1
|
Generalić Mekinić I, Politeo O, Ljubenkov I, Mastelić L, Popović M, Veršić Bratinčević M, Šimat V, Radman S, Skroza D, Ninčević Runjić T, Runjić M, Dumičić G, Urlić B. The alphabet of sea fennel: Comprehensive phytochemical characterisation of Croatian populations of Crithmum maritimum L. Food Chem X 2024; 22:101386. [PMID: 38681233 PMCID: PMC11052897 DOI: 10.1016/j.fochx.2024.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Extreme environmental conditions affect the synthesis and accumulation of bioactive metabolites in halophytic plants. The aim of this study was to investigate the presence and quantity of key health-promoting phytochemicals in Croatian sea fennel, one of the most popular Mediterranean halophytes with a wide range of uses. The EOs were characterised by a high content of limonene (up to 93%), while the fatty acid profile shows a low content of oleic acid and the presence of valuable linoleic acid (ω-6) and linolenic acid (ω-3) in high percentages. The dominances of lutein and α-tocopherol were also confirmed in all samples. The results confirm the great variability in the chemistry of sea fennel populations in the Mediterranean region, with significant differences in the composition of the Croatian samples compared to the others, as well as the presence and high concentrations of the analysed bioactive compounds that contribute to the plant's health-promoting attributes.
Collapse
Affiliation(s)
- Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Olivera Politeo
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Ivica Ljubenkov
- Department of Chemistry, Faculty of Science, University of Split, R. Boškovića 33, HR-21000 Split, Croatia
| | - Linda Mastelić
- Department of Chemistry, Faculty of Science, University of Split, R. Boškovića 33, HR-21000 Split, Croatia
| | - Marijana Popović
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| | - Maja Veršić Bratinčević
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| | - Vida Šimat
- Department of Marine Studies, University of Split, Ruđera Boškovića 37, HR-21000 Split, Croatia
| | - Sanja Radman
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Tonka Ninčević Runjić
- Department of Plant Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| | - Marko Runjić
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| | - Gvozden Dumičić
- Department of Plant Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| | - Branimir Urlić
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| |
Collapse
|
2
|
Correia I, Antunes M, Tecelão C, Neves M, Pires CL, Cruz PF, Rodrigues M, Peralta CC, Pereira CD, Reboredo F, Moreno MJ, Brito RMM, Ribeiro VS, Vaz DC, Campos MJ. Nutritive Value and Bioactivities of a Halophyte Edible Plant: Crithmum maritimum L. (Sea Fennel). PLANTS (BASEL, SWITZERLAND) 2024; 13:427. [PMID: 38337960 PMCID: PMC10857157 DOI: 10.3390/plants13030427] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Crithmum maritimum L. (sea fennel), an edible xerophyte of coastal habitats, is considered an emerging cash crop for biosaline agriculture due to its salt-tolerance ability and potential applications in the agri-food sector. Here, the nutritional value and bioactive properties of sea fennel are described. Sea fennel leaves, flowers, and schizocarps are composed of carbohydrates (>65%) followed by ash, proteins, and lipids. Sea fennel's salty, succulent leaves are a source of omega-6 and omega-3 polyunsaturated fatty acids, especially linoleic acid. Extracts obtained from flowers and fruits/schizocarps are rich in antioxidants and polyphenols and show antimicrobial activity against Staphylococcus aureus, Staphylococcus epidermis, Candida albicans, and Candida parapsilosis. Plant material is particularly rich in sodium (Na) but also in other nutritionally relevant minerals, such as calcium (Ca), chlorine (Cl), potassium (K), phosphorus (P), and sulfur (S), beyond presenting a potential prebiotic effect on Lactobacillus bulgaricus and being nontoxic to human intestinal epithelial Caco-2 model cells, up to 1.0% (w/v). Hence, the rational use of sea fennel can bring nutrients, aroma, and flavor to culinary dishes while balancing microbiomes and contributing to expanding the shelf life of food products.
Collapse
Affiliation(s)
- Iris Correia
- Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal (M.N.)
| | - Madalena Antunes
- Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal (M.N.)
| | - Carla Tecelão
- Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal (M.N.)
- School of Tourism and Marine Technology, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Marta Neves
- Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal (M.N.)
