1
|
Huang J, Sha R, Dai J, Wang Z, Cai M, Li X, Mao J. Enhanced stability and oxidation resistance of Acer truncatum Bunge seed oil Pickering emulsion using rice bran protein modified by phytic acid. Food Chem X 2025; 25:102080. [PMID: 39758066 PMCID: PMC11699054 DOI: 10.1016/j.fochx.2024.102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/17/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
The potential applications of Acer truncatum Bunge seed oil in the food and medical industries are constrained by its susceptible fatty acid composition, which is prone to oxidation. In this study, rice bran protein (RBP) was employed as an emulsifier for the fabrication of Acer truncatum Bunge seed oil Pickering emulsion. The impact of antioxidant-phytic acid (PA) on the stability of Pickering emulsion and the underlying mechanisms were further investigated. The findings indicate that PA is capable of interacting with RBP, resulting in a change in its spatial conformation. When the PA concentration was increased from 0 to 0.01 % (w/v), the number of α-helices of RBP-PA particles decreased by 5 %, the number of β-sheets and interfacial adsorbed proteins increased by 2.89 % and 39.83 %. Additionally, and the surface hydrophobicity was increased from 50 ± 3.63 (a.u.) to 429 ± 20.03 (a.u.), and the range of the particle size distribution was reduced from 1 to 10 μm to 295-459 nm, and the zeta potential decreased from -23.43 ± 0.46 mV to -53.4 ± 1.35 mV. The Acer truncatum Bunge seed oil Pickering emulsion, containing 0.01 % PA, exhibits favourable static stability and lipid oxidative stability, allowing for storage at room temperature for a period exceeding 50 days.
Collapse
Affiliation(s)
- Jianjun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Ruyi Sha
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jing Dai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhenzhen Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Min Cai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xianxiu Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jianwei Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
2
|
Wang C, Wu Y, Liu C, Li Y, Mi S, Yang X, Liu T, Tian Y, Zhang Y, Hu P, Qiao L, Deng G, Liang N, Sun J, Zhang Y, Zhang J. Nervonic acid alleviates radiation-induced early phase lung inflammation by targeting macrophages activation in mice. Front Immunol 2024; 15:1405020. [PMID: 39723218 PMCID: PMC11668677 DOI: 10.3389/fimmu.2024.1405020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Background Patients receiving chest radiation therapy, or exposed to high radiation levels due to accidental nuclear leakage are at risk of radiation-induced lung injury (RILI). In innate immunity, macrophages not only exhibit certain radiation tolerance but also play an important regulatory role in the whole pathological process. Nervonic acid (NA), a long-chain unsaturated fatty acid found in nerve tissue, plays a pivotal role in maintaining normal tissue growth and repair. However, the influence of NA on RILI progression has yet to be examined. Aim This study aimed to assess the role of macrophage subtypes in RILI and whether NA can alleviate RILI. Specifically, whether NA can alleviate RILI by targeting macrophages and reducing the levels of inflammatory mediators in mouse models was assessed. Methods Mice RILI model was employed with 13 Gy whole thoracic radiation with or without administration of NA. Various assays were performed to evaluate lung tissue histological changes, cytokine expression, IκB-α expression and the number and proportion of macrophages. Results Radiation can lead to the release of inflammatory mediators, thereby exacerbating RILI. The specific radiation dose and duration of exposure can lead to different dynamic changes in the number of subpopulations of lung macrophages. NA can affect the changes of macrophages after irradiation and reduce inflammatory responses to alleviate RILI. Conclusion Macrophages play a significant role in the integrated pathological process of lung injury after irradiation which shows a dynamic change with different times. NA can protect lung tissues against the toxic effects of ionizing radiation and is a new potential functional component for targeting macrophages.
Collapse
Affiliation(s)
- Chenlin Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yanan Wu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yang Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Song Mi
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Xiaofan Yang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Tong Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Yuanjing Tian
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - YingYing Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Pingping Hu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Lili Qiao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Guodong Deng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Ning Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Jinyue Sun
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Yan Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- Medical Integration and Practice Center, Cheeto College of Medicine, Shandong University, Jinan, China
- Shenzhen Research Institute, Shandong University, Shenzhen, China
| | - Jiandong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Song JH, Kim SJ, Kwon S, Jeon SY, Park SE, Choi SJ, Oh SY, Jeon HB, Chang JW. Nervonic acid improves fat transplantation by promoting adipogenesis and angiogenesis. Int J Mol Med 2024; 54:108. [PMID: 39364738 PMCID: PMC11517738 DOI: 10.3892/ijmm.2024.5432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
Adipose tissue engraftment has become a promising strategy in the field of regenerative surgery; however, there are notable challenges associated with it, such as resorption of 50‑90% of the transplanted fat or cyst formation due to fat necrosis after fat transplantation. Therefore, identifying novel materials or methods to improve the engraftment efficiency is crucial. The present study investigated the effects of nervonic acid (NA), a monounsaturated very long‑chain fatty acid, on adipogenesis and fat transplantation, as well as its underlying mechanisms. To assess this, NA was used to treat cells during adipogenesis in vitro, and the expression levels of markers, including PPARγ and CEBPα, and signaling molecules were detected through reverse transcription‑quantitative PCR and western blotting. In addition, NA was mixed with fat grafts in in vivo fat transplantation, followed by analysis through Oil Red O staining, hematoxylin & eosin staining and immunohistochemistry. It was demonstrated that NA treatment accelerated adipogenesis through activation of the Akt/mTOR pathway and inhibition of Wnt signaling. NA treatment enriched the expression of Akt/mTOR signaling‑related genes, and increased the expression of genes involved in angiogenesis and fat differentiation in human mesenchymal stem cells (MSCs). Additionally, NA effectively improved the outcome of adipose tissue engraftment in mice. Treatment of grafts with NA at transplantation reduced the resorption of transplanted fat and increased the proportion of perilipin‑1+ adipocytes with a lower portion of vacuoles in mice. Moreover, the NA‑treated group exhibited a reduced pro‑inflammatory response and had more CD31+ vessel structures, which were relatively evenly distributed among viable adipocytes, facilitating successful engraftment. In conclusion, the present study demonstrated that NA may not only stimulate adipogenesis by regulating signaling pathways in human MSCs, but could improve the outcome of fat transplantation by reducing inflammation and stimulating angiogenesis. It was thus hypothesized that NA could serve as an adjuvant strategy to enhance fat engraftment in regenerative surgery.
Collapse
Affiliation(s)
- Jae Hoon Song
- Cell and Gene Therapy Institute, ENCell Co., Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Sun Jeong Kim
- Cell and Gene Therapy Institute, ENCell Co., Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Soojin Kwon
- Cell and Gene Therapy Institute, ENCell Co., Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Su Yeon Jeon
- Cell and Gene Therapy Institute, ENCell Co., Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Sang Eon Park
- Cell and Gene Therapy Institute, ENCell Co., Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Soo-Young Oh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Hong Bae Jeon
- Cell and Gene Therapy Institute, ENCell Co., Ltd., Seoul 06072, Republic of Korea
| | - Jong Wook Chang
- Cell and Gene Therapy Institute, ENCell Co., Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Republic of Korea
| |
Collapse
|
4
|
Wang J, Singer SD, Chen G. Biotechnological advances in the production of unusual fatty acids in transgenic plants and recombinant microorganisms. Biotechnol Adv 2024; 76:108435. [PMID: 39214484 DOI: 10.1016/j.biotechadv.2024.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/28/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Certain plants and microorganisms can produce high amounts of unusual fatty acids (UFAs) such as hydroxy, conjugated, cyclic, and very long-chain polyunsaturated fatty acids, which have distinct physicochemical properties and significant applications in the food, feed, and oleochemical industries. Since many natural sources of UFAs are not ideal for large-scale agricultural production or fermentation, it is attractive to produce them through synthetic biology. Although several UFAs have been commercially or pre-commercially produced in transgenic plants and microorganisms, their contents in transgenic hosts are generally much lower than in natural sources. Moreover, reproducing this success for a wider spectrum of UFAs has remained challenging. This review discusses recent advancements in our understanding of the biosynthesis, accumulation, and heterologous production of UFAs, and addresses the challenges and potential strategies for achieving high UFA content in engineered plants and microorganisms.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St and 85 Ave, Edmonton, Alberta T6G 2P5, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St and 85 Ave, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
5
|
Li Y, Piao C, Kong C. Stearoyl CoA desaturase inhibition can effectively induce apoptosis in bladder cancer stem cells. Cancer Cell Int 2024; 24:357. [PMID: 39472909 PMCID: PMC11520891 DOI: 10.1186/s12935-024-03540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Bladder cancer stands as one of the most prevalent cancers worldwide. While our previous research confirmed the significant role of stearoyl-CoA desaturase (SCD) in bladder cancer, the underlying reasons for its abnormal overexpression remain largely unknown. Moreover, the distinct response to SCD inhibitors between cancer stem cells (CSCs) and adherent cultured cell lines lacks clear elucidation. Therefore, in this experiment, we aim to conduct an analysis and screening of the SCD transcription start site, further seeking critical transcription factors involved. Simultaneously, through experimental validation, we aim to explore the pivotal role of endoplasmic reticulum stress/unfolded protein response in drug sensitivity among cancer stem cells. Additionally, our RNA-seq and lipid metabolism analysis revealed the significant impact of nervonic acid on altering the proliferative capacity of bladder cancer cell lines.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang City, 110000, Liaoning Province, People's Republic of China
| | - Chiyuan Piao
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang City, 110000, Liaoning Province, People's Republic of China.
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang City, 110000, Liaoning Province, People's Republic of China.
| |
Collapse
|
6
|
Liu YD, Peng X, Chen HR, Liu XS, Peng LH. Nervonic acid as novel therapeutics initiates both neurogenesis and angiogenesis for comprehensive wound repair and healing. Front Pharmacol 2024; 15:1487183. [PMID: 39502529 PMCID: PMC11534657 DOI: 10.3389/fphar.2024.1487183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Rapid tissue reconstruction in acute and chronic injuries are challengeable, the inefficient repair mainly due to the difficulty in simultaneous promoting the regeneration of peripheral nerves and vascular, which are closely related. Main clinical medication strategy of tissue repair depends on different cytokines to achieve nerves, blood vessels or granulation tissue regeneration, respectively. However, their effect is still limited to single aspect with biorisk exists upon long-time use. Herein, for the first time, we have demonstrated that NA isolated from Malania oleifera has potential to simultaneously promote both neurogenesis and angiogenesis in vitro and in vivo. First, NA was identified by NMR and FTIR structural characterization analysis. In a model of oxidative stress in neural cells induced by hydrogen peroxide, the cells viability of RSC96 and PC12 were protected from oxidative stress injury by NA. Similarly, based on the rat wound healing model, effective blood vessel formation and wound healing can be observed in tissue staining under NA treatment. In addition, according to the identification of nerve and vascular related markers in the wound tissue, the mechanism of NA promoting nerve regeneration lies in the upregulation of the secretion NGF, NF-200 and S100 protein, and NA treatment was also able to up-regulate VEGF and CD31 to directly promote angiogenesis during wound healing. This study provides an important candidate drug molecules for acute or chronic wound healing and nerve vascular synchronous regeneration.
