1
|
Zhang XY, Shi XZ, Yu JY, Wang J, Zhao YM. Functionalized graphene oxide as a nanocarrier for delivering oridonin to improve anti-breast cancer cell activity. Biomed Chromatogr 2024; 38:e5943. [PMID: 38890009 DOI: 10.1002/bmc.5943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024]
Abstract
In this study, a targeted nanocarrier was developed by functionalizing graphene oxide with polyethyleneimine and folic acid, intended for loading oridonin. The nanocarrier was successfully synthesized and characterized using an ultraviolet spectrum, Fourier transform infrared spectroscopy and scanning electron microscopy. The nanocarrier demonstrated a remarkable oridonin loading capacity, reaching 424.8 μg/mg, as determined by ultra-high performance liquid chromatography. In vitro drug release experiments exhibited a pH-dependent release profile, with a higher cumulative release in an acidic environment. The release mechanism followed the Ritger-Peppas equation model. Cytotoxicity assays indicated minimal toxicity of the nanocarrier. Enhanced cellular uptake by MCF7 cells was observed for carriers functionalized with folate and polyethyleneimine. These findings highlight the potential of functionalized graphene oxide as a promising carrier for oridonin delivery in biomedical applications.
Collapse
Affiliation(s)
- Xin-Yan Zhang
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Xiao-Zi Shi
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Jia-Yuan Yu
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Jin Wang
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Yong-Ming Zhao
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, China
| |
Collapse
|
2
|
Yi C, Liang A, Wen G, Jiang Z. A new difunctional liquid crystal nanosurface molecularly imprinted polyitaconic acid nanoprobe for SERS/RRS determination of ultratrace melamine. Food Chem 2024; 436:137716. [PMID: 37839117 DOI: 10.1016/j.foodchem.2023.137716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
In this paper, a new dimode scattering spectral method for rapid detection of ultratrace melamine (ML) in dairy products was established by coupling nanosurface molecular imprinting technology with nanocatalytic amplification reaction of liquid crystal particles. It was found that liquid crystal cholesteryl butyrate (CBU) nanosurface imprinted polymers (CBU@MIP) not only recognized ML but also catalyzed the nano indicator reaction of HAuCl4-sodium formate to produce gold nanoparticles with surface-enhanced Raman scattering (SERS) and resonance Rayleigh scattering (RRS) effect. When ML was added, it specifically combined with CBU@MIP to form CBU@MIP-ML conjugates with strong catalytic activity, and SERS and RRS signals increased linearly with the detection limits of 0.0072 pmol/L and 0.093 pmol/L respectively. The method was applied to the determination of ML in dairy products and plastic tablewares with relative standard deviation (RSD) of 2.2-4.4 % and 1.6-4.7 %, and recovery of 95.4 %-108.3 % and 95.9-108.6 % respectively.
Collapse
Affiliation(s)
- Chenguang Yi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| |
Collapse
|
3
|
Cheng H, Zhang L, Feng J, Tang T, Qin D. A novel sensor based on Ti 3C 2 MXene/Co 3O 4/carbon nanofibers composite for the sensitive detection of 4-aminophenol. CHEMOSPHERE 2023; 341:139981. [PMID: 37648159 DOI: 10.1016/j.chemosphere.2023.139981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
A novel, sensitive Ti3C2 MXene/Co3O4/carbon nanofibers (Ti3C2 MXene/Co3O4/CNFs) composite was synthesized via a HF exfoliating Ti3AlC2 strategy, followed by doping Co3O4 and Ti3C2 MXene into the CNFs via a combination electrospinning and thermal annealing process. Ti3C2 MXene/Co3O4/CNFs composite exhibits higher catalytic effect, conductivity, chemical stability, and electrochemical performance than Co3O4 and Ti3C2 MXene in electrochemical impedance, differential pulse stripping voltammetry, chronocoulometry, and cyclic voltammetry tests. This Ti3C2 MXene/Co3O4/CNFs hybrid modified electrode provides fast analysis of 4-aminophenol (4-AP) with ultrahigh sensitivity, enhanced reproducibility and strong anti-interference capability. Furthermore, the level of 4-AP was quantified by this electrode with a wide linear range from 0.5 to 150 μM (R2 > 0.99) and a low detection limit about 0.018 μM was achieved. Finally, the fabricated electrode was used for fast and sensitive analysis of 4-AP spiked in tap water and blood serum samples. This work presents the new Ti3C2 MXene/Co3O4/CNFs electrode provides a platform for 4-AP monitoring and has the advantages of high selectivity, accuracy, simplicity, and rapid analysis.
