1
|
Dhandwal A, Bashir O, Malik T, Salve RV, Dash KK, Amin T, Shams R, Wani AW, Shah YA. Sustainable microalgal biomass as a potential functional food and its applications in food industry: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33431-6. [PMID: 38710849 DOI: 10.1007/s11356-024-33431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Microalgae (MA) are the most abundant seaweeds with high nutritional properties. They are accepted as potential biocatalysts for the bioremediation of wastewater. They are widely used in food, feed, and biofuel industries and can potentially be food for future generations. MA-based purification of wastewater technology could be a universal alternative solution for the recovery of resources from wastewater for low-cost biomass feedstock for industry. They provide a wide range of functional components, viz. omega-3 fatty acids, along with a plenteous number of pigments such as ß-carotene, astaxanthin, lutein, phycocyanin, and chlorophyll, which are used extensively as food additives and nutraceuticals. Further, proteins, lipids, vitamins, and carbohydrates are described as nutritional characteristics in MA. They are investigated as single-cell protein, thickening/stabilizing agents, and pigment sources in the food industry. The review emphasizes the production and extraction of nutritional and functional components of algal biomass and the role of microalgal polysaccharides in digestion and nutritional absorption in the gastrointestinal tract. Further, the use of MA in the food industry was also investigated along with their potential therapeutic applications.
Collapse
Affiliation(s)
- Akhil Dhandwal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Omar Bashir
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Tanu Malik
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Rahul Vinayak Salve
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.
| | - Tawheed Amin
- Division of Food Science and Technology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Ab Waheed Wani
- Department of Horticulture, Lovely Professional University, Phagwara, Punjab, India
| | - Yasir Abbas Shah
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| |
Collapse
|
2
|
Montuori E, Lima S, Marchese A, Scargiali F, Lauritano C. Lutein Production and Extraction from Microalgae: Recent Insights and Bioactive Potential. Int J Mol Sci 2024; 25:2892. [PMID: 38474137 PMCID: PMC10931717 DOI: 10.3390/ijms25052892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Microalgae have been reported to be excellent producers of bioactive molecules. Lutein is a pigment reported to have various beneficial effects for humans, and especially for eye well-being. In the current review, we summarize various methods that have been developed to optimize its extraction and bioactivities reported for human health. Several protective effects have been reported for lutein, including antioxidant, anticancer, anti-inflammatory, and cardioprotective activity. This review also reports attempts to increase lutein production by microalgae by changing culturing parameters or by using pilot-scale systems. Genetic engineering lutein production is also discussed. Considering the increasing aging of the worldwide population will create an increased need for lutein, a viable economic and eco-sustainable method to produce lutein is needed to face this market demand.
Collapse
Affiliation(s)
- Eleonora Montuori
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy;
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Serena Lima
- Department of Engineering, University of Palermo, Viale delle Scienze ed. 6, 90128 Palermo, Italy; (S.L.); (A.M.); (F.S.)
| | - Arima Marchese
- Department of Engineering, University of Palermo, Viale delle Scienze ed. 6, 90128 Palermo, Italy; (S.L.); (A.M.); (F.S.)
| | - Francesca Scargiali
- Department of Engineering, University of Palermo, Viale delle Scienze ed. 6, 90128 Palermo, Italy; (S.L.); (A.M.); (F.S.)
| | - Chiara Lauritano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| |
Collapse
|
3
|
Kadri MS, Singhania RR, Anisha GS, Gohil N, Singh V, Patel AK, Patel AK. Microalgal lutein: Advancements in production, extraction, market potential, and applications. BIORESOURCE TECHNOLOGY 2023; 389:129808. [PMID: 37806362 DOI: 10.1016/j.biortech.2023.129808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Lutein, a bioactive xanthophyll, has recently attracted significant attention for numerous health benefits, e.g., protection of eye health, macular degeneration, and acute and chronic syndromes etc. Microalgae have emerged as the best platform for high-value lutein production with high productivity, lutein content, and scale-up potential. Algal lutein possesses numerous bioactivities, hence widely used in pharmaceuticals, nutraceuticals, aquaculture, cosmetics, etc. This review highlights advances in upstream lutein production enhancement and feasible downstream extraction and cell disruption techniques for a large-scale lutein biorefinery. Besides bioprocess-related advances, possible solutions for existing production challenges in microalgae-based lutein biorefinery, market potential, and emerging commercial scopes of lutein and its potential health applications are also discussed. The key enzymes involved in the lutein biosynthesizing Methyl-Erythritol-phosphate (MEP) pathway have been briefly described. This review provides a comprehensive updates on lutein research advancements covering scalable upstream and downstream production strategies and potential applications for researchers and industrialists.