Collapse
Affiliation(s)
- Yu-Da Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiao Peng
- Jinhua Institute, Zhejiang University, Jinhua, Zhejiang, China
| | - Hao-Ran Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xue-Song Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute, Zhejiang University, Jinhua, Zhejiang, China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute, Zhejiang University, Jinhua, Zhejiang, China
| |
Collapse
|
7
|
Cagnasso F, Suchodolski JS, Borrelli A, Borella F, Bottero E, Benvenuti E, Ferriani R, Tolbert MK, Chen CC, Giaretta PR, Gianella P. Dysbiosis index and fecal concentrations of sterols, long-chain fatty acids and unconjugated bile acids in dogs with inflammatory protein-losing enteropathy. Front Microbiol 2024; 15:1433175. [PMID: 39464397 PMCID: PMC11505111 DOI: 10.3389/fmicb.2024.1433175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Canine protein-losing enteropathy (PLE) is a syndrome characterized by gastrointestinal loss of proteins. While fecal microbiome and metabolome perturbations have been reported in dogs with chronic enteropathy, they have not been widely studied in dogs with PLE. Therefore, the study aims were to investigate gut microbiome and targeted fecal metabolites in dogs with inflammatory PLE (iPLE) and evaluate whether treatment affects these changes at short-term follow-up. Methods Thirty-eight dogs with PLE and histopathological evidence of gastrointestinal inflammation and 47 healthy dogs were enrolled. Fecal samples were collected before endoscopy (T0) and after one month of therapy (T1). Microbiome and metabolome alterations were investigated using qPCR assays (dysbiosis index, DI) and gas chromatography/mass spectrometry (long-chain fatty acids, sterols, unconjugated bile acids), respectively. Results Median (min-max) DI of iPLE dogs was 0.4 (-5.9 to 7.7) and was significantly higher (p < 0.0001) than median DI in healthy dogs [-2.0 (-6.0 to 5.3)]. No significant associations were found between DI and selected clinicopathological variables. DI did not significantly differ between T0 and T1. In iPLE dogs, at T0, myristic, palmitic, linoleic, oleic, cis-vaccenic, stearic, arachidonic, gondoic, docosanoic, erucic, and nervonic acids were significantly higher (p < 0.0001) than healthy dogs. In iPLE dogs, oleic acid (p = 0.044), stearic acid (p = 0.013), erucic acid (p = 0.018) and nervonic acid (p = 0.002) were significantly decreased at T1. At T0, cholesterol and lathosterol (p < 0.0001) were significantly higher in iPLE dogs compared to healthy dogs, while total measured phytosterols were significantly lower (p = 0.001). No significant differences in total sterols, total phytosterols and total zoosterols content were found at T1, compared to T0. At T0, total primary bile acids and total secondary bile acids did not significantly differ between healthy control dogs and iPLE dogs. No significant differences in fecal bile acid content were found at T1. Discussion Dysbiosis and lipid metabolism perturbations were observed in dogs with iPLE. Different therapeutic protocols lead to an improvement of some but not all metabolome perturbations at short-term follow-up.
Collapse
Affiliation(s)
- Federica Cagnasso
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Antonio Borrelli
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Franca Borella
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | | | | | | | - M. Katherine Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Chih-Chun Chen
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Paula R. Giaretta
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Paola Gianella
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| |
Collapse
|
8
|
Gao H, Sun J, Guo X, Zhang Z, Liu H, Zhang Z, Liu M, Zhou S, Li S, Zhang T. Study on the Extraction of Nervonic Acid from the Oil of Xanthoceras sorbifolium Bunge Seeds. Foods 2024; 13:2757. [PMID: 39272521 PMCID: PMC11394566 DOI: 10.3390/foods13172757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Seven fatty acids were detected by GC-MS in Xanthoceras sorbifolium Bunge seed oil extracted at different temperatures, including Palmitic acid C16:0, Stearic acid C18:0, Oleic acid C18:1, Eicosenoic acid C20:1, Docosenoic acid C22:1, Tetracosenoic acid C24:1, and Linoleic acid C18:2. The highest content of nervonic acid (NA) was found in Xanthoceras sorbifolium Bunge seed oil extracted at 70 °C. Three methods were selected to analyze the extraction rate of nervonic acid in Xanthoceras sorbifolium Bunge seed oil, including urea complexation, low-temperature solvent crystallization, and a combined treatment using these two methods. The final content of nervonic acid obtained was 14.07%, 19.66%, and 40.17%, respectively. The combined treatment method increased the purity of nervonic acid in Xanthoceras sorbifolium Bunge seed oil by 12.62 times. Meanwhile, thermogravimetric behavior analysis of samples extracted using different methods was conducted by thermogravimetric analyzer, which suggested that the thermal stability of the samples extracted by the combined treatment was enhanced. These results can provide a new process parameter and scientific basis for the extraction of NA. At the same time, FTIR and NMR were also used to characterize the combined extraction sample, and the structure of the samples was proved.
Collapse
Affiliation(s)
- Hui Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Jie Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xuan Guo
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Ziyan Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - He Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhiran Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Mengkai Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Sen Zhou
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Shengxin Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Tingting Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
9
|
Fan Y, Wang S, Yang J, Wang R, Wang Y, Zhu X, Wang Z. Microemulsions based on Acer truncatum seed oil and its fatty acids: fabrication, rheological property, and stability. J Microencapsul 2024; 41:296-311. [PMID: 38709162 DOI: 10.1080/02652048.2024.2348450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
AIMS To construct the microemulsion delivery system (ME) loading ATSO and NA and study their physicochemical characteristics to enhance their stability and water solubility. METHODS By plotting ternary phase diagrams, the composition and proportions of the MEs were determined. The physicochemical characteristics and stability of MEs were evaluated by mean diameter, polydispersity index (PDI), pH, electrical conductivity, transmission electron microscopy (TEM), rheological behaviour measurement, and phase inversion temperature (PIT). RESULTS The MEs was composed with EL-40 as a surfactant and specifically with the addition of ethanol as a cosurfactant in NA-loaded ME. The mean diameters of ATSO-loaded ME and NA-loaded ME were 39.65 ± 0.24 nm and 32.90 ± 2.65 nm, and PDI were 0.49 ± 0.01 and 0.28 ± 0.14, respectively. The TEM confirmed the spherical and smooth morphology of MEs. The rheological results indicated that MEs are dilatant fluids with the advantages of low viscosity, high fluidity, and tolerance to temperature fluctuations. The mean diameter and PDI of MEs showed no significant change after storage at 25 °C for 28 days and centrifugation. CONCLUSION The prepared microemulsions could expand the application prospects of ATSO and NA products in cosmetics, medicine, foods and other fields.
Collapse
Affiliation(s)
- Yaqing Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shuting Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jiayi Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ruixue Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yulu Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xuanhe Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhanzhong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Zhu H, Zhao P, Wang X, Wang Y, Zhang S, Pang X, Lv J. Fabrication of Human Milk Fat Substitute: Based on the Similarity Evaluation Model and Computer Software. Molecules 2024; 29:2096. [PMID: 38731587 PMCID: PMC11085832 DOI: 10.3390/molecules29092096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
We aimed to obtain the optimal formula for human milk fat substitute (HMFS) through a combination of software and an evaluation model and further verify its practicability through an animal experiment. The results showed that a total of 33 fatty acid (FA) and 63 triglyceride (TAG) molecular species were detected in vegetable oils. Palmitic acid, oleic acid, linoleic acid, 18:1/16:0/18:1, 18:2/16:0/18:2, 18:1/18:1/18:1 and 18:1/18:2/18:1, were the main molecular species among the FAs and TAGs in the vegetable oils. Based on the HMFS evaluation model, the optimal mixed vegetable oil formula was blended with 21.3% palm oil, 2.8% linseed oil, 2.6% soybean oil, 29.9% rapeseed oil and 43.4% maize oil, with the highest score of 83.146. Moreover, there was no difference in the weight, blood routine indices or calcium and magnesium concentrations in the feces of the mice between the homemade mixed vegetable oil (HMVO) group and the commercial mixed vegetable oil (CMVO) group, while nervonic acid (C24:1) and octanoic acid (C8:0) were absorbed easily in the HMVO group. Therefore, these results demonstrate that the mixing of the different vegetable oils was feasible via a combination of computer software and an evaluation model and provided a new way to produce HMFS.
Collapse
Affiliation(s)
- Huiquan Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.Z.); (P.Z.); (X.W.); (Y.W.); (S.Z.); (J.L.)
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium
- National Center of Technology Innovation for Dairy, Hohhot 010100, China
| | - Pu Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.Z.); (P.Z.); (X.W.); (Y.W.); (S.Z.); (J.L.)
| | - Xiaodan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.Z.); (P.Z.); (X.W.); (Y.W.); (S.Z.); (J.L.)
| | - Yunna Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.Z.); (P.Z.); (X.W.); (Y.W.); (S.Z.); (J.L.)
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.Z.); (P.Z.); (X.W.); (Y.W.); (S.Z.); (J.L.)
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.Z.); (P.Z.); (X.W.); (Y.W.); (S.Z.); (J.L.)
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.Z.); (P.Z.); (X.W.); (Y.W.); (S.Z.); (J.L.)
| |
Collapse
|
11
|
Li Y, Kong F, Wu S, Song W, Shao Y, Kang M, Chen T, Peng L, Shu Q. Integrated analysis of metabolome, transcriptome, and bioclimatic factors of Acer truncatum seeds reveals key candidate genes related to unsaturated fatty acid biosynthesis, and potentially optimal production area. BMC PLANT BIOLOGY 2024; 24:284. [PMID: 38627650 PMCID: PMC11020666 DOI: 10.1186/s12870-024-04936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Lipids found in plant seeds are essential for controlling seed dormancy, dispersal, and defenses against biotic and abiotic stress. Additionally, these lipids provide nutrition and energy and are therefore important to the human diet as edible oils. Acer truncatum, which belongs to the Aceaceae family, is widely cultivated around the world for its ornamental value. Further because its seed oil is rich in unsaturated fatty acids (UFAs)- i.e. α-linolenic acid (ALA) and nervonic acid (NA)- and because it has been validated as a new food resource in China, the importance of A. truncatum has greatly risen. However, it remains unknown how UFAs are biosynthesized during the growth season, to what extent environmental factors impact their content, and what areas are potentially optimal for their production. RESULTS In this study, transcriptome and metabolome of A. truncatum seeds at three representative developmental stages was used to find the accumulation patterns of all major FAs. Cumulatively, 966 metabolites and 87,343 unigenes were detected; the differential expressed unigenes and metabolites were compared between stages as follows: stage 1 vs. 2, stage 1 vs. 3, and stage 2 vs. 3 seeds, respectively. Moreover, 13 fatty acid desaturases (FADs) and 20 β-ketoacyl-CoA synthases (KCSs) were identified, among which the expression level of FAD3 (Cluster-7222.41455) and KCS20 (Cluster-7222.40643) were consistent with the metabolic results of ALA and NA, respectively. Upon analysis of the geographical origin-affected diversity from 17 various locations, we found significant variation in phenotypes and UFA content. Notably, in this study we found that 7 bioclimatic variables showed considerable influence on FAs contents in A. truncatum seeds oil, suggesting their significance as critical environmental parameters. Ultimately, we developed a model for potentially ecological suitable regions in China. CONCLUSION This study provides a comprehensive understanding of the relationship between metabolome and transcriptome in A. truncatum at various developmental stages of seeds and a new strategy to enhance seed FA content, especially ALA and NA. This is particularly significant in meeting the increasing demands for high-quality edible oil for human consumption. The study offers a scientific basis for A. truncatum's novel utilization as a woody vegetable oil rather than an ornamental plant, potentially expanding its cultivation worldwide.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Fan Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shangwei Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjin Song
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Shao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Kang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Hunan Agricultural University, Changsha, 410128, China
| | - Tiantian Chen
- Taishan Academy of Forestry Sciences, Tai'an, 271002, China
| | - Liping Peng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Qingyan Shu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Namiecinska M, Piatek P, Lewkowicz P. Nervonic Acid Synthesis Substrates as Essential Components in Profiled Lipid Supplementation for More Effective Central Nervous System Regeneration. Int J Mol Sci 2024; 25:3792. [PMID: 38612605 PMCID: PMC11011827 DOI: 10.3390/ijms25073792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Central nervous system (CNS) damage leads to severe neurological dysfunction as a result of neuronal cell death and axonal degeneration. As, in the mature CNS, neurons have little ability to regenerate their axons and reconstruct neural loss, demyelination is one of the hallmarks of neurological disorders such as multiple sclerosis (MS). Unfortunately, remyelination, as a regenerative process, is often insufficient to prevent axonal loss and improve neurological deficits after demyelination. Currently, there are still no effective therapeutic tools to restore neurological function, but interestingly, emerging studies prove the beneficial effects of lipid supplementation in a wide variety of pathological processes in the human body. In the future, available lipids with a proven beneficial effect on CNS regeneration could be included in supportive therapy, but this topic still requires further studies. Based on our and others' research, we review the role of exogenous lipids, pointing to substrates that are crucial in the remyelination process but are omitted in available studies, justifying the properly profiled supply of lipids in the human diet as a supportive therapy during CNS regeneration.
