1
|
Mohammadi Ziarani G, Rezakhani M, Feizi-Dehnayebi M, Nikolova S. Fumed-Si-Pr-Ald-Barb as a Fluorescent Chemosensor for the Hg 2+ Detection and Cr 2O 72- Ions: A Combined Experimental and Computational Perspective. Molecules 2024; 29:4825. [PMID: 39459195 PMCID: PMC11510132 DOI: 10.3390/molecules29204825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The surface of fumed silica nanoparticles was modified by pyridine carbaldehyde and barbituric acid to provide fumed-Si-Pr-Ald-Barb. The structure was identified and investigated through diverse techniques, such as FT-IR, EDX, Mapping, BET, XRD, SEM, and TGA. This nanocomposite was used to detect different cations and anions in a mixture of H2O:EtOH. The results showed that fumed-Si-Pr-Ald-Barb can selectively detect Hg2+ and Cr2O72- ions. The detection limits were calculated at about 5.4 × 10-3 M for Hg2+ and 3.3 × 10-3 M for Cr2O72- ions. A computational method (DFT) was applied to determine the active sites on the Pr-Ald-Barb for electrophilic and nucleophilic attacks. The HOMO-LUMO molecular orbital was calculated by B3LYP/6-311G(d,p)/LANL2DZ theoretical methods. The energy gap for the Pr-Ald-Barb and Pr-Ald-Barb+ion complexes was predicted by the EHOMO and ELUMO values. The DFT calculation confirms the suggested experimental mechanism for interacting the Pr-Ald-Barb with ions.
Collapse
Affiliation(s)
- Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, P.O. Box 19938-93973 Tehran, Iran
| | - Mahtab Rezakhani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, P.O. Box 19938-93973 Tehran, Iran
| | - Mehran Feizi-Dehnayebi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, P.O. Box 19938-93973 Tehran, Iran
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv Paisii Hilendarski, 4000 Plovdiv, Bulgaria
| |
Collapse
|
2
|
Ha R, Liu F, Li J, He M, Lan J, Wang B, Sun J, Liu X, Ding X, Shi W. Calix[4]arene-Decorated Covalent Organic Framework Conjugates for Lithium Isotope Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5657-5666. [PMID: 36662029 DOI: 10.1021/acsami.2c20309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lithium isotope separation has attracted extensive interest due to its important role in fusion and fission reactions. Up to now, it is still a great challenge to separate lithium isotopes (6Li and 7Li) in an efficient manner due to the low capture ability for lithium ions of related materials and highly similar physicochemical properties between lithium isotopes. In this work, three calix[4]arene-decorated crystalline covalent organic frameworks (COFs) with wave-like extension and AA-stacking configuration were designed and utilized for lithium adsorption and its isotope separation. Experimental studies show that these COFs exhibit an outstanding lithium adsorption capacity up to 94.66 mg·g-1, which is about 2 times beyond that of adsorbents reported in the literature. The high adsorption capacity of COFs could be attributed to the abundant adsorption sites from calix[4]arene unit. More importantly, this study demonstrates for the first time that calixarene groups can separate lithium isotopes with an excellent separation factor up to 1.053 ± 0.002, comparable to the most successful solid-phase lithium separation adsorbent. The calculation based on density functional theory showed that calixarene played an important role in the lithium adsorption. Interestingly, the lithium isotope separation performance is mainly affected by the amine bridging units. This work demonstrated that calixarene COFs are promising adsorbents for lithium isotope separation.
Collapse
Affiliation(s)
- Rui Ha
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an710049P. R. China
| | - Fuzhu Liu
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an710049P. R. China
| | - Jie Li
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an710049P. R. China
| | - Meng He
- College of New Energy, Xi'an Shiyou University, Xi'an710065P. R. China
| | - Jianhui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049P. R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350P. R. China
| | - Jun Sun
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an710049P. R. China
| | - Xue Liu
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an710049P. R. China
| | - Xiangdong Ding
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an710049P. R. China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049P. R. China
| |
Collapse
|
3
|
Moradi R, Mohammadi Ziarani G, Badiei A. Green synthesis and application of spiro[indoline-3,4′-pyrano[2,3-c]pyrazoles] as selective Hg (II) fluorescence sensor. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-022-04900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Afshar SS, Ziarani GM, Mohajer F, Badiei A, Iravani S, Varma RS. Synthesis of Fumed-Pr-Pi-TCT as a Fluorescent Chemosensor for the Detection of Cyanide Ions in Aqueous Media. WATER 2022; 14:4137. [DOI: 10.3390/w14244137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this research, fumed silica scaffolds modified via treatment with (3-chloropropyl)-triethoxysilane, piperazine, and trichlorotriazine groups were deployed for the specific detection of cyanide ions, thus paving the way for the detection of environmental hazards and pollutants with high specificity. Fumed-propyl -piperazine-trichlorotriazine (fumed-Pr-Pi-TCT) was synthesized in three steps starting from fume silica. It was functionalized subsequently using 3-(choloropropyl)-trimethoxysilane, piperazine, and trichlorotriazine, and then, the product was characterized through several methods including Fourier-transform infrared spectroscopy (FTIR) spectrum, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Fumed-Pr-Pi-TCT was exposed as a nanoparticle sensor to a range of different anions in aqueous media. This novel sensor could detect cyanide ions as a hazardous material, with the limit of detection being 0.82 × 10−4 M.