- School of Tourism and Marine Technology, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Cristiana L. Pires
- Coimbra Chemistry Centre (CQC), Institute of Molecular Sciences, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal (P.F.C.); (M.J.M.)
| | - Pedro F. Cruz
- Coimbra Chemistry Centre (CQC), Institute of Molecular Sciences, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal (P.F.C.); (M.J.M.)
| | - Maria Rodrigues
- Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials (LSRE-LCM), ESTG-IPLeiria, 2411-901 Leiria, Portugal; (M.R.); (V.S.R.)
- ALiCE–Associate Laboratory in Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Claúdia C. Peralta
- Coimbra Chemistry Centre (CQC), Institute of Molecular Sciences, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal (P.F.C.); (M.J.M.)
| | - Cidália D. Pereira
- School of Health Sciences, Polytechnic of Leiria, 2411-901 Leiria, Portugal;
- Centre for Innovative Care and Health Technology, Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - Fernando Reboredo
- GeoBioTec, FCT, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Maria João Moreno
- Coimbra Chemistry Centre (CQC), Institute of Molecular Sciences, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal (P.F.C.); (M.J.M.)
| | - Rui M. M. Brito
- Coimbra Chemistry Centre (CQC), Institute of Molecular Sciences, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal (P.F.C.); (M.J.M.)
| | - Vânia S. Ribeiro
- Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials (LSRE-LCM), ESTG-IPLeiria, 2411-901 Leiria, Portugal; (M.R.); (V.S.R.)
- ALiCE–Associate Laboratory in Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- School of Health Sciences, Polytechnic of Leiria, 2411-901 Leiria, Portugal;
- Centre for Innovative Care and Health Technology, Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - Daniela C. Vaz
- Coimbra Chemistry Centre (CQC), Institute of Molecular Sciences, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal (P.F.C.); (M.J.M.)
- Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials (LSRE-LCM), ESTG-IPLeiria, 2411-901 Leiria, Portugal; (M.R.); (V.S.R.)
- ALiCE–Associate Laboratory in Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- School of Health Sciences, Polytechnic of Leiria, 2411-901 Leiria, Portugal;
| | - Maria Jorge Campos
- Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal (M.N.)
- School of Tourism and Marine Technology, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| |
Collapse
|
3
|
Puccinelli M, Rosellini I, Malorgio F, Pardossi A, Pezzarossa B. Iodine biofortification of Swiss chard (Beta vulgaris ssp. vulgaris var. cicla) and its wild ancestor sea beet (Beta vulgaris ssp. maritima) grown hydroponically as baby leaves: effects on leaf production and quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7888-7895. [PMID: 37483122 DOI: 10.1002/jsfa.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/16/2023] [Accepted: 07/22/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND About 35-45% of the global population is affected by iodine deficiency. Iodine intake can be increased through the consumption of biofortified vegetables. Given the increasing interest in wild edible species of new leafy vegetables due to their high nutritional content, this study aimed to evaluate the suitability of Swiss chard (Beta vulgaris ssp. vulgaris var. cicla) and its wild ancestor sea beet (Beta vulgaris ssp. maritima) to be fortified with iodine. Plants were cultivated hydroponically in a nutrient solution enriched with four different concentrations of iodine (0, 0.5, 1.0, and 1.5 mg L-1 ), and the production and quality of baby leaves were determined. RESULTS Sea beet accumulated more iodine than Swiss chard. In both subspecies, increasing the iodine concentration in the nutrient solution improved leaf quality as a result of greater antioxidant capacity - the ferric reducing ability of plasma (FRAP) index increased by 17% and 28%, at 0.5 and 1.5 mg L-1 iodine, respectively - the content of flavonoids (+31 and + 26%, at 1 and 1.5 mg L-1 of iodine, respectively), and the lower content of nitrate (-38% at 1.5 mg L-1 of iodine) and oxalate (-36% at 0.5 mg L-1 of iodine). In sea beet, however, iodine levels in the nutrient solution higher than 0.5 mg L-1 reduced crop yield significantly. CONCLUSIONS Both subspecies were found to be suitable for producing iodine-enriched baby leaves. The optimal iodine levels in the nutrient solution were 1.0 in Swiss chard and 0.5 mg L-1 in sea beet, as crop yield was not affected at these concentrations and leaves contained enough iodine to satisfy an adequate daily intake with a serving of 100 g. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Martina Puccinelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, Pisa, 56124, Italy
| | - Irene Rosellini
