular reactive oxygen species (ROS) and regulating the ability of antioxidant enzymes on NCTC-1469 cells. Results showed that MBPHs, MBPHs-I (molecular weight < 3 kDa), MBPHs-II (molecular weight between 3 and 10 kDa), and MBPHs-III (molecular weight > 10 kDa) could all improve the survival rate of cells compared with the model group. MBPHs, MBPHs-I, and MBPHs-II could significantly decrease the content of lactate dehydrogenase (LDH) and reduce the generation of malonaldehyde (MDA) at a concentration of 0.4 mg/mL. Regarding the intracellular ROS, the result showed that MBPHs-I significantly reduced the production of ROS (from 58.3% to 26.6%) and had a dose-dependent relationship. In addition, the amino acid analysis showed that MBPHs-I had a balanced amino acid composition. MBPHs-I is rich in lysine but was deficient in cereals. Therefore, the hydrophobic and aromatic amino acids in MBPHs-I were high, which could improve its antioxidant activity. According to the results, MBPHs-I was the best and most potent natural antioxidant and it can contribute to drug development and medical application.
Collapse
|
39
|
Tansakul N, Rattanasrisomporn J, Roytrakul S. Proteomics analysis of serum protein patterns in duck during aflatoxin B1 exposure. Vet World 2019; 12:1499-1505. [PMID: 31749588 PMCID: PMC6813611 DOI: 10.14202/vetworld.2019.1499-1505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background and Aim: Unlike the already well-documented human serum proteome, there are still limitations regarding analyzing and interpreting the various physiological changes and disease states of the serum proteomes found in duck. Serum proteome in duck under the condition of mycotoxin contamination in feed has not yet been examined. This study aimed to introduce the characterization of the circulating proteomes in duck serum during exposure to aflatoxin B1 (AFB1). Materials and Methods: Duck serum samples were collected from four experimental groups, gel-based mass spectrometry was then applied, and finally, 445 proteins were identified in pulled serum sample. Results: Among these 445 proteins, 377 were present in at least one group from all. There were 35 proteins which were expressed when the duck was exposed to AFB1. The protein library that allows the identification of a large number of different proteins in duck serum will be enhanced by the addition of these peptide spectral data. It is noteworthy that chromodomain-helicase-DNA-binding protein 7 (CHD7) [Gallus gallus] was up-regulated in the group with the highest AFB1 contamination. Conclusion: CHD7 protein might be somehow relative to aflatoxicosis in the duck that causes poor performance and economic loss. Moreover, other proteins present in duck serum were also added in the protein library.
Collapse
Affiliation(s)
- Natthasit Tansakul
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Jatuporn Rattanasrisomporn
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Klongluang, Pathumthani 12120, Thailand
| |
Collapse
|