Collapse
Affiliation(s)
- Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China; Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi Province, PR China
| | - Liwen Zhang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China; School of Medicine Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China
| | - Tingfan Tang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China
| | - Danfeng Qin
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China; School of Medicine Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China.
| |
Collapse
|
4
|
Musikavanhu B, Liang Y, Xue Z, Feng L, Zhao L. Strategies for Improving Selectivity and Sensitivity of Schiff Base Fluorescent Chemosensors for Toxic and Heavy Metals. Molecules 2023; 28:6960. [PMID: 37836803 PMCID: PMC10574220 DOI: 10.3390/molecules28196960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Toxic cations, including heavy metals, pose significant environmental and health risks, necessitating the development of reliable detection methods. This review investigates the techniques and approaches used to strengthen the sensitivity and selectivity of Schiff base fluorescent chemosensors designed specifically to detect toxic and heavy metal cations. The paper explores a range of strategies, including functional group variations, structural modifications, and the integration of nanomaterials or auxiliary receptors, to amplify the efficiency of these chemosensors. By improving selectivity towards targeted cations and achieving heightened sensitivity and detection limits, consequently, these strategies contribute to the advancement of accurate and efficient detection methods while increasing the range of end-use applications. The findings discussed in this review offer valuable insights into the potential of leveraging Schiff base fluorescent chemosensors for the accurate and reliable detection and monitoring of heavy metal cations in various fields, including environmental monitoring, biomedical research, and industrial safety.
Collapse
Affiliation(s)
- Brian Musikavanhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.M.); (Y.L.); (Z.X.)
| | - Yongdi Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.M.); (Y.L.); (Z.X.)
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.M.); (Y.L.); (Z.X.)
| | - Lei Feng
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China;
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.M.); (Y.L.); (Z.X.)
| |
Collapse
|
5
|
One step construction of an electrochemical sensor for melamine detection in milk towards an integrated portable system. Food Chem 2022; 383:132403. [PMID: 35158131 DOI: 10.1016/j.foodchem.2022.132403] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 12/27/2022]
Abstract
Excessive intake of melamine (MEL) can be harmful to human health, and it is important to establish a rapid and accurate MEL detection method. As the electrochemical activity of MEL is very low, ferrocenylglutathione (Fc-ECG) was used as an electron transfer mediator to assist with the detection of MEL using screen-printed carbon electrode (SPCE). This modified electrode (MEL/Fc-ECG/SPCE) was prepared by stepwise drop-casting and was fully characterized. Results showed that MEL significantly enhanced signal of Fc-ECG/SPCE sensor due to the three p-π conjugated double bonds that facilitated electron transfer. Under optimal conditions, the sensor exhibits two linearities in the range of 0.20-2.00 μM and 8.00-800 μM, with a sensitivity of 15.03 μA·μM-1·cm-2. The selectivity, stability, and reproducibility were investigated and successfully used to detect MEL in raw milk and confirms safety verification of foods. Moreover, a portable testing platform was designed for MEL detection based on a CH32 chip.
Collapse
|
6
|
Banerjee AN. Green syntheses of graphene and its applications in internet of things (IoT)-a status review. NANOTECHNOLOGY 2022; 33:322003. [PMID: 35395654 DOI: 10.1088/1361-6528/ac6599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Internet of Things (IoT) is a trending technological field that converts any physical object into a communicable smarter one by converging the physical world with the digital world. This innovative technology connects the device to the internet and provides a platform to collect real-time data, cloud storage, and analyze the collected data to trigger smart actions from a remote location via remote notifications, etc. Because of its wide-ranging applications, this technology can be integrated into almost all the industries. Another trending field with tremendous opportunities is Nanotechnology, which provides many benefits in several areas of life, and helps to improve many technological and industrial sectors. So, integration of IoT and Nanotechnology can bring about the very important field of Internet of Nanothings (IoNT), which can re-shape the communication industry. For that, data (collected from trillions of nanosensors, connected to billions of devices) would be the 'ultimate truth', which could be generated from highly efficient nanosensors, fabricated from various novel nanomaterials, one of which is graphene, the so-called 'wonder material' of the 21st century. Therefore, graphene-assisted IoT/IoNT platforms may revolutionize the communication technologies around the globe. In this article, a status review of the smart applications of graphene in the IoT sector is presented. Firstly, various green synthesis of graphene for sustainable development is elucidated, followed by its applications in various nanosensors, detectors, actuators, memory, and nano-communication devices. Also, the future market prospects are discussed to converge various emerging concepts like machine learning, fog/edge computing, artificial intelligence, big data, and blockchain, with the graphene-assisted IoT field to bring about the concept of 'all-round connectivity in every sphere possible'.