- Research Institute on Terrestrial Ecosystems, National Research Council, via G. Moruzzi 1, Pisa, 56124, Italy
| | - Fernando Malorgio
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, Pisa, 56124, Italy
| | - Alberto Pardossi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, Pisa, 56124, Italy
| | - Beatrice Pezzarossa
- Research Institute on Terrestrial Ecosystems, National Research Council, via G. Moruzzi 1, Pisa, 56124, Italy
| |
Collapse
|
4
|
Radman S, Brzović P, Radunić M, Rako A, Šarolić M, Ninčević Runjić T, Urlić B, Generalić Mekinić I. Vinegar-Preserved Sea Fennel: Chemistry, Color, Texture, Aroma, and Taste. Foods 2023; 12:3812. [PMID: 37893705 PMCID: PMC10606918 DOI: 10.3390/foods12203812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study was to produce non-fermented preserved sea fennel leaves in different pickle juices prepared with apple cider vinegar, wine vinegar and alcoholic vinegar, and to compare their chemical parameters (pH, titratable acidity and salt content), organoleptic properties (color and texture parameters; volatile aromatic compound profiles) and sensory attributes. The pH of the samples ranged from 3.49 to 3.64, the lowest being in the alcoholic vinegar sample and the highest being in the wine vinegar sample, while the titratable acidity and salinity were higher in the alcoholic vinegar pickle juice than those in the other two samples. The volatile aromatic compounds of the samples were also detected. The reddish color of the wine vinegar negatively affected the sea fennel color parameters (L* and b*), and was also negatively evaluated by the panelists, while the alcoholic vinegar maximally preserved the green tones of the leaf (a*). Firmness influences the quality perceived by consumers and was therefore also tested as one of the most important parameters for evaluating the textural and mechanical properties of the different products. All sensory parameters of the sea fennel preserved in alcoholic vinegar, namely color, texture, taste, aroma and overall impression, were given the highest scores, while the sample preserved in wine vinegar received the lowest scores. The intense aroma of the wine vinegar was described as a negative characteristic (off-flavor) of the sample.
Collapse
Affiliation(s)
- Sanja Radman
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, HR-21000 Split, Croatia; (S.R.); (P.B.); (M.Š.)
| | - Petra Brzović
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, HR-21000 Split, Croatia; (S.R.); (P.B.); (M.Š.)
| | - Mira Radunić
- Department of Plant Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (M.R.); (T.N.R.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska Cesta 25, HR-10000 Zagreb, Croatia
| | - Ante Rako
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (A.R.); (B.U.)
| | - Mladenka Šarolić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, HR-21000 Split, Croatia; (S.R.); (P.B.); (M.Š.)
| | - Tonka Ninčević Runjić
- Department of Plant Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (M.R.); (T.N.R.)
| | - Branimir Urlić
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (A.R.); (B.U.)
| | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, HR-21000 Split, Croatia; (S.R.); (P.B.); (M.Š.)
| |
Collapse
|
5
|
Hulkko LSS, Chaturvedi T, Custódio L, Thomsen MH. Harnessing the Value of Tripolium pannonicum and Crithmum maritimum Halophyte Biomass through Integrated Green Biorefinery. Mar Drugs 2023; 21:380. [PMID: 37504911 PMCID: PMC10381832 DOI: 10.3390/md21070380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Bioactive extracts are often the target fractions in bioprospecting, and halophyte plants could provide a potential source of feedstock for high-value applications as a part of integrated biorefineries. Tripolium pannonicum (Jacq.) Dobrocz. (sea aster) and Crithmum maritimum L. (sea fennel) are edible plants suggested for biosaline halophyte-based agriculture. After food production and harvesting of fresh leaves for food, the inedible plant fractions could be utilized to produce extracts rich in bioactive phytochemicals to maximize feedstock application and increase the economic feasibility of biomass processing to bioenergy. This study analyzed fresh juice and extracts from screw-pressed sea aster and sea fennel for their different phenolic compounds and pigment concentrations. Antioxidant and enzyme inhibition activities were also tested in vitro. Extracts from sea aster and sea fennel had phenolic contents up to 45.2 mgGAE/gDM and 64.7 mgGAE/gDM, respectively, and exhibited >70% antioxidant activity in several assays. Ethanol extracts also showed >70% inhibition activity against acetylcholinesterase and >50% inhibition of tyrosinase and α-glucosidase. Therefore, these species can be seen as potential feedstocks for further investigations.