Collapse
Affiliation(s)
- Magdalena Namiecinska
- Department of Immunogenetics, Medical University of Lodz, Pomorska 251/A4 Street, 92-213 Lodz, Poland; (P.P.); (P.L.)
| | | | | |
Collapse
|
13
|
Moreno ML, Percival SS, Kelly DL, Dahl WJ. Daily olive oil intake is feasible to reduce trigeminal neuralgia facial pain: A pilot study. Nutr Res 2024; 123:101-110. [PMID: 38306883 DOI: 10.1016/j.nutres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 02/04/2024]
Abstract
Extra virgin olive oil (EVOO) is thought to contribute to neuroprotection and, thus, may influence pain symptoms experienced by adults with demyelination-related trigeminal neuralgia (TN). This study aimed to determine the feasibility of daily intake of EVOO and its potential to alleviate facial pain of TN. Adults, self-reporting as female and affected by TN, were enrolled in a 16-week nonblinded, parallel study. After a 4-week baseline, participants were randomized to 60 mL/day EVOO or control (usual diet and no supplemental EVOO) for 12 weeks. Participants completed a daily questionnaire on pain intensity and compliance, the Penn Facial Pain Scale weekly, the 36-Item Short Form Survey monthly, and dietary assessment during baseline and intervention. Participants (n = 52; 53.3 ± 12.9 years) were recruited nationally; 42 completed the study. The EVOO group, with 90% intake compliance, showed significant decreases in the Penn Facial Pain Scale items of interference with general function, interference with orofacial function, and severity of pain from baseline, whereas the control group showed no improvements. EVOO benefit, compared with control, trended for the interference with orofacial function (P = .05). The 36-Item Short Form Survey items of role limitations resulting from emotional problems and role limitations from physical health favored EVOO. The EVOO group significantly improved their Healthy Eating Index 2015 component scores of fatty acids (primarily from increased oleic acid), sodium, and refined grains. EVOO intake of 60 mL/day was feasible for participants experiencing TN and may mitigate pain and improve quality of life. This trial was registered at clinicaltrials.gov (NCT05032573).
Collapse
Affiliation(s)
- Melissa L Moreno
- Food Science and Human Nutrition Department, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Gainesville, FL 32611
| | - Susan S Percival
- Food Science and Human Nutrition Department, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Gainesville, FL 32611
| | - Debra Lynch Kelly
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL 32610
| | - Wendy J Dahl
- Food Science and Human Nutrition Department, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Gainesville, FL 32611.
| |
Collapse
|
14
|
Cheng D, Wang Z, Guo X, Guo Y, Zhang Y, Zhao Y, Liu R, Chang M. Acer truncatum Bunge seed oil ameliorated oxaliplatin-induced demyelination by improving mitochondrial dysfunction via the Pink1/Parkin mitophagy pathway. Food Funct 2024; 15:1355-1368. [PMID: 38205834 DOI: 10.1039/d3fo03955b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Dietary nutritional support for special populations is an effective and feasible method to improve the quality of life of patients and reduce medical pressure. Acer truncatum Bunge seed oil (ATSO) is widely recognized for its ability to promote nerve myelin regeneration. To evaluate the ameliorative effects of ATSO on chemotherapy-induced demyelination, a zebrafish model of chemotherapy-induced demyelination was established. The results showed that 100 μg mL-1 of ATSO reversed tail morphology damage, axon degeneration, touch response delay, ROS level upregulation and the expression of myelin basic protein decrease in chemotherapy-induced zebrafish. In addition, the expression of myelin markers (including sox10, krox20, and pmp22) in oxaliplatin-induced cells was markedly reversed by ATSO and its active components (gondoic acid, erucic acid, and nervonic acid). ATSO and its active components could reverse demyelination by ameliorating mitochondrial dysfunction. Conversely, linoleic acid and linolenic acid promoted demyelination by exacerbating mitochondrial dysfunction. Moreover, the Pink1/Parkin pathway was recognized as the main reason for ATSO and its active components improving mitochondrial function by activating mitophagy and restoring autophagic flow. Taken together, this study demonstrated that ATSO and its active components could be further developed as novel functional food ingredients to antagonize demyelination.
Collapse
Affiliation(s)
- Dekun Cheng
- National Engineering Research Center for Functional Food, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhangtie Wang
- National Engineering Research Center for Functional Food, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xin Guo
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yiwen Guo
- National Engineering Research Center for Functional Food, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yu Zhang
- National Engineering Research Center for Functional Food, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Ruijie Liu
- National Engineering Research Center for Functional Food, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Ming Chang
- National Engineering Research Center for Functional Food, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
15
|
Su H, Shi P, Shen Z, Meng H, Meng Z, Han X, Chen Y, Fan W, Fa Y, Yang C, Li F, Wang S. High-level production of nervonic acid in the oleaginous yeast Yarrowia lipolytica by systematic metabolic engineering. Commun Biol 2023; 6:1125. [PMID: 37935958 PMCID: PMC10630375 DOI: 10.1038/s42003-023-05502-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Nervonic acid benefits the treatment of neurological diseases and the health of brain. In this study, we employed the oleaginous yeast Yarrowia lipolytica to overproduce nervonic acid oil by systematic metabolic engineering. First, the production of nervonic acid was dramatically improved by iterative expression of the genes ecoding β-ketoacyl-CoA synthase CgKCS, fatty acid elongase gELOVL6 and desaturase MaOLE2. Second, the biosynthesis of both nervonic acid and lipids were further enhanced by expression of glycerol-3-phosphate acyltransferases and diacylglycerol acyltransferases from Malania oleifera in endoplasmic reticulum (ER). Third, overexpression of a newly identified ER structure regulator gene YlINO2 led to a 39.3% increase in lipid production. Fourth, disruption of the AMP-activated S/T protein kinase gene SNF1 increased the ratio of nervonic acid to lignoceric acid by 61.6%. Next, pilot-scale fermentation using the strain YLNA9 exhibited a lipid titer of 96.7 g/L and a nervonic acid titer of 17.3 g/L (17.9% of total fatty acids), the highest reported titer to date. Finally, a proof-of-concept purification and separation of nervonic acid were performed and the purity of it reached 98.7%. This study suggested that oleaginous yeasts are attractive hosts for the cost-efficient production of nervonic acid and possibly other very long-chain fatty acids (VLCFAs).
Collapse
Affiliation(s)
- Hang Su
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Penghui Shi
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Zhaoshuang Shen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Huimin Meng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| | - Ziyue Meng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xingfeng Han
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yanna Chen
- Zhejiang Zhenyuan Biotech Co., LTD, Shaoxing, 312365, China
| | - Weiming Fan
- Zhejiang Zhenyuan Biotech Co., LTD, Shaoxing, 312365, China
| | - Yun Fa
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Fuli Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| | - Shi'an Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| |
Collapse
|
16
|
Zhao XR, Chen XL, Yang JL, Gao Q, Shi JT, Hua Q, Wei LJ. De novo synthesis of nervonic acid and optimization of metabolic regulation by Yarrowia lipolytica. BIORESOUR BIOPROCESS 2023; 10:70. [PMID: 38647797 PMCID: PMC10992393 DOI: 10.1186/s40643-023-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/17/2023] [Indexed: 04/25/2024] Open
Abstract
Nervonic acid, a natural fatty acid compound and also a core component of nerve fibers and nerve cells, has been widely used to prevent and treat related diseases of the brain nervous system. At present, fatty acids and their derivatives are mainly obtained by natural extraction or chemical synthesis which are limited by natural resources and production costs. In this study, the de novo synthetic pathway of nervonic acid was constructed in Yarrowia lipolytica by means of synthetic biology, and the yield of nervonic acid was further improved by metabolic engineering and fermentation optimization. Specially, heterologous elongases and desaturases derived from different organism were successfully expressed and evaluated for their potential for the production of nervonic acid in Y. lipolytica. Meanwhile, we overexpressed the genes involved in the lipid metabolism to increase the nervonic acid titer to 111.6 mg/L. In addition, the potential of adding oil as auxiliary carbon sources for nervonic acid production by the engineered Y. lipolytica was analyzed. The results indicated that supplementation with colleseed oil as an auxiliary carbon source can be beneficial for the nervonic acid productivity, which led to the highest concentration of 185.0 mg/L in this work. To summarize, this study describes that the Y. lipolytica can be used as a promising platform for the production of nervonic acid and other very long-chain fatty acids.
Collapse
Affiliation(s)
- Xin-Ru Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xin-Liang Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jing-Lin Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Qi Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jiang-Ting Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
17
|
Chen X, Song Y, Song W, Han J, Cao H, Xu X, Li S, Fu Y, Ding C, Lin F, Shi Y, Li J. Multi-omics reveal neuroprotection of Acer truncatum Bunge Seed extract on hypoxic-ischemia encephalopathy rats under high-altitude. Commun Biol 2023; 6:1001. [PMID: 37783835 PMCID: PMC10545756 DOI: 10.1038/s42003-023-05341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) at high-altitudes leads to neonatal mortality and long-term neurological complications without effective treatment. Acer truncatum Bunge Seed extract (ASO) is reported to have effect on cognitive improvement, but its molecular mechanisms on HIE are unclear. In this study, ASO administration contributed to reduced neuronal cell edema and improved motor ability in HIE rats at a simulated 4500-meter altitude. Transcriptomics and WGCNA analysis showed genes associated with lipid biosynthesis, redox homeostasis, neuronal growth, and synaptic plasticity regulated in the ASO group. Targeted and untargeted-lipidomics revealed decreased free fatty acids and increased phospholipids with favorable ω-3/ω-6/ω-9 fatty acid ratios, as well as reduced oxidized glycerophospholipids (OxGPs) in the ASO group. Combining multi-omics analysis demonstrated FA to FA-CoA, phospholipids metabolism, and lipid peroxidation were regulated by ASO treatment. Our results illuminated preliminary metabolism mechanism of ASO ingesting in rats, implying ASO administration as potential intervention strategy for HIE under high-altitude.
Collapse
Affiliation(s)
- Xianyang Chen
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China
| | - Yige Song
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China
| | - Wangting Song
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China
| | - Jiarui Han
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China
| | - Hongli Cao
- Department of Respiratory, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xiao Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Plateau Medical Research Center of China Medical University, Shenyang, China
| | - Shujia Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Plateau Medical Research Center of China Medical University, Shenyang, China
| | - Yanmin Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Plateau Medical Research Center of China Medical University, Shenyang, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, Beijing, China
| | - Feng Lin
- Department of Neurology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian, China
| | - Yuan Shi
- Department of Neonatology, Children's Hospital Affiliated Chongqing Medical University, Chongqing, China
| | - Jiujun Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Plateau Medical Research Center of China Medical University, Shenyang, China.
| |
Collapse
|
18
|
Aihaiti M, Shi H, Liu Y, Hou C, Song X, Li M, Li J. Nervonic acid reduces the cognitive and neurological disturbances induced by combined doses of D-galactose/AlCl 3 in mice. Food Sci Nutr 2023; 11:5989-5998. [PMID: 37823115 PMCID: PMC10563680 DOI: 10.1002/fsn3.3533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 10/13/2023] Open
Abstract
Nervonic acid (NA) is a kind of ultra-long-chain monounsaturated fatty acid, which can repair nerve cell damage caused by oxidative stress. Alzheimer's disease (AD) is a nervous system disease and often accompanied by the decline of learning and memory capacity. In this study, the combined dose of D-galactose/AlCl3 was used to establish a mouse model of AD. Meanwhile, the mice were treated with different doses of NA (10.95 and 43.93 mg/kg). The results showed that NA delayed the decline of locomotion and learning ability caused by D-galactose/AlCl3, increased the activity of total superoxide dismutase, catalase, glutathione peroxidase, and reduced the content of malondialdehyde in vivo. Besides, NA reduced the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), aspartate aminotransferase, alanine aminotransferase, increased the levels of 5-hydroxytryptamine, dopamine, γ-aminobutyric acid, alleviated the cell morphology damage induced by D-galactose/AlCl3 in hippocampus and liver tissue. Furthermore, the intervention of NA upregulated the expression levels of PI3K, AKT, and mTOR genes and downregulated the expression levels of TNF-α, IL-6, and IL-1β genes. Therefore, we speculate the intervention of NA could be an effective way in improving cognitive impairment through the activation of PI3K signaling pathway. These results suggest that NA has the potential to be developed as antioxidant drug for the prevention and early therapy of AD.