Collapse
|
7
|
Gu Y, Li Y, Ren D, Sun L, Zhuang Y, Yi L, Wang S. Recent advances in nanomaterial‐assisted electrochemical sensors for food safety analysis. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ying Gu
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yonghui Li
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Dabing Ren
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Liping Sun
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health School of Medicine Nankai University Tianjin China
| |
Collapse
|
8
|
Wang H, Zhao Y, Shi J, Wen G, Liang A, Jiang Z. A novel aptamer RRS assay platform for ultratrace melamine based on COF-loaded Pd nanocluster catalytic amplification. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127263. [PMID: 34844371 DOI: 10.1016/j.jhazmat.2021.127263] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Two COFs of BzBD and BzBD loaded Pd nanoclusters (BzBDPd) were prepared using 1,3,5-benzenetricarboxaldehyde (Bz), benzidine (BD) and CO reducing agent, and were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), infrared spectroscopy (IR) and other techniques. BzBDPd can strongly catalyze the new and stable Au@NiP nanoreaction that exhibit a strong resonance Rayleigh scattering (RRS) peak at 538 nm and a surface plasmon resonance (SPR) absorption peak at 395 nm, and the sensitive and facile RRS technique was used to study the indicator reaction. Combining the nanocatalytic amplification reaction with specific aptamer (Apt) of some target molecules such as melamine (ML), urea (UR) and bisphenol A (BPA), a simple, sensitive and selective Apt RRS assay platform was established. The linear range of the RRS detection platform for melamine is 0.0025-0.04 nmol/L, and the detection limit (DL) is 1.96 × 10-4 nmol/L. In addition, ML in real sample was analyzed, the stability of BzBD, BzBDPd, PdNPs and the catalytic mechanism of COFPd were also considered.
Collapse
Affiliation(s)
- Haolin Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Yuxiang Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Jinling Shi
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Guiqing Wen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Aihui Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Zhiliang Jiang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| |
Collapse
|
9
|
Cai S, Jiao T, Wang L, Wang F, Chen Q. Electrochemical sensing of nitrofurazone on Ru(bpy) 32+ functionalized polyoxometalate combined with graphene modified electrode. Food Chem 2022; 378:132084. [PMID: 35030464 DOI: 10.1016/j.foodchem.2022.132084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022]
Abstract
Nitrofurazone is forbidden to be used in aquaculture, but it is often used illegally because of its good bactericidal effect, and its content in animals is extremely low and difficult to detect directly. Hence, a functionalized polyoxometalate combined with graphene modified electrodes through layer-by-layer assembly has achieved a sensitive detection of nitrofurazone in a pH = 6 Na2HPO4-citrate buffer solution and its detection limit as low as 0.08952 μM. Nitrofurazone has accelerated its electron transfer through [Ru-PMo12/PDDA-GO]3 modified electrode, thus realizing its direct detection at low levels through actual samples. This study provides a new perspective for the direct detection of nitrofurazone by electrochemical methods, which is of great significance for the supervision of nitrofurazone and the improvement of the quality and safety of aquatic products.