Collapse
Affiliation(s)
- Mohammad Sibtain Kadri
- Department of Education and Human Potential Development, National Dong Hwa University, Hualien, 974301, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Grace Sathyanesan Anisha
- Post-graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, 695014, Kerala, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Alok Kumar Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
4
|
Sousa V, Pereira RN, Vicente AA, Dias O, Geada P. Microalgae biomass as an alternative source of biocompounds: New insights and future perspectives of extraction methodologies. Food Res Int 2023; 173:113282. [PMID: 37803596 DOI: 10.1016/j.foodres.2023.113282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 10/08/2023]
Abstract
Microalgae have characteristics that make them unique and full of potential. Their capacity to generate interesting bioactive molecules can add value to various industrial applications. However, most of these valuable compounds are intracellular, which makes their extraction a major bottleneck. Conventional extraction methodologies have some drawbacks, such as low eco-friendly character, high costs and energy demand, long treatment times, low selectivity and reduced extraction yields, as well as degradation of extracted compounds. The gaps found for these methods demonstrate that emergent approaches, such as ohmic heating, pulsed electric fields, ionic liquids, deep eutectic solvents, or high-pressure processing, show potential to overcome the current drawbacks in the release and extraction of added-value compounds from microalgae. These new processing techniques can potentially extract a variety of compounds, making the process more profitable and applicable to large scales. This review provides an overview of the most important and promising factors to consider in the extraction methodologies applied to microalgae. Additionally, it delivers broad knowledge of the present impact of these methods on biomass and its compounds, raising the possibility of applying them in an integrated manner within a biorefinery concept.
Collapse
Affiliation(s)
- Vítor Sousa
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal
| | - Ricardo N Pereira
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; LABBELS-Associated Laboratory, Braga/Guimarães, Portugal
| | - António A Vicente
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; LABBELS-Associated Laboratory, Braga/Guimarães, Portugal
| | - Oscar Dias
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; LABBELS-Associated Laboratory, Braga/Guimarães, Portugal
| | - Pedro Geada
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; LABBELS-Associated Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
5
|
Fu Y, Wang Y, Yi L, Liu J, Yang S, Liu B, Chen F, Sun H. Lutein production from microalgae: A review. BIORESOURCE TECHNOLOGY 2023; 376:128875. [PMID: 36921637 DOI: 10.1016/j.biortech.2023.128875] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Lutein production from microalgae is a sustainable and economical strategy to offer the increasing global demands, but is still challenged with low lutein content at the high-cell density for commercial production. This review summarizes the suitable conditions for cell growth and lutein accumulation, and presents recent cultivation strategies to further improve lutein productivity. Light and nitrogen play critical roles in lutein biosynthesis that lead to the efficient multi-stage cultivation by increasing lutein content at the later stage. In addition, metabolic and genetic designs for carbon regulation and lutein biosynthesis are discussed at the molecule level. The in-situ lutein accumulation in fermenters by regulating carbon metabolism is considered as a cost-effective direction. Then, downstream processes are summarized for the efficient lutein recovery. Finally, challenges of current lutein production from microalgae are discussed. Meanwhile, potential solutions are proposed to improve lutein content and drive down costs of microalgal biomass.
Collapse
Affiliation(s)
- Yunlei Fu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yinan Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Shufang Yang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
6
|
Teixé-Roig J, Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. Emulsion-Based Delivery Systems to Enhance the Functionality of Bioactive Compounds: Towards the Use of Ingredients from Natural, Sustainable Sources. Foods 2023; 12:foods12071502. [PMID: 37048323 PMCID: PMC10094036 DOI: 10.3390/foods12071502] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
In recent years, the trend in the population towards consuming more natural and sustainable foods has increased significantly. This claim has led to the search for new sources of bioactive compounds and extraction methods that have less impact on the environment. Moreover, the formulation of systems to protect these compounds is also focusing on the use of ingredients of natural origin. This article reviews novel, natural alternative sources of bioactive compounds with a positive impact on sustainability. In addition, it also contains information on the most recent studies based on the use of natural (especially from plants) emulsifiers in the design of emulsion-based delivery systems to protect bioactive compounds. The properties of these natural-based emulsion-delivery systems, as well as their functionality, including in vitro and in vivo studies, are also discussed. This review provides relevant information on the latest advances in the development of emulsion delivery systems based on ingredients from sustainable natural sources.