Collapse
Affiliation(s)
- Mayile Aihaiti
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| | - Haidan Shi
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| | - Yaojie Liu
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| | - Chen Hou
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| | - Xiaoyu Song
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| | - Mengting Li
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| | - Jianke Li
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| |
Collapse
|
19
|
Le ATP, Higuchi Y, Sumiyoshi T, Itoh H, Sasabayashi D, Takahashi T, Suzuki M. Analysis of polyunsaturated fatty acids in antipsychotic-free individuals with at-risk mental state and patients with first-episode schizophrenia. Front Psychiatry 2023; 14:1188452. [PMID: 37564244 PMCID: PMC10410072 DOI: 10.3389/fpsyt.2023.1188452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Abnormalities in membrane phospholipids are considered one of the pathophysiological backgrounds for schizophrenia. This study, explores the fatty acid composition of erythrocyte membranes and its association with clinical characteristics in two groups: individuals with an at-risk mental state (ARMS) and patients experiencing their first-episode of schizophrenia (FES). Materials and methods This study measured erythrocyte membrane fatty acids in 72 antipsychotic-free individuals with ARMS, 18 antipsychotic-free patients with FES, and 39 healthy volunteers. Clinical symptoms and cognitive and social functions were assessed using the Positive and Negative Syndrome Scale (PANSS), Brief Assessment of Cognition in Schizophrenia (BACS), Schizophrenia Cognition Rating Scale (SCoRS), and Social and Occupational Functioning Assessment Scale (SOFAS). Results Eicosapentaenoic and docosapentaenoic acid levels were lower in the ARMS and FES groups than in the healthy control group. In contrast, nervonic acid (NA) levels were markedly higher in the ARMS and FES groups than in the controls, while only the FES group showed higher levels of arachidonic acid. Oleic acid and NA levels were significantly associated with PANSS scores in both the FES and ARMS groups, particularly for the negative and general subscores. However, the patient groups had no significant associations between the fatty acid composition and the BACS, SCoRS, and SOFAS scores. Furthermore, the baseline fatty acid composition did not differ between the ARMS individuals who later developed psychosis (N = 6) and those who were followed for more than 2 years without developing psychosis onset (N = 30). Discussion The findings suggest that abnormal fatty acid compositions may be shared in the early stages of schizophrenia and the clinical high-risk state for psychosis and may serve as vulnerability markers of psychopathology.
Collapse
Affiliation(s)
- Anh Thi Phuong Le
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yuko Higuchi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatry, National Center of Neurology and Psychiatry Hospital, Tokyo, Japan
| | - Hiroko Itoh
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
20
|
Hassan NH, El-Hawary SS, Emam M, Rabeh MA, Tantawy MA, Seif M, Abd-Elal RMA, Bringmann G, Abdelmohsen UR, Selim NM. Pectin Nanoparticle-Loaded Soft Coral Nephthea sp. Extract as In Situ Gel Enhances Chronic Wound Healing: In Vitro, In Vivo, and In Silico Studies. Pharmaceuticals (Basel) 2023; 16:957. [PMID: 37513869 PMCID: PMC10383585 DOI: 10.3390/ph16070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
This study shed light for the first time on the in vivo diabetic wound healing potential activity of natural marine soft coral polymeric nanoparticle in situ gel using an excision wound model. A Nephthea sp. methanol-methylene chloride extract loaded with pectin nanoparticles (LPNs) was created. For the preparation of in situ gel, ion-gelation techniques, the entrapment efficiency, the particle size, the polydispersity index, the zeta potential, the in-vitro drug release, and a transmission electron microscope were used and the best formula was selected. Using (UPLC-Q/TOF-MS), 27 secondary metabolites responsible for extract biological activity were identified. Isolation and identification of arachidic acid, oleic acid, nervonic acid, and bis-(2-ethylhexyl)-phthalate (DEHP) of Nephthea sp. was firstly reported here using NMR and mass spectral analyses. Moreover, LPN in situ gel has the best effects on regulating the proinflammatory cytokines (NF-κB, TNF-α, IL-6, and IL-1β) that were detected on days 7 and 15. The results were confirmed with an in vitro enzymatic inhibitory effect of the extract against glycogen synthase kinase (GSK-3) and matrix metalloproteinase-1 (MMP-1), with IC50 values of 0.178 ± 0.009 and 0.258 ± 0.011 µg/mL, respectively. The molecular docking study showed a free binding energy of -9.6 kcal/mol for chabrolosteroid E, with the highest binding affinity for the enzyme (GSK-3), while isogosterone B had -7.8 kcal/mol for the enzyme (MMP-1). A pharmacokinetics study for chabrolohydroxybenzoquinone F and isogosterone B was performed, and it predicted the mode of action of wound healing activity.
Collapse
Affiliation(s)
- Nevine H Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11571, Egypt
| | - Seham S El-Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt
| | - Mahmoud Emam
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Mohamed A Rabeh
- Pharmacognosy Department, College of Pharmacy, King Khalid University, Abha 62514, Saudi Arabia
| | - Mohamed A Tantawy
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
- Stem Cells Lab Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo 12622, Egypt
- Center of Orthopaedics Research, and Translation Science (CORTS), Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, State College, PA 16801, USA
| | - Mohamed Seif
- Toxicology and Food Contaminants Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza 12622, Egypt
| | - Radwa M A Abd-Elal
- Pharmaceutics and Drug Manufacturing Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11571, Egypt
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Usama Ramadan Abdelmohsen
- Pharmacognosy Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
| | - Nabil M Selim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt
| |
Collapse
|
21
|
Wang X, Liang T, Mao Y, Li Z, Li X, Zhu X, Cao F, Zhang J. Nervonic acid improves liver inflammation in a mouse model of Parkinson's disease by inhibiting proinflammatory signaling pathways and regulating metabolic pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154911. [PMID: 37276724 DOI: 10.1016/j.phymed.2023.154911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Nervonic acid (NA) - a type of bioactive fatty acid that is found in natural sources - can inhibit inflammatory reactions and regulate immune system balance. Therefore, the use of NA for the treatment of neurodegenerative diseases has received considerable attention. Our previous study found that NA inhibited inflammatory responses in the brain of Parkinson's disease (PD) mouse models. In addition to the brain, PD is also associated with visceral organ dysfunction, especially impaired liver function. Thus, studying the role of NA in PD-mediated inflammation of the liver is particularly important. METHODS A combined transcriptome and metabolomic approach was utilized to investigate the anti-inflammatory effects of NA on the liver of PD mice. Inflammatory signaling molecules and metabolic pathway-related genes were examined in the liver using real-time PCR and western blotting. RESULTS Liver transcriptome analysis revealed that NA exerted anti-inflammatory effects by controlling several pro-inflammatory signaling pathways, such as the down-regulation of the tumor necrosis factor and nuclear factor kappa B signaling pathways, both of which were essential in the development of inflammatory disease. In addition, liver metabolomic results revealed that metabolites related to steroid hormone biosynthesis, arachidonic acid metabolism, and linoleic acid metabolism were up-regulated and those related to valine, leucine, and isoleucine degradation pathways were down-regulated in NA treatment groups compared with the PD model. The integration of metabolomic and transcriptomic results showed NA significantly exerted its anti-inflammatory function by regulating the transcription and metabolic pathways of multiple genes. Particularly, linoleic acid metabolism, arachidonic acid metabolism, and steroid hormone biosynthesis were the crucial pathways of the anti-inflammatory action of NA. Key genes in these metabolic pathways and key molecules in inflammatory signaling pathways were also verified, which were consistent with transcriptomic results. CONCLUSION These findings provide novel insights into the liver protective effects of NA against PD mice. This study also showed that NA could be a useful dietary element for improving and treating PD-induced liver inflammation.
Collapse
Affiliation(s)
- Xueqi Wang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China
| | - Tingyu Liang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China
| | - Ying Mao
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China
| | - Zhengdou Li
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China
| | - Xu Li
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China
| | - Xinliang Zhu
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China; Institute of Rural Development and Research, Northwest Normal University, Lanzhou, Gansu Province 730070, China
| | - Fuliang Cao
- Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China.
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China; Institute of Rural Development and Research, Northwest Normal University, Lanzhou, Gansu Province 730070, China.
| |
Collapse
|
22
|
Phung NV, Rong F, Xia WY, Fan Y, Li XY, Wang SA, Li FL. Nervonic acid and its sphingolipids: Biological functions and potential food applications. Crit Rev Food Sci Nutr 2023; 64:8766-8785. [PMID: 37114919 DOI: 10.1080/10408398.2023.2203753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Nervonic acid, a 24-carbon fatty acid with only one double bond at the 9th carbon (C24:1n-9), is abundant in the human brain, liver, and kidney. It not only functions in free form but also serves as a critical component of sphingolipids which participate in many biological processes such as cell membrane formation, apoptosis, and neurotransmission. Recent studies show that nervonic acid supplementation is not only beneficial to human health but also can improve the many medical conditions such as neurological diseases, cancers, diabetes, obesity, and their complications. Nervonic acid and its sphingomyelins serve as a special material for myelination in infants and remyelination patients with multiple sclerosis. Besides, the administration of nervonic acid is reported to reduce motor disorder in mice with Parkinson's disease and limit weight gain. Perturbations of nervonic acid and its sphingolipids might lead to the pathogenesis of many diseases and understanding these mechanisms is critical for investigating potential therapeutic approaches for such diseases. However, available studies about this aspect are limited. In this review, relevant findings about functional mechanisms of nervonic acid have been comprehensively and systematically described, focusing on four interconnected functions: cellular structure, signaling, anti-inflammation, lipid mobilization, and their related diseases.
Collapse
Affiliation(s)
- Nghi Van Phung
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fei Rong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wan Yue Xia
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yong Fan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xian Yu Li
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Shi An Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| | - Fu Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| |
Collapse
|
23
|
Qi Y, Huang Y, Dong Y, Zhang W, Xia F, Bai H, Stevanovic ZD, Li H, Shi L. Effective Improvement of the Oxidative Stability of Acer truncatum Bunge Seed Oil, a New Woody Oil Food Resource, by Rosemary Extract. Antioxidants (Basel) 2023; 12:antiox12040889. [PMID: 37107264 PMCID: PMC10135269 DOI: 10.3390/antiox12040889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Acer truncatum Bunge is a versatile, oil-producing, woody tree natively and widely distributed in northern China. In 2011, The People’s Republic of China’s Ministry of Health certified Acer truncatum seed oil (Aoil) as a new food resource. Unsaturated fatty acids account for up to 92% of the entire Aoil. When Aoil is processed or stored, it can easily oxidize. In this study, the effects of rosemary (Rosmarinus officinalis L.) extract on the oxidation stability of Aoil were analysed from multiple angles. The results of radical scavenging ability, malondialdehyde, and free fatty acid reveal that rosemary crude extract (RCE), rosmarinic acid (RA), and carnosic acid (CA) can significantly inhibit the oxidation of Aoil, and CA has the best oxidative stability for Aoil among the tested components of the crude rosemary. The delayed oxidation ability of CA for Aoil was slightly weaker than that of tert-butylhydroquinone (TBHQ), but stronger than that of butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and α-tocopherol (α-T), which was confirmed by microstructures, kinematic viscosity, Aoil weight change, and functional group. Additionally, CA-enriched Aoil had the smallest content of volatile lipid oxidation products. Moreover, lecithin-CA particles were added to enhance the oxidative stability of Aoil. These findings show that CA is a potent antioxidant, capable of successfully preventing Aoil oxidation.