Collapse
Affiliation(s)
- Sixue Cai
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Tianhui Jiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Li Wang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| | - Fang Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, PR China.
| | - Quansheng Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
10
|
Fariba Beigmoradi, Hadi Beitollahi. MXene/La3+ Doped ZnO/Hb Nanocomposite Modified Glassy Carbon Electrode as Novel Voltammetric Sensor for Determination of Hydrogen Peroxide. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2021. [DOI: 10.3103/s106837552106003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Wang Y, Ma D, Zhang G, Wang X, Zhou J, Chen Y, You X, Liang C, Qi Y, Li Y, Wang A. An Electrochemical Immunosensor Based on SPA and rGO-PEI-Ag-Nf for the Detection of Arsanilic Acid. Molecules 2021; 27:molecules27010172. [PMID: 35011402 PMCID: PMC8746453 DOI: 10.3390/molecules27010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/02/2022] Open
Abstract
A sensitive electrochemical immunosensor was prepared for rapid detection of ASA based on arsanilic acid (ASA) monoclonal antibody with high affinity. In the preparation of nanomaterials, polyethyleneimine (PEI) improved the stability of the solution and acted as a reducing agent to generate reduced graphene oxide (rGO) with relatively strong conductivity, thereby promoting the transfer of electrons. The dual conductivity of rGO and silver nanoparticles (AgNPs) improved the sensitivity of the sensor. The synthesis of nanomaterials were confirmed by UV-Vis spectroscopy, X-ray diffraction, transmission electron microscopy and scanning electron microscopy. In the optimal experiment conditions, the sensor could achieve the detection range of 0.50–500 ng mL−1 and the limit of detection (LOD) of 0.38 ng mL−1 (S/N = 3). Moreover, the sensor exhibited excellent specificity and acceptable stability, suggesting that the proposed sensor possessed a good potential in ASA detection. Thus, the as-prepared biosensor may be a potential way for detecting other antibiotics in meat and animal-derived foods.
Collapse
Affiliation(s)
- Yanwei Wang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Dongdong Ma
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Gaiping Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Xuannian Wang
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang 453003, China;
| | - Jingming Zhou
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Yumei Chen
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Xiaojuan You
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Chao Liang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Yanhua Qi
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Yuya Li
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
| | - Aiping Wang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China; (Y.W.); (D.M.); (G.Z.); (J.Z.); (Y.C.); (X.Y.); (C.L.); (Y.Q.); (Y.L.)
- Correspondence:
| |
Collapse
|
12
|
Zuo Y, Han Y, Zhang G, Fan L, Liu Z, Guo Y. EDTA-β-cyclodextrin functionalized graphene for electrochemical detection and scavenge of DPPH radical. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Wu T, Wang Q, Peng X, Guo Y. Facile Synthesis of Gold/Graphene Nanocomposites for Simultaneous Determination of Sunset Yellow and Tartrazine in Soft Drinks. ELECTROANAL 2021. [DOI: 10.1002/elan.202100464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tingxuan Wu
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology Taiyuan 030008 China
| | - Qi Wang
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology Taiyuan 030008 China
| | - XiuYing Peng
- Department of Environmental and Safety Engineering Taiyuan Institute of Technology Taiyuan 030008 China
| | - Yujing Guo
- Institute of Environmental Science Shanxi University Taiyuan 030006 China
| |
Collapse
|
14
|
Gosai A, Khondakar KR, Ma X, Ali MA. Application of Functionalized Graphene Oxide Based Biosensors for Health Monitoring: Simple Graphene Derivatives to 3D Printed Platforms. BIOSENSORS 2021; 11:384. [PMID: 34677340 PMCID: PMC8533804 DOI: 10.3390/bios11100384] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/01/2023]
Abstract
Biosensors hold great potential for revolutionizing personalized medicine and environmental monitoring. Their construction is the key factor which depends on either manufacturing techniques or robust sensing materials to improve efficacy of the device. Functional graphene is an attractive choice for transducing material due to its various advantages in interfacing with biorecognition elements. Graphene and its derivatives such as graphene oxide (GO) are thus being used extensively for biosensors for monitoring of diseases. In addition, graphene can be patterned to a variety of structures and is incorporated into biosensor devices such as microfluidic devices and electrochemical and plasmonic sensors. Among biosensing materials, GO is gaining much attention due to its easy synthesis process and patternable features, high functionality, and high electron transfer properties with a large surface area leading to sensitive point-of-use applications. Considering demand and recent challenges, this perspective review is an attempt to describe state-of-the-art biosensors based on functional graphene. Special emphasis is given to elucidating the mechanism of sensing while discussing different applications. Further, we describe the future prospects of functional GO-based biosensors for health care and environmental monitoring with a focus on additive manufacturing such as 3D printing.