Collapse
Affiliation(s)
| | - Tanmay Chaturvedi
- AAU Energy, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | - Luísa Custódio
- Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| | | |
Collapse
|
6
|
Mejía-Ramírez F, Benavides-Mendoza A, González-Morales S, Juárez-Maldonado A, Lara-Viveros FM, Morales-Díaz AB, Morelos-Moreno Á. Seed Priming Based on Iodine and Selenium Influences the Nutraceutical Compounds in Tomato ( Solanum lycopersicum L.) Crop. Antioxidants (Basel) 2023; 12:1265. [PMID: 37371995 DOI: 10.3390/antiox12061265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
The use of trace elements in agriculture as a complement to crop fertilization programs is a practice that is gaining importance and relevance worldwide. Iodine and selenium perform essential functions in human health, related to the proper functioning of the thyroid gland, acting as antioxidants and antiproliferatives, and their limited intake through food consumption can cause malnutrition, reflected in the abnormal development and growth of humans. This research aimed to evaluate the nutraceutical quality of tomato (Solanum lycopersicum L.) in response to seed priming based on KIO3 (0, 100, 150, 200, 250 mg L-1) and Na2SeO3 (0, 0.5, 1, 2, 3 mg L-1), performed by interaction from a 52-factorial design and by independent factors in a 24-h imbibition time. The tomato crop was established under greenhouse conditions in 10-L polyethylene containers containing peat moss and perlite 1:1 (v/v). Regarding non-enzymatic antioxidant compounds, lycopene, β-carotene and flavonoid contents in tomato fruits significantly increased with KIO3 and Na2SeO3 treatments; however, vitamin C content was negatively affected. KIO3 increased the phenol and chlorophyll-a contents of leaves. In relation to enzymatic activity, KIO3 positively influenced GSH content and PAL activity in tomato fruits. KIO3 also positively influenced GSH content in leaves while negatively affecting PAL and APX activities. Na2SeO3 favored GSH content and GPX activity in tomato fruits and leaves. Na2SeO3 negatively affected the antioxidant capacity of hydrophilic compounds by ABTS in fruits and leaves and favored hydrophilic compounds by DPPH in leaves. Seed imbibition based on KIO3 and Na2SeO3 is a method that is implemented in the tomato crop and presents interesting aspects that favor the nutraceutical quality of tomato fruits, which may contribute to increasing the intake of these minerals in humans through tomato consumption.
Collapse
Affiliation(s)
- Fernando Mejía-Ramírez
- Department of Horticulture, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | | | - Susana González-Morales
- National Council of Humanities, Science and Technology (CONAHCYT), Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | | | - Francisco Marcelo Lara-Viveros
- Department of Biosciences and Agrotechnology, Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Mexico
| | - América Berenice Morales-Díaz
- Robotics and Advanced Manufacturing, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ramos Arizpe 25900, Mexico
| | - Álvaro Morelos-Moreno
- National Council of Humanities, Science and Technology (CONAHCYT), Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| |
Collapse
|
7
|
Youssef S, Custódio L, Rodrigues MJ, Pereira CG, Calhelha RC, Pinela J, Barros L, Jekő J, Cziáky Z, Ben Hamed K. Nutritional anti-nutritional chemical composition and antioxidant activities of the leaves of the sea cliff dwelling species Limonium spathulatum (Desf.) Kuntze. FRONTIERS IN PLANT SCIENCE 2022; 13:979343. [PMID: 36466224 PMCID: PMC9714570 DOI: 10.3389/fpls.2022.979343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/10/2022] [Indexed: 06/17/2023]
Abstract
This work explored the nutritional and antioxidant properties of the leaves of the halophytic species Limonium spathulatum (Desf.) Kuntze from Tunisian sea cliffs. Furthermore, the analysis of the total phenolics and flavonoids contents and their individual compounds using high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS/MS) were also studied. L. spathulatum leaves had high levels of moisture, ash, neutral detergent fiber, and acid detergent fiber, but low concentrations of crude protein, crude fat and acid detergent lignin. It contained low carbohydrates levels, and low energetic values. The most abundant macroelements were Cl, Na and Ca while the microelements detected in the highest levels were Fe and Zn. No relevant α-amylase inhibition was observed, and no toxic metals (Pb and Cd) and phytic acid were detected. The ethanol and the hydroethanolic extracts had the highest capacity to scavenge free radicals, to chelate iron and copper and to inhibit lipid peroxidation. The same samples were also the most active towards oxidative haemolysis. These extracts contained high total phenolic and flavonoid contents. HPLC analysis, performed on ethanolic extracts identified 58 individual compounds known for their high antioxidant actvitiy including hydroxybenzoic acids (gallic, syringic acids), hydroxycinnamic acids (caffeic, coumaric, ferulic acids) and flavonoids (catechin, epigallocatechin gallate and naringin).In conclusion, the leaves of Tunisian accession of L. spathulatum were good source of minerals and fibers useful in the human diet for attaining nutritional sufficiency. The high in vitro and ex vitro antioxidant activities associated with high favonoids contents and compounds suggest the possibility to use the extracts of L. spathulatum in herbal products with the aim of improving general health and well-being, and/or as food additives for preventing lipid oxidation of lipid-rich foods.