Collapse
Affiliation(s)
- Yue Qi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yeqin Huang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanmei Dong
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Wenying Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Xia
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zora Dajic Stevanovic
- Department of Agrobotany, University of Belgrade Faculty of Agriculture, Nemanjina 6, 11080 Zemun, Serbia
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
24
|
Wang X, Li Z, Li X, Liu X, YingMao, Cao F, Zhu X, Zhang J. Integrated metabolomics and transcriptomics reveal the neuroprotective effect of nervonic acid on LPS-induced AD model mice. Biochem Pharmacol 2023; 209:115411. [PMID: 36639003 DOI: 10.1016/j.bcp.2023.115411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Nervonic acid (NA) is one of the long-chain fatty acids with significant biological activity that has been widely studied in recent years. It is believed that NA may play a crucial role in the recovery of human cognitive disorders. Although many literatures have shown that NA has some neuroprotective effect in experimental animal models, the detailed neuroprotective mechanism of NA is still poorly understood. In this study, we applied behavioral, transcriptomic and metabolomic approaches to analyze the neuroprotective effect of NA and its molecular mechanism in AD (Alzheimer's disease) model mice. We demonstrated that NA improved motor skills and learning and memory abilities of mice at the behavioral level. To further understand the specific pathways involved in this protective effect, we applied the metabolomics and transcriptomics profilings and focused on the expression patterns of genes that NA might alter, particularly those related to the accumulation of metabolites in the brain. According to the results, pathways related to neuroinflammation were significantly increased in LPS (lipopolysaccharide)-induced AD mice compared with the normal control, and pathways related to neuronal growth and synaptic plasticity were significantly downregulated. When NA was used for protection, these signaling pathways induced by LPS were partially reversed. At the same time, compared with the AD model group, upregulation of arachidonic acid metabolism, purine metabolism, and primary bile acid biosynthesis and downregulation of amino acid metabolic pathways were particularly pronounced in the NA treatment group. We also verified the enzymes of some metabolic pathways were consistent with transcriptome result. In summary, our results show that NA can significantly ameliorate LPS-induced neuroinflammation and deterioration of learning and memory, and exerts a neuroprotective function through regulation of multiple gene transcription and metabolism pathways. In particular, the arachidonic acid metabolism which related to inflammation and the amino acids metabolism which related to the synthesis of neurotransmitters were most significant response to NA treatment. Our results provided the first preliminary evidences for molecular mechanism investigation of NA from a combined transcriptome and metabolome perspective.
Collapse
Affiliation(s)
- Xueqi Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Zhengdou Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Xu Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Xiaoxiao Liu
- Lanzhou Institute of Food and Drug Control, Lanzhou 740050, China.
| | - YingMao
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Fuliang Cao
- Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China.
| | - Xinliang Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China; Institute of Rural Development and Research, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China; Institute of Rural Development and Research, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| |
Collapse
|
25
|
Lai Y, Li D, Liu T, Wan C, Zhang Y, Zhang Y, Zheng M. Preparation of functional oils rich in diverse medium and long-chain triacylglycerols based on a broadly applicable solvent-free enzymatic strategy. Food Res Int 2023; 164:112338. [PMID: 36737931 DOI: 10.1016/j.foodres.2022.112338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/24/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
To address the problems of long reaction times and limited range of adaptation in enzymatic synthesis medium- and long-chain triacylglycerols (MLCTs), a broadly applicable solvent-free enzymatic interesterification strategy was proposed. Candida sp. lipase (CSL) was immobilized on hydrophobic hollow mesoporous silica spheres (HHSS) to construct a biocatalyst designated as CSL@HHSS with a 15.3 % immobilization yield and a loading amount of 94.0 mg/g. The expressed activity and the specific activity were 20.14 U/g and 173.62 U/g, which were 4.6 and 5.6 times higher than that of free CSL, respectively. This biocatalyst demonstrated higher activity, wider applicability, and excellent reusability. Linseed oil, sunflower oil, perilla seed oil, algal oil, and malania oleifera oil were applied as substrates to produce MLCTs with medium-chain triacylglycerols (MCT) catalyzed by CSL@HHSS through interesterification in yields ranging from 69.6 % to 78.0 % within 20 min. Specific fatty acids, including linolenic acid, oleic acid, DHA, and nervonic acid (the first reported), were introduced into MLCT's skeleton, respectively. The structures were finely analyzed and identified by GC and UPLC-MS. The catalytic efficiency value of CSL@HHSS in catalyzing interesterification between linseed oil and MCT (70 ℃, 20 min, lipase 6 wt%) is 0.86 g/g∙min, which is the highest ever reported. This paper presents an effective and sustainable strategy for functional MLCTs production.
Collapse
Affiliation(s)
- Yundong Lai
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dongming Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Tieliang Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Chuyun Wan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Yi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Yufei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
26
|
Wang X, Zhu X, Li X, Li Z, Mao Y, Zhang S, Liu X, Liu X, Liu Y, Cao F, Zhang J. Transcriptomic and metabolomic analyses provide insights into the attenuation of neuroinflammation by nervonic acid in MPTP-stimulated PD model mice. Food Funct 2023; 14:277-291. [PMID: 36484706 DOI: 10.1039/d2fo02595g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nervonic acid is one of the most promising bioactive fatty acids, which is believed to be beneficial for the recovery of human cognitive disorders. However, the detailed neuroprotective effects and mode of action of nervonic acid have not yet been fully elucidated. In this study, we used an MPTP-stimulated mouse Parkinson's disease (PD) model as a target to investigate the neuroprotective effects by behavioral tests and integrative analysis of trancriptomes and metabolomes of PD mouse brain with nervonic acid injections. The KEGG pathway enrichment analysis of transcriptomes showed that the genes involved in neuroinflammation were significantly increased after MPTP induction and have been greatly inhibited by nervonic acid injection, while nervonic acid also greatly improved nerve growth and synaptic plasticity pathways which were significantly downregulated by MPTP. At the same time, the upregulation of oleic acid and arachidonic acid metabolism pathways and the downregulation of amino acid metabolism pathways in metabolomes were particularly highlighted in the nervonic acid protection groups compared with the PD model. Meanwhile, it was found that arachidonic acid, oleic acid and taurine play an important regulatory role in the neuroprotective mechanism of nervonic acid through fatty acid metabolism by integrative analysis. Therefore, our study laid a solid foundation for further studies on the specific role of nervonic acid in the inhibition of PD at the level of metabolic regulation.
Collapse
Affiliation(s)
- Xueqi Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Xinliang Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China. .,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China.,Institute of Rural Development and Research, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Xu Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Zhengdou Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Ying Mao
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Shunbin Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Xiaoxiao Liu
- Lanzhou Institute of Food and Drug Control, Lanzhou 740050, China.
| | - Xingguo Liu
- Lanzhou Institute of Food and Drug Control, Lanzhou 740050, China.
| | - Yapeng Liu
- Lanzhou Institute of Food and Drug Control, Lanzhou 740050, China.
| | - Fuliang Cao
- Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China.
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China. .,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China.,Institute of Rural Development and Research, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| |
Collapse
|
27
|
He GD, Liu XC, Hou XH, Feng YQ. The effect of trimethylamine N-oxide on the metabolism of visceral white adipose tissue in spontaneously hypertensive rat. Adipocyte 2022; 11:420-433. [PMID: 35975941 PMCID: PMC9387326 DOI: 10.1080/21623945.2022.2104783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Strong links have been reported among trimethylamine N-oxide (TMAO), visceral white adipose tissue (vWAT), and cardiometabolic diseases. However, the effects of TMAO on vWAT in hypertension remained incompletely explored. The impact of a chronic 22-week-long treatment with 1 g/L TMAO on vWAT, and its transcriptional and metabolic changes in spontaneously hypertensive rats (SHRs) were evaluated by serum cytokine measurements, histological analysis, fatty acid determinations, and co-expression network analyses. TMAO increased the serum interleukin-6 levels and insulin secretion in SHRs. The adipocyte size was diminished in the SHR 1 g/L TMAO group. In addition, one kind of monounsaturated fatty acids (cis-15-tetracosenoate) and four kinds of polyunsaturated fatty acids (cis-11,14,17-eicosatrienoic acid, docosatetraenoate, docosapentaenoate n-3, and docosapentaenoate n-6) were elevated by TMAO treatment. Three co-expression modules significantly related to TMAO treatment were identified and pathway enrichment analyses indicated that phagosome, lysosome, fatty acid metabolism, valine, leucine, and isoleucine degradation and metabolic pathways were the most significantly altered biological pathways. This study shed new light on the metabolic roles of TMAO on the vWAT of SHRs. TMAO regulated the metabolic status of vWAT, including reduced lipogenesis and an improved specific fatty acid composition. The mechanisms underlying these effects likely involve phagosome and lysosome pathways.
Collapse
Affiliation(s)
- Guo-Dong He
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xiao-Cong Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xing-Hua Hou
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Ying-Qing Feng
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| |
Collapse
|
28
|
Impact of ultraviolet light and cold plasma on fatty acid profile of raw chicken and pork meat. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Jin Y, Shu B, Lou X, Wang K, Zhai Y, Qu Y, Song R, Liu F, Dong X, Xu H. Improvement of stability and in vitro bioaccessibility of nervonic acid by nonionic surfactant in protein-based nanoemulsions. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Fumonisin B Series Mycotoxins' Dose Dependent Effects on the Porcine Hepatic and Pulmonary Phospholipidome. Toxins (Basel) 2022; 14:toxins14110803. [PMID: 36422977 PMCID: PMC9696778 DOI: 10.3390/toxins14110803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Male weaned piglets n = 6/group were fed Fumonisin B1+2+3 (FBs) mycotoxins at 0, 15, or 30 mg/kg diet for 3 weeks to assess the fatty acid (FA) composition of membrane lipid classes, lipid peroxidation, and histomorphological changes in the liver and lung. Growth performance and lipid peroxidation were unaltered, but histomorphological lesion scores increased in the liver. Linear dose-response was detected in liver phosphatidylcholines for C16:1n7, C18:1n9, and total monounsaturation and in lungs for C22:6n3, total n-3 and n-3:n-6, in pulmonary phosphatidylserines C20:0 and C24:0. Alterations associated with the highest FBs dose were detected in sphingomyelins (liver: total saturation ↓, total monounsaturation ↑), phosphatidylcholines (liver: total n-6 ↓, n-6:n-3 ↑; in lungs: total monounsaturation ↑, total polyunsaturation ↑), phosphatidylethanolamines (liver: total n-3 ↓; in lungs: total monounsaturation ↑ and n-6:n-3 ↑), phosphatidylserines (liver: n-6:n-3 ↑; in lungs: total saturation ↓, total polyunsatuartion ↑, and total n-6 and its ratio to n-3 ↑), and phosphatidylinositol (n-6:n-3 ↑; lungs: C22:1n9 ↑, C22:6n3 ↓, total saturation ↓, total monounsaturaion ↑). In conclusion, FBs exposures neither impaired growth nor induced substantial lipid peroxidation, but hepatotoxicity was proven with histopathological alterations at the applied exposure period and doses. FA results imply an enzymatic disturbance in FA metabolism, agreeing with earlier findings in rats.