Collapse
|
5
|
Mohammadi Ziarani G, Roshankar S, Mohajer F, Badiei A, Sillanpää M. The synthesis of SBA-Pr-N-Is-Bu-SO3H as a new Hg2+ fluorescent sensor. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Jamasbi N, Mohammadi Ziarani G, Mohajer F, Darroudi M, Badiei A, Varma RS, Karimi F. Silica-coated modified magnetic nanoparticles (Fe 3O 4@SiO 2@(BuSO 3H) 3) as an efficient adsorbent for Pd 2+ removal. CHEMOSPHERE 2022; 307:135622. [PMID: 35810872 DOI: 10.1016/j.chemosphere.2022.135622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/18/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
It is crucial to fabricate cost-effective and efficient strategies for monitoring and eliminating hazardous metals in the water supplies. Among the many techniques, adsorption is one of the most powerful and facile ways for eliminating pollutants from effluents. It is also crucial to engineering high-performance low-cost adsorbents. In this regard, herein, Fe3O4@SiO2@(BuSO3H)3 as a modified core-shell magnetic silica nanoparticle embodies good selectivity to extract toxic metal ions from aquatic media. The present work investigated the removal performance of the magnetic adsorbent towards Pd2+ cation amongst the other heavy metal ions including Co2+, Pb2+, Hg2+, Cd2+, Cu2+, Zn2+ in aqueous solution. The flame atomic absorption spectrometry (FAAS) was utilized to assess the removal efficiency of the adsorbent. Several experimental parameters including elution condition, initial Pd(II) concentration, adsorbent dosage, initial pH of the solution, and contact time were explored to achieve the optimal conditions. The data of adsorption were very well with the Langmuir isotherm model, according to the adsorption isotherm mechanism experiments. In conclusion, this study lays the way for the development of novel magnetic adsorbents with high removal efficiencies for the removal of toxic metal ions from aqueous environment.
Collapse
Affiliation(s)
- Negar Jamasbi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, P. O. Box 1993893973, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, P. O. Box 1993893973, Iran.
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, P. O. Box 1993893973, Iran
| | - Mahdieh Darroudi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, P. O. Box 1993893973, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran.
| |
Collapse
|
7
|
Liu K, Pan M, Zhang Z, Hong L, Xie X, Yang J, Wang S, Wang Z, Song Y, Wang S. Electrochemical sensor applying ZrO2/nitrogen-doped three-dimensional porous carbon nanocomposite for efficient detection of ultra-trace Hg2+ ions. Anal Chim Acta 2022; 1231:340392. [DOI: 10.1016/j.aca.2022.340392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
|
8
|
Ahmad H, Koo BH, Khan RA. Enrichment of trace Hg(II) ions from food and water samples after solid phase extraction combined with ICP-OES determination. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Liquid-liquid extraction and visual detection of Hg2+ in aqueous solution by luminescent CsPbBr3 perovskite nanocrystals. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Facile and green preparation of colorimetric and fluorescent sensors for mercury, silver, and carbonate ions visual detecting: Spectroscopy and theoretical studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130626] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Esmaeili M, Ahour F, Keshipour S. Sensitive and selective determination of trace amounts of mercury ions using a dimercaprol functionalized graphene quantum dot modified glassy carbon electrode. NANOSCALE 2021; 13:11403-11413. [PMID: 34160516 DOI: 10.1039/d1nr00076d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel nanomaterial is synthesized based on the functionalization of graphene quantum dot with dimercaprol (GQD-DMC). Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (TEM) are used to approve the successful synthesis of GQD-DMC. The synthesized nanomaterial is used as an electrode modifier for the sensitive and selective determination of mercury(ii) ions in real water samples. The method of evaluation is based on the pre-concentration of mercury ions on the GQD-DMC modified glassy carbon electrode, reduction of Hg(ii), and anodic stripping voltammetric measurement of these reduced ions in a buffer solution. The pre-concentration of mercury ions is driven by the affinity interaction between the surface containing functional groups of DMC and Hg(ii) ions. The GQD-DMC modified glassy carbon electrode (GQD-DMC/GCE) shows extra sensitivity and selectivity for mercury(ii) detection, which is assumed to be due to the increased surface area as well as the presence of sulfur-containing functional groups on the modified structure.