Collapse
Affiliation(s)
- Agnivo Gosai
- Corning Inc., Science & Technology, Painted Post, NY 14870, USA;
| | - Kamil Reza Khondakar
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
| | - Xiao Ma
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| | - Md. Azahar Ali
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15235, USA
| |
Collapse
|
15
|
Critical reviews of electro-reactivity of screen-printed nanocomposite electrode to safeguard the environment from trace metals. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02802-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Yang J, Chen W, Chen X, Zhang X, Zhou H, Du H, Wang M, Ma Y, Jin X. Detection of Cu 2+ and S 2- with fluorescent polymer nanoparticles and bioimaging in HeLa cells. Anal Bioanal Chem 2021; 413:3945-3953. [PMID: 33954830 DOI: 10.1007/s00216-021-03345-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
Novel spherical polymer nanoparticles were synthesized by hyperbranched polyethylenimine (hPEI) and 6-hydroxy-2-naphthaldehyde (HNA) via Schiff base reaction (one-pot reaction), which had great advantages in water solubility and green synthesis. Meanwhile, probe PEI-HNA could quickly detect Cu2+ in the range of 0-60 μM in 30 s with the detection limit of 243 nM. The fluorescence of PEI-HNA-Cu2+ could be recovered by the addition of S2- in 50 s with the detection limit of 227 nM. Based on the excellent optical properties, PEI-HNA has been used in the bioimaging of living cells with excellent cell penetrability and low toxicity. More importantly, PEI-HNA has been doped into filter paper, hydrogel, and nanofibrous film to prepare solid-phase sensors, displaying rapid response and excellent sensitivity. Moreover, the low-cost and simple preparation of these sensors offers great potential and possibilities for industrialization, which could help accelerate the development of sensors in environmental and biological fields.
Collapse
Affiliation(s)
- Jin Yang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Weixing Chen
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China.
| | - Xinyu Chen
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Xi Zhang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Hongwei Zhou
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Haotian Du
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Mingcheng Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Yiting Ma
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Xilang Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
17
|
Lv J, Liu S, Miao Y. Synthesis of biological quantum dots based on single-strand DNA and its application in melamine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119254. [PMID: 33310270 DOI: 10.1016/j.saa.2020.119254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
By taking TC base-rich single-stranded DNA (ssDNA) as the raw material, a fluorescent biological quantum dots (Bio-dots) probe was prepared in one step through hydrothermal method, where its lifetime was greatly extended in comparison with Carbon quantum dots (CQDs), reaching 10.7 ns. The fluorescent detection of melamine in milk samples was realized by using the base pairing principle. Under the optimal conditions, the linear range of Bio-dots probe fluorescence sensor for melamine detection is 5-600 μM, and the detection limit is (3σ) 1.4 μM. Bio-dots can not only emit photoluminescence, but also detect target molecules as a functional recognition group. As the raw material ssDNA was basically non-toxic and there was no toxic substances participated in its synmanuscript process, this Bio-dots probe was a kind of green and environmentally-friendly photoluminescent functional material.
Collapse
Affiliation(s)
- Jinzhi Lv
- Shanxi Normal University, Linfen 041004, PR China.
| | - Shuying Liu
- Shanxi Normal University, Linfen 041004, PR China
| | - Yanming Miao
- Shanxi Normal University, Linfen 041004, PR China
| |
Collapse
|
18
|
Garkani Nejad F, Tajik S, Beitollahi H, Sheikhshoaie I. Magnetic nanomaterials based electrochemical (bio)sensors for food analysis. Talanta 2021; 228:122075. [PMID: 33773704 DOI: 10.1016/j.talanta.2020.122075] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 01/23/2023]
Abstract
It is widely accepted that nanotechnology attracted more interest because of various values that nanomaterial applications offers in different fields. Recently, researchers have proposed nanomaterials based electrochemical sensors and biosensors as one of the potent alternatives or supplementary analytical tools to the conventional detection procedures that consumes a lot of time. Among different nanomaterials, researchers largely considered magnetic nanomaterials (MNMs) for developing and fabricating the electrochemical (bio)sensors for numerous utilizations. Among several factors, healthier and higher quality foods are the most important preferences of consumers and manufacturers. For this reason, developing new techniques for rapid, precise as well as sensitive determination of components or contaminants of foods is very important. Therefore, developing the new electrochemical (bio)sensors in food analysis is one of the key and effervescent research fields. In this review, firstly, we presented the properties and synthesis strategies of MNMs. Then, we summarized some of the recently developed MNMs-based electrochemical (bio)sensors for food analysis including detecting the antioxidants, synthetic food colorants, pesticides, heavy metal ions, antibiotics and other analytes (bisphenol A, nitrite and aflatoxins) from 2010 to 2020. Finally, the present review described advantages, challenges as well as future directions in this field.