Collapse
|
31
|
Overproducing nervonic acid by synergism of fatty acid elongases in engineered Saccharomyces cerevisiae. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Enrichment of nervonic acid in Acer truncatum Bunge oil by combination of two-stage molecular distillation, one-stage urea complexation and five-stage solvent crystallization. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Extraction of High-Value Chemicals from Plants for Technical and Medical Applications. Int J Mol Sci 2022; 23:ijms231810334. [PMID: 36142238 PMCID: PMC9499410 DOI: 10.3390/ijms231810334] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Plants produce a variety of high-value chemicals (e.g., secondary metabolites) which have a plethora of biological activities, which may be utilised in many facets of industry (e.g., agrisciences, cosmetics, drugs, neutraceuticals, household products, etc.). Exposure to various different environments, as well as their treatment (e.g., exposure to chemicals), can influence the chemical makeup of these plants and, in turn, which chemicals will be prevalent within them. Essential oils (EOs) usually have complex compositions (>300 organic compounds, e.g., alkaloids, flavonoids, phenolic acids, saponins and terpenes) and are obtained from botanically defined plant raw materials by dry/steam distillation or a suitable mechanical process (without heating). In certain cases, an antioxidant may be added to the EO (EOs are produced by more than 17,500 species of plants, but only ca. 250 EOs are commercially available). The interesting bioactivity of the chemicals produced by plants renders them high in value, motivating investment in their production, extraction and analysis. Traditional methods for effectively extracting plant-derived biomolecules include cold pressing and hydro/steam distillation; newer methods include solvent/Soxhlet extractions and sustainable processes that reduce waste, decrease processing times and deliver competitive yields, examples of which include microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), subcritical water extraction (SWE) and supercritical CO2 extraction (scCO2). Once extracted, analytical techniques such as chromatography and mass spectrometry may be used to analyse the contents of the high-value extracts within a given feedstock. The bioactive components, which can be used in a variety of formulations and products (e.g., displaying anti-aging, antibacterial, anticancer, anti-depressive, antifungal, anti-inflammatory, antioxidant, antiparasitic, antiviral and anti-stress properties), are biorenewable high-value chemicals.
Collapse
|
34
|
Farag MA, Bahaa Eldin A, Khalifa I. Valorization and extraction optimization of Prunus seeds for food and functional food applications: A review with further perspectives. Food Chem 2022; 388:132955. [DOI: 10.1016/j.foodchem.2022.132955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 01/06/2023]
|
35
|
Zhang Y, Gan L, Tang J, Liu D, Chen G, Xu B. Metabolic profiling reveals new serum signatures to discriminate lupus nephritis from systemic lupus erythematosus. Front Immunol 2022; 13:967371. [PMID: 36059469 PMCID: PMC9437530 DOI: 10.3389/fimmu.2022.967371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundLupus nephritis (LN) occurs in 50% of patients with systemic lupus erythematosus (SLE), causing considerable morbidity and even mortality. Previous studies had shown the potential of metabolic profiling in the diagnosis of SLE or LN. However, few metabonomics studies have attempted to distinguish SLE from LN based on metabolic changes. The current study was designed to find new candidate serum signatures that could differentiate LN from SLE patients using a non-targeted metabonomics method based on ultra high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS).MethodMetabolic profiling of sera obtained from 21 healthy controls, 52 SLE patients and 43 LN patients. We used SPSS 25.0 for statistical analysis. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and metabolic pathway analysis were used to analyze the metabolic data.ResultsUpon comparison of SLE and LN groups, 28 differential metabolites were detected, the majority of which were lipids and amino acids. Glycerolphospholipid metabolism, pentose and glucuronate interconversions and porphyrin and chlorophyll metabolism were obviously enriched in LN patients versus those with SLE. Among the 28 characteristic metabolites, five key serum metabolites including SM d34:2, DG (18:3(9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), nervonic acid, Cer-NS d27:4, and PC (18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z) performed higher diagnostic performance in discriminating LN from SLE (all AUC > 0.75). Moreover, combined analysis of neuritic acid, C1q, and CysC (AUC = 0.916) produced the best combined diagnosis.ConclusionThis study identified five serum metabolites that are potential indicators for the differential diagnosis of SLE and LN. Glycerolphospholipid metabolism may play an important role in the development of SLE to LN. The metabolites we screened can provide more references for the diagnosis of LN and more support for the pathophysiological study of SLE progressed to LN.
Collapse
Affiliation(s)
- Yamei Zhang
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Lingling Gan
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Jie Tang
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Dan Liu
- Department of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Gang Chen
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Bei Xu
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- *Correspondence: Gang Chen, ; Bei Xu,
| |
Collapse
|
36
|
Bousset‐Alféres CM, Chávez‐Servín JL, Vázquez‐Landaverde PA, Betancourt‐López CA, Caamaño MDC, Ferriz‐Martínez RA, Chávez‐Alabat EF, Lovatón‐Cabrera MG, de la Torre‐Carbot K. Content of industrially produced trans fatty acids in breast milk: An observational study. Food Sci Nutr 2022; 10:2568-2581. [PMID: 35959266 PMCID: PMC9361450 DOI: 10.1002/fsn3.2862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Breast milk may contain industrially produced trans fatty acids (TFAs), which can affect the content of essential fatty acids (EFAs). This could have significant implications for the child's development. The fatty acids present in breast milk can be modified by adjusting the mother's diet. The objective of this study was to determine the content of industrially produced TFAs present in colostrum, transitional milk, and mature milk produced by mothers between 18 and 45 years of age in the state of Querétaro, Mexico, based on a longitudinal observational study. The TFA content in the breast milk of 33 lactating women was analyzed using gas chromatography. The mothers' consumption of TFAs was also estimated by analyzing a log prepared through 24-hr dietary recall (24HR) obtained in each period. The TFA content in the mothers' diet was similar across the colostrum, transitional milk, and mature milk phases: 1.64 ± 1.25 g, 1.39 ± 1.01, and 1.66 ± 1.13 g, respectively. The total TFA content was 1.529% ± 1.648% for colostrum; 0.748% ± 1.033% for transitional milk and 0.945% ± 1.368% for mature milk. Elaidic acid was the TFA in the highest concentration in all three types of milk. No correlation was found between the content of industrially produced TFAs in breast milk and the anthropometric measurements of the mother or between the estimated consumption of TFAs and the content of TFAs in breast milk. Elaidic acid and total content of TFAs were negatively correlated (p < .05) with the content of docosahexaenoic acid (DHA) (0.394 ± 0.247) (R = -0.382) in colostrum. The concentration of TFAs was found to correlate with the composition of EFAs in milk.
Collapse
|
37
|
de Seymour JV, Beck KL, Conlon CA, von Hurst PR, Mumme KD, Haskell-Ramsay CF, Jones MB. Plasma nervonic acid levels were negatively associated with attention levels in community-living older adults in New Zealand. Metabolomics 2022; 18:54. [PMID: 35842880 PMCID: PMC9288952 DOI: 10.1007/s11306-022-01908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
The global population is aging. Preserving function and independence of our aging population is paramount. A key component to maintaining independence is the preservation of cognitive function. Metabolomics can be used to identify biomarkers of cognition before noticeable deterioration. Our study investigated the plasma metabolome of 332 community-living New Zealanders between 65 and 74 years of age, using gas chromatography-mass spectrometry. Six cognitive domains were assessed. Of the 123 metabolites identified using an in-house mass spectral libraries of standards, nervonic acid had a significant, inverse association with the attention domain (P-value = 1.52E- 4; FDR = 0.019), after adjusting for covariates (apolipoprotein E -ε4 genotype, sex, body fat percentage (standardised by sex), age, education, deprivation index, physical activity, metabolic syndrome, polypharmacy, smoking status, and alcohol intake) and multiple testing. Attention is defined as the ability to concentrate on selected aspects of the environment while ignoring other stimuli. This is the first study to identify nervonic acid as a potential biomarker of attention in older adults. Future research should confirm this association in a longitudinal study.
Collapse
Affiliation(s)
- Jamie V de Seymour
- College of Health, Massey University Auckland, Private Bag 102904, North Shore, 0745, Auckland, New Zealand
| | - Kathryn L Beck
- College of Health, Massey University Auckland, Private Bag 102904, North Shore, 0745, Auckland, New Zealand.
| | - Cathryn A Conlon
- College of Health, Massey University Auckland, Private Bag 102904, North Shore, 0745, Auckland, New Zealand
| | - Pamela R von Hurst
- College of Health, Massey University Auckland, Private Bag 102904, North Shore, 0745, Auckland, New Zealand
| | - Karen D Mumme
- College of Health, Massey University Auckland, Private Bag 102904, North Shore, 0745, Auckland, New Zealand
| | | | - Mary Beatrix Jones
- Department of Statistics, University of Auckland, 1010, Auckland, New Zealand
| |
Collapse
|
38
|
Wulandari DA, Gustini N, Murniasih T, Bayu A, Sari M, Syahputra G, Harahap IA, Rasyid A, Moria SB, Rahmawati SI, Izzati FN, Septiana E, Rachman F, Putra MY. Nutritional Value and Biological Activities of Sea Cucumber Holothuria scabra Cultured in the Open Pond System. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2082902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Diah Anggraini Wulandari
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Nunik Gustini
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Tutik Murniasih
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Asep Bayu
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Martha Sari
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Gita Syahputra
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Iskandar Azmy Harahap
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Abdullah Rasyid
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Sari Budi Moria
- Institute for Mariculture Research and Fisheries Extension, Agency for Marine and Fisheries Research and Human Resources, Ministry of Marine Affairs and Fisheries
| | - Siti Irma Rahmawati
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Fauzia Nurul Izzati
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Eris Septiana
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Fauzy Rachman
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Masteria Yunovilsa Putra
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| |
Collapse
|
39
|
Xue Y, Zhu X, Yan W, Zhang Z, Cui E, Wu Y, Li C, Pan J, Yan Q, Chai X, Zhao S. Dietary Supplementation With Acer truncatum Oil Promotes Remyelination in a Mouse Model of Multiple Sclerosis. Front Neurosci 2022; 16:860280. [PMID: 35585921 PMCID: PMC9109879 DOI: 10.3389/fnins.2022.860280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Multiple sclerosis is a chronic demyelinating disease of uncertain etiology. Traditional treatment methods produce more adverse effects. Epidemiological and clinical treatment findings showed that unknown environmental factors contribute to the etiology of MS and that diet is a commonly assumed factor. Despite the huge interest in diet expressed by people with MS and the potential role diet plays in MS, very little data is available on the role of diet in MS pathogenesis and MS course, in particular, studies on fats and MS. The oil of Acer truncatum is potential as a resource to be exploited in the treatment of some neurodegenerative diseases. Objective Here, we investigated the underlying influences of Acer truncatum oil on the stimulation of remyelination in a cuprizone mouse model of demyelination. Methods Cuprizone (0.2% in chow) was used to establish a mouse model of demyelination. Acer truncatum oil was administrated to mice during remyelination. Following techniques were used: behavioral test, histochemistry, fluorescent immunohistochemistry, transmission electron microscope. Results Mice exposed to cuprizone for 6 weeks showed schizophrenia-like behavioral changes, the increased exploration of the center in the open field test (OFT), increased entries into the open arms of the elevated plus-maze, as well as demyelination in the corpus callosum. After cuprizone withdrawal, the diet therapy was initiated with supplementation of Acer truncatum oil for 2 weeks. As expected, myelin repair was greatly enhanced in the demyelinated regions with increased mature oligodendrocytes (CC1) and myelin basic protein (MBP). More importantly, the supplementation with Acer truncatum oil in the diet reduced the schizophrenia-like behavior in the open field test (OFT) and the elevated plus-maze compared to the cuprizone recovery group. The results revealed that the diet supplementation with Acer truncatum oil improved behavioral abnormalities, oligodendrocyte maturation, and remyelination in the cuprizone model during recovery. Conclusion Diet supplementation with Acer truncatum oil attenuates demyelination induced by cuprizone, indicating that Acer truncatum oil is a novel therapeutic diet in demyelinating diseases.