Collapse
Affiliation(s)
- M Esmaeili
- Nanotechnology Research Center, Faculty of Science, Urmia University, Urmia, Iran.
| | - F Ahour
- Nanotechnology Research Center, Faculty of Science, Urmia University, Urmia, Iran.
| | - S Keshipour
- Nanotechnology Research Center, Faculty of Science, Urmia University, Urmia, Iran.
| |
Collapse
|
12
|
Ahmadi T, Mohammadi Ziarani G, Masoumian Hoseini SM, Badiei A, Ranjbar MM. Synthesis, characterization, and molecular docking of benzodiazepines in the presence of SrFe12O19 magnetic nanocatalyst. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02163-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Darroudi M, Mohammadi Ziarani G, Bahar S, Ghasemi JB, Badiei A. Lansoprazole-Based Colorimetric Chemosensor for Efficient Binding and Sensing of Carbonate Ion: Spectroscopy and DFT Studies. Front Chem 2021; 8:626472. [PMID: 33604329 PMCID: PMC7884336 DOI: 10.3389/fchem.2020.626472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
The new benzimidazole based receptor Lansoprazole has been used to detect carbonate anion by naked-eye and Uv-Vis spectroscopy. This receptor revealed visual changes withCO 3 2 - anion in ethanol. No detectable color changes were observed upon the addition of any other tested anions. The lansoprazole chemosensor selectively recognizesCO 3 2 - ion over the other interference anions in the ethanol, followed by deprotonation and reflected 1:1 complex formation between the receptor and the carbonate ion. Lansoprazole exhibits splendid selectivity toward carbonate ion via a visible color change from colorless to yellow with a detection limit of 57 μM. The binding mode ofCO 3 2 - to receptor L is supported by Density Functional Theory calculation. Moreover, this receptor shows a practical visible colorimetric test strip for the detection of carbonate ions. The transition states calculation demonstrates the occurrence of reaction from L to L-CO 3 2 - after overcoming an energy barrier of 10.1 kcal/mol, and there is considerable interaction energy between L andCO 3 2 - (94.9 kJ/mol), both of which confirmed that receptor L has high sensitivity and selectivity to the carbonate ion. The theoretical studies were performed to acquire an electronic description of the complexation mechanism byCO 3 2 - as well as to study bonding and structure in the complex. The optimized structures and binding mechanisms were supported with a high correlation and agreement by spectroscopy and DFT calculations.
Collapse
Affiliation(s)
- Mahdieh Darroudi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | | | - Shahriyar Bahar
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Jahan B. Ghasemi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Song C, Zhang Y, Li X, Ouyang G, Cui J, Zhang L, Yu A, Zhang S, Cui Y. Morphology-maintaining synthesis of copper hydroxy phosphate@metal-organic framework composite for extraction and determination of trace mercury in rice. Food Chem 2020; 343:128508. [PMID: 33248840 DOI: 10.1016/j.foodchem.2020.128508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
A novel copper hydroxy phosphate@MOF composite DMP-Cu decorated by 2, 5-dimercapto-1, 3, 4-thiadiazol was facilely prepared and characterized. A dispersive SPE strategy using DMP-Cu as adsorbent combined with atomic fluorescence spectroscopy was developed for the selective capture of trace total mercury in rice sample. The adsorption mechanism showed that the Hg2+ removal process was fitted with pseudo second-order kinetics and the Langmuir adsorption model. The adsorbent was easy to be regenerated and the maximum adsorption capacity for the removal of Hg2+ was 249.5 mg g-1 at the optimal pH of 4. X-ray photoelectron spectroscopy and Raman spectra verified the selective and strong interaction between Hg2+ and thiol/nitrogen-containing functional groups of DMTZ on DMP-Cu. The trace total mercury in rice samples was determined with detection limit of 0.0125 ng mL-1 and relative standard deviation below 6%. The high recoveries were obtained in range of 98.8-109% for the spiked rice samples.