Collapse
Affiliation(s)
- Fariba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, 76175-133, Iran
| | - Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, 76175-133, Iran
| |
Collapse
|
19
|
Shi Y, Mei L, Zhang J, Hu K, Zhang X, Li Z, Miao M, Li X. Synthesis of Zinc Tetraaminophthalocyanine Functionalized Graphene Nanosheets as an Enhanced Material for Sensitive Electrochemical Determination of Uric Acid. ELECTROANAL 2020. [DOI: 10.1002/elan.201900748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yan‐mei Shi
- Academy of Chinese Medical SciencesHenan University of Chinese Medicine Zhengzhou 450001 P.R. China
| | - Lin Mei
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Jun‐xia Zhang
- Academy of Chinese Medical SciencesHenan University of Chinese Medicine Zhengzhou 450001 P.R. China
| | - Kai Hu
- Academy of Chinese Medical SciencesHenan University of Chinese Medicine Zhengzhou 450001 P.R. China
| | - Xi Zhang
- Academy of Chinese Medical SciencesHenan University of Chinese Medicine Zhengzhou 450001 P.R. China
| | - Zhu‐zhu Li
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Ming‐san Miao
- Academy of Chinese Medical SciencesHenan University of Chinese Medicine Zhengzhou 450001 P.R. China
| | - Xiu‐min Li
- Department of Microbiology and ImmunologyNew York Medical College New York NY 10595 USA
| |
Collapse
|
20
|
Gu C, Ren P, Zhang F, Zhao G, Shen J, Zhao B. Detection of Six β-Agonists by Three Multiresidue Immunosensors Based on an Anti-bovine Serum Albumin-Ractopamine-Clenbuterol-Salbutamol Antibody. ACS OMEGA 2020; 5:5548-5555. [PMID: 32201848 PMCID: PMC7081638 DOI: 10.1021/acsomega.0c00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/25/2020] [Indexed: 06/01/2023]
Abstract
According to an indirect competitive immunoassay, six β-agonists (clenbuterol (CL), salbutamol (SAL), ractopamine (RAC), terbutaline (TER), mabuterol (MAB), and tulobuterol (TUL)) were detected by three novel multiresidue immunosensors on the basis of the successful preparation of bovine serum albumin (BSA)-RAC-CL-SAL multideterminant antigen and anti-BSA-RAC-CL-SAL antibody. A new strategy was reported to detect six β-agonists by combining nanotechnology, electrochemical detection, and specific immune technology. At the same concentration, the amperometric response for detection of six β-agonists was in a sequence of GCE/GNP/SAL > GCE/GNP/RAC > GCE/GNP/CL. Detection limits of six β-agonists show that the multiresidue detection performance of the GCE/GNP/RAC immunosensor is better than those of GCE/GNP/SAL and GCE/GNP/CL immunosensors. Three immunosensors manifest superior properties with a wide linear range, low detection limit, excellent reproducibility, and stability. The proposed GCE/GNP/RAC immunosensor displays high accuracy and can be effectively used for real sample detection.
Collapse
Affiliation(s)
- Chenxi Gu
- National
and Local Joint Engineering Research Center of Biomedical Functional
Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Pengfei Ren
- National
and Local Joint Engineering Research Center of Biomedical Functional
Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fan Zhang
- National
and Local Joint Engineering Research Center of Biomedical Functional
Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Guozheng Zhao
- Key
Laboratory of Magnetic Molecules & Magnetic Information Materials
Ministry of Education, The School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China
| | - Jian Shen
- National
and Local Joint Engineering Research Center of Biomedical Functional
Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Bo Zhao
- National
and Local Joint Engineering Research Center of Biomedical Functional
Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|