Collapse
Affiliation(s)
- Yuhuan Xue
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wenyong Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhihan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Enhui Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Cixia Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jiarong Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qijiang Yan
- Multiple Sclerosis Research Center of New York, New York, NY, United States
| | - Xuejun Chai
- Department of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
40
|
He X, Lu TQ, Li JY, Mao P, Zhang L, Zheng GW, Tian B. Germplasm resources of three wood plant species enriched with nervonic acid. PLANT DIVERSITY 2022; 44:308-315. [PMID: 35769596 PMCID: PMC9209899 DOI: 10.1016/j.pld.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 06/15/2023]
Abstract
Nervonic acid (NA) is a very-long-chain monounsaturated fatty acid with pharmaceutical and nutraceutical functions that plays an important role in treating several neurological disorders. One major source of NA is plant seed oil. Here we report fatty acid profiles of seeds and germplasm diversity of six plant species, including three woody plants with high amounts of NA-enriched seed oil, Malania oleifera, Macaranga adenantha, and M. indica. M. oleifera had the largest seed (average 7.40 g single seed), highest oil content (58.71%), and highest NA level (42.22%). The germplasm diversity of M. oleifera is associated with its habitat but not elevation. Seeds of M. adenantha contained higher NA levels (28.41%) than M. indica (21.77%), but M. indica contained a significantly higher oil content (29.22%) and seed yield. M. adenantha germplasm varied among populations, with one population having seeds with high oil content (22.63%) and NA level (37.78%).Although M. indica grow naturally at a range of elevations, no significant differences were detected between M. indica populations. These results suggest that M. indica and M. oleifera have greater potential as a source of NA, which will contribute to constructing a germplasm resource nursery and establishing a selection and breeding program to improve the development of NA-enriched plants.
Collapse
Affiliation(s)
- Xing He
- Key Laboratory of Sustainable Utilization of Tropical Plant Resources, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian-Quan Lu
- Key Laboratory of Sustainable Utilization of Tropical Plant Resources, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang-Ying Li
- Key Laboratory of Sustainable Utilization of Tropical Plant Resources, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650223, China
- Xinping Branch, Yuxi Tobacco Company, Xinping, 653400, China
| | - Ping Mao
- Guangnan Forestry and Grassland Bureau, Guangnan, 663300, China
| | - Li Zhang
- Key Laboratory of Sustainable Utilization of Tropical Plant Resources, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo-Wei Zheng
- Traditional Chinese Medicine College, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Bo Tian
- Key Laboratory of Sustainable Utilization of Tropical Plant Resources, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| |
Collapse
|
41
|
Terluk MR, Tieu J, Sahasrabudhe SA, Moser A, Watkins PA, Raymond GV, Kartha RV. Nervonic Acid Attenuates Accumulation of Very Long-Chain Fatty Acids and is a Potential Therapy for Adrenoleukodystrophy. Neurotherapeutics 2022; 19:1007-1017. [PMID: 35378685 PMCID: PMC9294126 DOI: 10.1007/s13311-022-01226-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2022] [Indexed: 12/23/2022] Open
Abstract
Adrenoleukodystrophy (ALD) is an X-linked inherited peroxisomal disorder due to mutations in the ALD protein and characterized by accumulation of very long-chain fatty acids (VLCFA), specifically hexacosanoic acid (C26:0). This can trigger other pathological processes such as mitochondrial dysfunction, oxidative stress, and inflammation, which if involves the brain tissues can result in a lethal form of the disease called childhood cerebral ALD. With the recent addition of ALD to the Recommended Uniform Screening Panel, there is an increase in the number of individuals who are identified with ALD. However, currently, there is no approved treatment for pre-symptomatic individuals that can arrest or delay symptom development. Here, we report our observations investigating nervonic acid, a monounsaturated fatty acid as a potential therapy for ALD. Using ALD patient-derived fibroblasts, we examined whether nervonic acid can reverse VLCFA accumulation similar to erucic acid, the active ingredient in Lorenzo's oil, a dietary intervention believed to alter disease course. We have shown that nervonic acid can reverse total lipid C26:0 accumulation in a concentration-dependent manner in ALD cell lines. Further, we show that nervonic acid can protect ALD fibroblasts from oxidative insults, presumably by increasing intracellular ATP production. Thus, nervonic acid can be a potential therapeutic for individuals with ALD, which can alter cellular biochemistry and improve its function.
Collapse
Affiliation(s)
- Marcia R Terluk
- Center for Orphan Drug Research, University of Minnesota, McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Julianne Tieu
- Center for Orphan Drug Research, University of Minnesota, McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Siddhee A Sahasrabudhe
- Center for Orphan Drug Research, University of Minnesota, McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ann Moser
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA
- Department of Neurology, John Hopkins University, Baltimore, MD, 21287, USA
| | - Paul A Watkins
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA
- Department of Neurology, John Hopkins University, Baltimore, MD, 21287, USA
| | - Gerald V Raymond
- Department of Neurology, John Hopkins University, Baltimore, MD, 21287, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Reena V Kartha
- Center for Orphan Drug Research, University of Minnesota, McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA.
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
42
|
Farag MA, Gad MZ. Omega-9 fatty acids: potential roles in inflammation and cancer management. J Genet Eng Biotechnol 2022; 20:48. [PMID: 35294666 PMCID: PMC8927560 DOI: 10.1186/s43141-022-00329-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022]
Abstract
Background Omega-9 fatty acids represent one of the main mono-unsaturated fatty acids (MUFA) found in plant and animal sources. They are synthesized endogenously in humans, though not fully compensating all body requirements. Consequently, they are considered as partially essential fatty acids. MUFA represent a healthier alternative to saturated animal fats and have several health benefits, including anti-inflammatory and anti-cancer characters. The main body of the abstract This review capitalizes on the major omega-9 pharmacological activities in context of inflammation management for its different natural forms in different dietary sources. The observed anti-inflammatory effects reported for oleic acid (OA), mead acid, and erucic acid were directed to attenuate inflammation in several physiological and pathological conditions such as wound healing and eye inflammation by altering the production of inflammatory mediators, modulating neutrophils infiltration, and altering VEGF effector pathway. OA action mechanisms as anti-tumor agent in different cancer types are compiled for the first time based on its anti- and pro-carcinogenic actions. Conclusion We conclude that several pathways are likely to explain the anti-proliferative activity of OA including suppression of migration and proliferation of breast cancer cells, as well stimulation of tumor suppressor genes. Such action mechanisms warrant for further supportive clinical and epidemiological studies to confirm the beneficial outcomes of omega-9 consumption especially over long-term intervention.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B, Cairo, 11562, Egypt.
| | - Mohamed Z Gad
- Department of Biochemistry, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Cairo, Egypt
| |
Collapse
|
43
|
Song W, Zhang K, Xue T, Han J, Peng F, Ding C, Lin F, Li J, Sze FTA, Gan J, Chen X. Cognitive improvement effect of nervonic acid and essential fatty acids on rats ingesting Acer truncatum Bunge seed oil revealed by lipidomics approach. Food Funct 2022; 13:2475-2490. [PMID: 35147628 DOI: 10.1039/d1fo03671h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acer truncatum Bunge seed oil (ASO) is rich in ω-9 (53.93%) and ω-6 (30.7%) fatty acids (FAs) and characterized by 3-7% nervonic acid (NA, C24:1ω-9). Evidence suggests that ω-9 FAs such as NA participate in processes of cognitive improvement; however, their mechanism remains ambiguous. In this study, we investigated the effect of ASO on rat memory and the change in lipid profiling and underlying metabolism. After ASO was administrated to rats for one, three and seven days, their capacity for learning and memory significantly increased via the MWM test. Lipid profiling showed alterations in a wide range of metabolic features after ASO was administrated to the rats, in which sphingolipids (SP) in the serum and glycerophospholipids (GP) in the brain were regulated significantly. The changes in the fatty acids in the serum and brain showed the synergetic effects of NA, EA, OA and DHA, where NA, EA and OA exhibited similar change trends. The enrichment analysis based on KEGG indicated that ASO supplementation evoked the pathways of neurotrophin signaling, glycerophospholipid metabolism and sphingolipid metabolism, which are related to memory and cognition improvement. Among the metabolites with different molecular forms, the biomarkers with C24:1ω-9 chains exhibited a positive correlation with others both in the serum SP and brain GP. These results suggest the synergistic effects of ω-9 FAs and that their conversion into each other may result in enhanced cognition in rats ingesting Acer truncatum Bunge seed oil.
Collapse
Affiliation(s)
- Wangting Song
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China.
| | - Ke Zhang
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China. .,School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Teng Xue
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China. .,Zhong Guan Cun Biological and Medical Big Data Center, Beijing, China
| | - Jiarui Han
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China.
| | - Fangda Peng
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
| | - Feng Lin
- Department of Neurology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian, China
| | - Jiujun Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Plateau Medical Research Center of China Medical University, Shenyang, China
| | - Fat Tin Agassi Sze
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China. .,Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung, Taiwan, China
| | - Jianwen Gan
- Macau University of Science and Technology, Macau, China
| | - Xianyang Chen
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China. .,Zhong Guan Cun Biological and Medical Big Data Center, Beijing, China
| |
Collapse
|
44
|
Fan Y, Lin F, Zhang R, Wang M, Gu R, Long C. Acer truncatum Bunge: A comprehensive review on ethnobotany, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114572. [PMID: 34487848 DOI: 10.1016/j.jep.2021.114572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acer truncatum Bunge is a multifunctional plant in northern China. It has traditionally been used to prevent cardiovascular and cerebrovascular diseases and treat skin trauma by different linguistic groups including Mongolian, Tibetan, and Korean. Although research has verified that A. truncatum contains a variety of active ingredients, especially nervonic acid, an important component in delaying brain aging, to date no review has been made to compile its traditional use, phytochemistry, and pharmacology. AIMS OF THE REVIEW This review aimed to update the traditional uses, phytochemistry, and pharmacology of A. truncatum, which expect to provide theoretical support for the future utilization as well as highlight the further investigation of this important plant. MATERIALS AND METHODS The ethnobotanical, phytochemical, and pharmacological information related to A. truncatum from 1949 to March 2021 were collated by surveying the traditional medicinal books and ethnomedicinal publications and searching the online databases including Google Scholar, Sci Finder, Web of Science, Springer Link, PubMed, Wiley, China National Knowledge Infrastructure (CNKI), Baidu Scholar, and Wan Fang Database. RESULTS A. truncatum has traditionally been used for medicinal, edible and ornamental purposes in northern China for many centuries. Different parts of the plant including leaves, fruits and bark, are mainly used as herbal medicine to treat hyperpiesia, hyperlipidemia, bruises, back pain, etc. A total of 288 compounds in A. truncatum, including polyphenols, organic acids or lipids, and biological volatile organic compounds were isolated or identified by phytochemical studies. Pharmacological research showed that A. truncatum has various bioactivities such as acetylcholinesterase inhibition, antibacterial, antioxidant, antitumor, and fatty acid synthase inhibition effects. CONCLUSION A. truncatum has been used as a traditional herbal medicine for centuries in northern China. Polyphenols, organic acids, lipids and other compounds were isolated or identified from different parts of the plant. Most of the pharmacological activities of A. truncatum have been reported, which showed its potential in the development of new drugs or nutraceuticals. However, detailed information on the molecular mechanisms, metabolic activity, and toxicology of active components is limited. Further comprehensive research to evaluate the medicinal properties of A. truncatum will be necessary.
Collapse
Affiliation(s)
- Yanxiao Fan
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Fengke Lin
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Ruifei Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Miaomiao Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Ronghui Gu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Guizhou University), Ministry of Education, Guiyang, 550025, China; School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China.