Collapse
Affiliation(s)
- Chenchen Song
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, PR China
| | - Xinglin Li
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Gangfeng Ouyang
- Center of Advanced Analysis and Computational Science, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Jiting Cui
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Ling Zhang
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Ajuan Yu
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China.
| | - Shusheng Zhang
- Center of Advanced Analysis and Computational Science, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | | |
Collapse
|
15
|
Rosli A, Ahmad AL, Low SC. Enhancing membrane hydrophobicity using silica end-capped with organosilicon for CO2 absorption in membrane contactor. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117429] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Darroudi M, Mohammadi Ziarani G, Ghasemi JB, Badiei A. Acenaphtoquinoxaline as a selective fluorescent sensor for Hg (II) detection: experimental and theoretical studies. Heliyon 2020; 6:e04986. [PMID: 33005795 PMCID: PMC7509793 DOI: 10.1016/j.heliyon.2020.e04986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/23/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
A new fluorescent chemosensor based on quinoxaline was successfully synthesized through a facile and green catalytic reaction of ortho-phenylenediamine (O-PDA) and acenaphthylene-1,2-dione in the presence of SBA-Pr-SO3H. Prepared a "switch-off" quinoxaline-based receptor to recognized Hg2+ ion in high selectively and, without any interference from other metal ions, was developed. The photophysical behavior of this fluorophore was studied in acetonitrile by using fluorescence spectra. The fluorescence properties of several cations to acenaphtoquinoxaline were investigated in acetonitrile, and the competition test displayed that the probe fluorescence changes were specific for Hg2+ ion. The obtained results have shown high selectivity and sensitivity only for Hg2+. Also, the detection limit was as low as 42 ppb, and a top linear trend was observed between the concentration of Hg2+ ions and fluorescence intensity. The binding stoichiometry between chemosensor L and Hg2+ was found to be 1:1. Moreover, a computational study was performed to obtain an electronic description of the fluorescence emission and quenching mechanisms. The optimized structures and binding mechanisms were supported with a high correlation and agreement by spectroscopy and DFT calculations.
Collapse
Affiliation(s)
- Mahdieh Darroudi
- Department of Chemistry, Faculty of Physic and Chemistry, Alzahra University, Tehran P.O. Box 1993893973, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Chemistry, Faculty of Physic and Chemistry, Alzahra University, Tehran P.O. Box 1993893973, Iran
| | - Jahan B. Ghasemi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Balasurya S, Syed A, Thomas AM, Marraiki N, Al-Rashed S, Elgorban AM, Raju LL, Das A, Khan SS. Colorimetric detection of mercury ions from environmental water sample by using 3-(Trimethoxysilyl)propyl methacrylate functionalized Ag NPs-tryptophan nanoconjugate. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 207:111888. [DOI: 10.1016/j.jphotobiol.2020.111888] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/27/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023]
|
18
|
Metal organic framework assisted in situ complexation for miniaturized solid phase extraction of organic mercury in fish and Dendrobium officinale. Talanta 2019; 209:120598. [PMID: 31892039 DOI: 10.1016/j.talanta.2019.120598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
Zirconium-based metal-organic frameworks, namely Zr-based MOF, was employed as adsorbent material in the miniaturized solid phase extraction of organic mercury compounds in food prior to capillary electrophoresis-diode array detector analysis. The synthesized adsorbent was characterized by different spectroscopic techniques. Parameters influencing the extraction and complexation of methylmercury chloride, ethylmercury chloride and phenylmercury chloride such as type of eluent solvent, type and amount of adsorbent were investigated. In addition, linear ranges contained 2.00-300.00 ng mL-1 for MeHg+, 5.00-500.00 ng mL-1 for EtHg+ and PhHg+, and the established method presented good linearity (R2 ≥ 0.998). Under the optimized experimental conditions, the ranges of detection limit and quantitation limit were 0.022-0.067 ng mL-1 and 0.073-0.220 ng mL-1, respectively. The relative standard deviations of intra- and inter-day analysis were less than 3.2 and 3.1%, respectively. Trueness of the present method was successfully accomplished by means of the recovery assays (81.4-98.5%) in the blank samples with two concentration levels. The repeatability %RSD of the method was lower than 2.7%. Overall, the developed approach proved to have the latent capability to be utilized in routine analysis of organic mercury compounds in fish and Dendrobium officinale.
Collapse
|