Collapse
Affiliation(s)
- Seria Youssef
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Luísa Custódio
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | | | | | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Nyíregyháza, Hungary
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Nyíregyháza, Hungary
| | - Karim Ben Hamed
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
8
|
Kadoglidou K, Irakli M, Boutsika A, Mellidou I, Maninis N, Sarrou E, Georgiadou V, Tourvas N, Krigas N, Moysiadis T, Grigoriadou K, Maloupa E, Xanthopoulou A, Ganopoulos I. Metabolomic Fingerprinting and Molecular Characterization of the Rock Samphire Germplasm Collection from the Balkan Botanic Garden of Kroussia, Northern Greece. PLANTS 2022; 11:plants11040573. [PMID: 35214906 PMCID: PMC8879136 DOI: 10.3390/plants11040573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/19/2022]
Abstract
The traditionally edible aerial parts of rock samphire (Crithmum maritimum L.) could be a valuable functional food or feed ingredient due to their high antioxidant capacity, ascorbic acid content, and rich content in secondary metabolites such as phenolics and flavonoids. The first objective of this study was to evaluate eighteen genotypes derived from different regions of Greece regarding the phytochemical contents of their soluble extracts in total phenolics, total flavonoids, and individual polyphenols as determined by LC-MS analysis, as well as ascorbic acid content and their antioxidant capacity as determined by different assays, including ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid), DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging activity), and FRAP (ferric reducing antioxidant power) assays. The second objective of the study was the molecular characterization of native Greek C. maritimum genotypes. Great variation among genotypes was observed in terms of the antioxidant capacity, ascorbic acid content, and phenolic compounds (total phenolic content and total flavonoid content), as well as in caffeolquinic acids and flavonoids. The principal component analysis highlighted genotypes with a higher potential in antioxidants and polyphenolics. The most promising genotypes were G9 from Kefalonia, followed by G4 from Ikaria, where both clearly exhibited a similar response with high values of evaluated traits. The molecular characterization of genotypes revealed low variability and low to moderate genetic diversity between populations. Our data indicated that the rock samphire germplasm collection from the Balkan Botanic Garden of Kroussia could serve as an important source of documented genetic material and, thus, it is suggested for further investigation to provide insight regarding cultivation and agro-processing aspects, artificial selection, or plant breeding aimed at developing C. maritimum genotypes of high-bioactive value.
Collapse
Affiliation(s)
- Kalliopi Kadoglidou
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
- Correspondence: (K.K.); (I.G.)
| | - Maria Irakli
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Anastasia Boutsika
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Nikolas Maninis
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Eirini Sarrou
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Vasiliki Georgiadou
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Nikolaos Tourvas
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Nikos Krigas
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Theodoros Moysiadis
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
- Department of Computer Science, School of Sciences and Engineering, University of Nicosia, Nicosia 2417, Cyprus
| | - Katerina Grigoriadou
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Eleni Maloupa
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Aliki Xanthopoulou
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece; (M.I.); (A.B.); (I.M.); (N.M.); (E.S.); (V.G.); (N.T.); (N.K.); (T.M.); (K.G.); (E.M.); (A.X.)