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| |
Collapse
|
45
|
Liu Y, Li Y, Shen H, Li Y, Xu Y, Zhou M, Xia X, Shi B. Association between the metabolic profile of serum fatty acids and diabetic nephropathy: a study conducted in northeastern China. Ther Adv Endocrinol Metab 2022; 13:20420188221118750. [PMID: 36157308 PMCID: PMC9490461 DOI: 10.1177/20420188221118750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND PURPOSE With the progressive increase in the prevalence of type 2 diabetes mellitus (T2DM), diabetic nephropathy (DN) - one of the most common chronic microvascular complications - has evolved into a significant cause of death worldwide among end-stage renal disease patients. Academic researchers have for decades focused on the development of DN and recently found that free fatty acids (FFAs) constituted an independent risk factor for vascular complications in T2DM patients. It is therefore critical to determine whether the metabolic profile of FFAs is related to DN. METHODS This study comprised 611 research subjects in Dalian, a city in northeast China: 52 DN patients, 115 T2DM patients, and 444 healthy controls. We determined 15 forms of serum FFAs, including arachidonic acid (AA, C20:4), docosahexaenoic acid (DHA, C22:6), erucic acid (C22:1), nervonic acid (NA, C24:1), estimated total omega-3s, total omega-6s, the omega-3/omega-6 ratio, and total FFA content by liquid chromatography-mass spectrometry (LC-MS). RESULTS The levels of NA (mean = 45.27, range = 0.84-76.57) and DHA (mean = 324.58, range = 205.38-450.03) in DN patients were slightly lower than those in T2DM patients or healthy controls. The serum omega-3 polyunsaturated fatty acid (PUFA) DHA (C22:6) was significantly negatively correlated with microalbuminuria (MAU), the albumin/creatinine ratio (ACR), body mass index (BMI), fasting plasma glucose (FPG), and glycosylated hemoglobin (HbA1c). The serum monounsaturated fatty acid (MUFA) NA (C24:1) was significantly negatively correlated with BMI, FPG, and HbA1c. After adjustment of variables, multiple logistic regression analysis revealed significant odds ratios (ORs) [with confidence intervals (CIs)] for DHA (0.991, 0.985-0.997; p = 0.002) and NA (0.978, 0.958-0.999; p = 0.037). CONCLUSION In this study, we ascertained that the contents of NA and DHA in patients with DN were relatively low, and that DHA was negatively correlated with MAU and the ACR. However, large-scale, population-based studies focusing on the role of NA and DHA in the pathogenesis of DN are still required in the future.
Collapse
Affiliation(s)
- Yazhuo Liu
- Department of Endocrinology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yingying Li
- Department of Clinical Nutrition and Metabolism, Dalian University Affiliated Zhongshan Hospital, Dalian, China
| | - Hui Shen
- Department of Clinical Nutrition and Metabolism, Dalian University Affiliated Zhongshan Hospital, Dalian, China
| | - Yike Li
- Department of Clinical Nutrition and Metabolism, Dalian University Affiliated Zhongshan Hospital, Dalian, China
| | - Yanbing Xu
- Department of Clinical Nutrition and Metabolism, Dalian University Affiliated Zhongshan Hospital, Dalian, China
| | - Mi Zhou
- Department of Ophthalmology, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Xinghai Xia
- Department of Ophthalmology, Penn State Hershey Medical Center, Hershey, PA, USA
| | | |
Collapse
|
46
|
Wang SH, Chen J, Yang W, Hua M, Ma YP. Fruiting character variability in wild individuals of Malania oleifera, a highly valued endemic species. Sci Rep 2021; 11:23605. [PMID: 34880377 PMCID: PMC8655003 DOI: 10.1038/s41598-021-03080-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/17/2021] [Indexed: 11/10/2022] Open
Abstract
Malania oleifera (Olacaceae), a tree species endemic to Southwest China, has seed oils enriched with nervonic acid and is therefore good source of this chemical. Because of this, there are promising industrial perspective in the artificial cultivation and use of this species. Understanding the variability in the fruit characters among individuals forms the basis or resource prospection. In the current investigation, fifty-three mature fruiting trees were sampled from two locations with divergent climates (Guangnan and Funing). Morphological characterization of fruits (fruit and stone weight, fruit transverse and longitudinal diameter, stone transverse and longitudinal diameter) was conducted, and the concentration of seed oil and its fatty acid composition were also analyzed in all individuals. Differences in all the morphological characters studied were more significant among individual trees than between different geographic localities, even though these had different climates. Eleven fatty acids were identified contributing between 91.39 and 96.34% of the lipids, and the major components were nervonic acid (38.93–47.24%), octadecenoic acid (26.79–32.08%), docosenoic acid (10.94–17.24%). The seed oil content (proportion of oil in seed kernel) and the proportion of nervonic acid were both higher in Funing, which has a higher average climatic temperature than Guangnan. The concentrations of nervonic acid and octadecenoic acid with the low coefficients of variation in the seed oil of M. oleifera were relatively stable in contrast to the other fatty acids. There were significant positive correlations between fruit morphological characters, but the amount of seed oil and the concentrations of its components were not correlated with any morphological character. This study provides an understanding of morphological variation in wild M. oleifera individuals. Wild individuals with excellent fruit traits could be selected and would make promising candidates for commercial cultivation.
Collapse
Affiliation(s)
- Si-Hai Wang
- Yunnan Provincial Key Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China. .,Key Laboratory of the State Forestry Administration on Conservation of Rare, Endangered and Endemic Forest Plants, Kunming, 650201, China.
| | - Jian Chen
- Yunnan Provincial Key Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China.,Key Laboratory of the State Forestry Administration on Conservation of Rare, Endangered and Endemic Forest Plants, Kunming, 650201, China
| | - Wei Yang
- Yunnan Provincial Key Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China.,Key Laboratory of the State Forestry Administration on Conservation of Rare, Endangered and Endemic Forest Plants, Kunming, 650201, China
| | - Mei Hua
- Yunnan Provincial Key Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China.,Key Laboratory of the State Forestry Administration on Conservation of Rare, Endangered and Endemic Forest Plants, Kunming, 650201, China
| | - Yong-Peng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
47
|
Evaluation of the encapsulation capacity of nervous acid in nanoemulsions obtained with natural and ethoxylated surfactants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Kaczmarek A, Boguś MI. The Impact of the Entomopathogenic Fungus Conidiobolus coronatus on the Free Fatty Acid Profile of the Flesh Fly Sarcophaga argyrostoma. INSECTS 2021; 12:insects12110970. [PMID: 34821771 PMCID: PMC8623223 DOI: 10.3390/insects12110970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The interaction between insect and fungus is characterised on the one hand by the parasite developing more effective strategies of host exploitation, and on the other, by the host mounting increasingly robust defences though Red Queen dynamics or coevolutionary arms races. Furthermore, depending on gene flow and differences in selection pressure between sites, both host and parasite may demonstrate local adaptation to their counterpart or develop more general resistance or offensive traits. As the cuticle is considered the first line of defence of the insect, changes in the FFA profile may well influence susceptibility or resistance to fungal invasion. Our findings indicate that Sarcophaga argyrostoma demonstrates stage-specific resistance to Conidiobolus coronatus infection and suggests that FFAs play a role in resistance to fungal infection in flesh flies. These findings not only increase our knowledge of the entomopatogenic potential of fungi, but also of the growing level of infection by C. coronatus in humans and other mammals. Also, the presented research suggests that FFAs demonstrate antifungal activity which may be helpful in designing new antifungal treatments. Abstract The chemical composition of the insect cuticle varies remarkably between species and their life stages. It can affect host resistance and substrate utilization by invading entomopathogen fungi, such as the soil fungus Conidiobolus coronatus. In this study, Sarcophaga argyrostoma flies were exposed to sporulating C. coronatus colonies for 24 h; the pupae were resistant, but the adults demonstrated 60% mortality. Although the pupae demonstrated no sign of infection nor any abnormal development, our findings indicate that after 24 h of contact with the fungus, the pupae demonstrated a 25.2-fold increase in total cuticular free fatty acids (FFAs) and a 1.9-fold decrease in total internal FFAs. Also, the cuticular FFA increased from 26 to 30, while the internal FFA class increased from 13 to 23. In exposed adults, the total mass of cuticular FFAs increased 1.7-fold, while the number of FFAs stayed the same (32 FFAs). Also, the internal FFA class increased from 26 to 35 and the total FFA mass increased 1.1-fold. These considerable differences between adults and pupae associated with C. coronatus exposure indicate developmental changes in the mechanisms governing lipid metabolism and spatial distribution in the organism, and suggest that cuticular lipids play a vital role in the defence against pathogenic fungi.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland;
- Correspondence:
| | - Mieczysława Irena Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland;
- BIOMIBO, Strzygłowska 15, 04-872 Warsaw, Poland
| |
Collapse
|
49
|
Sorokina M, McCaffrey KS, Deaton EE, Ma G, Ordovás JM, Perkins-Veazie PM, Steinbeck C, Levi A, Parnell LD. A Catalog of Natural Products Occurring in Watermelon- Citrullus lanatus. Front Nutr 2021; 8:729822. [PMID: 34595201 PMCID: PMC8476801 DOI: 10.3389/fnut.2021.729822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Sweet dessert watermelon (Citrullus lanatus) is one of the most important vegetable crops consumed throughout the world. The chemical composition of watermelon provides both high nutritional value and various health benefits. The present manuscript introduces a catalog of 1,679 small molecules occurring in the watermelon and their cheminformatics analysis for diverse features. In this catalog, the phytochemicals are associated with the literature describing their presence in the watermelon plant, and when possible, concentration values in various plant parts (flesh, seeds, leaves, roots, rind). Also cataloged are the chemical classes, molecular weight and formula, chemical structure, and certain physical and chemical properties for each phytochemical. In our view, knowing precisely what is in what we eat, as this catalog does for watermelon, supports both the rationale for certain controlled feeding studies in the field of precision nutrition, and plant breeding efforts for the development of new varieties with enhanced concentrations of specific phytochemicals. Additionally, improved and comprehensive collections of natural products accessible to the public will be especially useful to researchers in nutrition, cheminformatics, bioinformatics, and drug development, among other disciplines.
Collapse
Affiliation(s)
- Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Jena, Germany
| | | | - Erin E. Deaton
- Department of Horticulture, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Guoying Ma
- Department of Horticulture, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - José M. Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer-United States Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Penelope M. Perkins-Veazie
- Department of Horticulture, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Jena, Germany
| | - Amnon Levi
- United States Department of Agriculture (USDA), Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, United States
| | - Laurence D. Parnell
- United States Department of Agriculture (USDA), Agricultural Research Service, Nutrition and Genomics Laboratory, Jean Mayer-United States Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| |
Collapse
|
50
|
Li X, Li T, Hong XY, Liu JJ, Yang XF, Liu GP. Acer Truncatum Seed Oil Alleviates Learning and Memory Impairments of Aging Mice. Front Cell Dev Biol 2021; 9:680386. [PMID: 34055809 PMCID: PMC8160100 DOI: 10.3389/fcell.2021.680386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/22/2021] [Indexed: 12/18/2022] Open
Abstract
Aging, characterized by a time-dependent functional decline of physiological integrity, is the major independent risk factor for many neurodegeneration diseases. Therefore, it’s necessary to look for natural food supplements to extend the healthy lifespan of aging people. We here treated normal aging mice with acer truncatum seed oil, and found that the seed oil significantly improved the learning and memory ability. Proteomics revealed that the seed oil administration changed many proteins expression involving in biological processes, including complement and coagulation cascades, inflammatory response pathway and innate immune response. BDNF/TrkB signaling pathway was also activated by acer truncatum seed oil treatment. And the seed oil administration increased the expression of postsynaptic related proteins including PSD95, GluA1, and NMDAR1, and decreased the mRNA level of inflammatory factors containing IL-1β, TNF-α, and IL-6. These findings suggest that acer truncatum seed oil holds a promise as a therapeutic food supplement for delaying aging with multiple mechanisms.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Li
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Yue Hong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jian Jun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xi Fei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Gong Ping Liu
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|