- Correspondence: (K.K.); (I.G.)
| |
Collapse
|
9
|
Rock Samphire, a Candidate Crop for Saline Agriculture: Cropping Practices, Chemical Composition and Health Effects. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent market trends for functional healthy foods have rekindled the interest in wild edible species and created a market niche for high added value products. The current supply, mainly supported by plants collected from the wild, cannot meet increasing market needs; therefore, it is of major importance to establish cropping protocols and further valorize wild plants for culinary and industrial applications. Sea fennel is a wild edible halophyte that is an important ingredient in local cuisines and is also used in folk medicine for its beneficial health effects. Its valorization has not been commercially explored on a great scale and more efforts are needed to integrate the species in farming systems. The present review compiles the most recent reports regarding the farming practices that could allow for the establishment of cultivation protocols for farmers, while the main constraints that hinder the further exploitation of the species are also presented. Moreover, this review presents the most up-to-date information regarding the chemical composition (e.g., chemical composition of the aerial parts and volatile compounds in essential oils) and the health-related effects of various plant parts (e.g., antimicrobial, insecticidal and anticholinesterase activities) aiming to reveal possible alternative uses that will increase the added value of the species and will contribute to its commercial exploitation. Finally, the future remarks and the guidelines that have to be followed are also discussed.
Collapse
|
10
|
Effects of Individual and Simultaneous Selenium and Iodine Biofortification of Baby-Leaf Lettuce Plants Grown in Two Different Hydroponic Systems. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The iodine (I) and selenium (Se) deficiencies affect approximately 30% and 15%, respectively, of the global population. The biofortification of vegetables is a valid way to increase the intake of iodine and selenium through the diet. This study was carried out on baby-leaf lettuce to investigate the effects on plant growth, leaf quality, and leaf I and Se accumulation of adding potassium iodide and sodium selenate, separately and simultaneously, to the nutrient solution in a floating system and aeroponics. The effect of I and Se biofortification on post-harvest quality of lettuce leaves was also evaluated. Our results evidenced that the Se and I treatments increased the content of the two microelements in lettuce leaves without any negative interactions in the plants, when applied either separately or simultaneously. Both hydroponic systems proved to be suitable for producing Se and/or I enriched lettuce. Biofortification with Se was more effective when performed in aeroponics, whereas I biofortification was more effective in the floating system. Quality of leaves during post-harvest storage was not affected by neither of the treatments. Lettuce leaves enriched with 13 µM Se and 5 µMI could be good dietary sources of Se and I without inducing toxic effects in humans.
Collapse
|
11
|
Izydorczyk G, Ligas B, Mikula K, Witek-Krowiak A, Moustakas K, Chojnacka K. Biofortification of edible plants with selenium and iodine - A systematic literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141983. [PMID: 33254892 DOI: 10.1016/j.scitotenv.2020.141983] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 05/21/2023]
Abstract
Soil depletion with absorbed forms of microelements is a realistic problem leading to the formation of many human, plant, animal diseases related with micronutrient deficiencies. Searching for new ways to solve this problem is a crucial for the agro-chemical approach to food production. There are many research papers on plant micronutrient fertilization. However, there is still a lack of systematic review of the literature, which summarizes the most recent knowledge on biofortification of food of plant origin with microelements. This work is a systematic review which presents the various methodologies and compares the results of the applied doses and types of fertilizer formulation with the yield and micronutrient content of edible parts of plants. The PRISMA protocol-based review of the most recent literature data from the last 5 years (2015-2020) concerns enrichment of plants with selenium and iodine. These elements, in contrast to other microelements (zinc, manganese, iron, copper and others) are given to plants most often in anionic form: selenium - SeO32- and SeO42-, iodine - I- and IO3-, making them a separate subgroup of microelements. The review focuses on original research papers (not reviews), collected in 3 popular scientific databases: Scopus, Web of Knowledge, PubMed. This study shows how to effectively cope with hidden hunger taking into account the significance of optimized fertilization. Based on the collected data, the best method of micronutrients administration an integrated fortification strategy for selected trace elements and prospects in research/action development was proposed. It was found that the best way to enrich plants with selenium is foliar fertilization with Se(VI), in increased doses. The effectiveness of fortification is supported by the balanced nutrients fertilization, the presence of microorganisms and selection of plant varieties. Foliar fertilization, in increased doses with iodide (I-) is in turn an effective way to enrich plants with iodine.
Collapse
Affiliation(s)
- Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland.
| | - Bartosz Ligas
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| |
Collapse
|