Collapse
Affiliation(s)
- Júlia Teixé-Roig
- Department of Food Technology, University of Lleida—Agrotecnio Center, 25198 Lleida, Spain
| | - Gemma Oms-Oliu
- Department of Food Technology, University of Lleida—Agrotecnio Center, 25198 Lleida, Spain
| | | | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida—Agrotecnio Center, 25198 Lleida, Spain
| |
Collapse
|
7
|
Sun H, Wang Y, He Y, Liu B, Mou H, Chen F, Yang S. Microalgae-Derived Pigments for the Food Industry. Mar Drugs 2023; 21:md21020082. [PMID: 36827122 PMCID: PMC9967018 DOI: 10.3390/md21020082] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
In the food industry, manufacturers and customers have paid more attention to natural pigments instead of the synthetic counterparts for their excellent coloring ability and healthy properties. Microalgae are proven as one of the major photosynthesizers of naturally derived commercial pigments, gaining higher value in the global food pigment market. Microalgae-derived pigments, especially chlorophylls, carotenoids and phycobiliproteins, have unique colors and molecular structures, respectively, and show different physiological activities and health effects in the human body. This review provides recent updates on characteristics, application fields, stability in production and extraction processes of chlorophylls, carotenoids and phycobiliproteins to standardize and analyze their commercial production from microalgae. Potential food commodities for the pigment as eco-friendly colorants, nutraceuticals, and antioxidants are summarized for the target products. Then, recent cultivation strategies, metabolic and genomic designs are presented for high pigment productivity. Technical bottlenecks of downstream processing are discussed for improved stability and bioaccessibility during production. The production strategies of microalgal pigments have been exploited to varying degrees, with some already being applied at scale while others remain at the laboratory level. Finally, some factors affecting their global market value and future prospects are proposed. The microalgae-derived pigments have great potential in the food industry due to their high nutritional value and competitive production cost.
Collapse
Affiliation(s)
- Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Haijin Mou
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (F.C.); (S.Y.)
| | - Shufang Yang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (F.C.); (S.Y.)
| |
Collapse
|
8
|
Kaur M, Bhatia S, Gupta U, Decker E, Tak Y, Bali M, Gupta VK, Dar RA, Bala S. Microalgal bioactive metabolites as promising implements in nutraceuticals and pharmaceuticals: inspiring therapy for health benefits. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 22:1-31. [PMID: 36686403 PMCID: PMC9840174 DOI: 10.1007/s11101-022-09848-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The rapid increase in global population and shrinkage of agricultural land necessitates the use of cost-effective renewable sources as alternative to excessive resource-demanding agricultural crops. Microalgae seem to be a potential substitute as it rapidly produces large biomass that can serve as a good source of various functional ingredients that are not produced/synthesized inside the human body and high-value nonessential bioactive compounds. Microalgae-derived bioactive metabolites possess various bioactivities including antioxidant, anti-inflammatory, antimicrobial, anti-carcinogenic, anti-hypertensive, anti-lipidemic, and anti-diabetic activities, thereof rapidly elevating their demand as interesting option in pharmaceuticals, nutraceuticals and functional foods industries for developing new products. However, their utilization in these sectors has been limited. This demands more research to explore the functionality of microalgae derived functional ingredients. Therefore, in this review, we intended to furnish up-to-date knowledge on prospects of bioactive metabolites from microalgae, their bioactivities related to health, the process of microalgae cultivation and harvesting, extraction and purification of bioactive metabolites, role as dietary supplements or functional food, their commercial applications in nutritional and pharmaceutical industries and the challenges in this area of research. Graphical abstract
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Surekha Bhatia
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Urmila Gupta
- Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Eric Decker
- Department of Food Science, University of Massachusetts, Amherst, MA USA
| | - Yamini Tak
- Agricultural Research Station, Agricultural University, Ummedganj, Kota India
| | - Manoj Bali
- Research & Development, Chemical Resources (CHERESO), Panchkula, Haryana India
| | - Vijai Kumar Gupta
- Center for Safe and Improved Food & Biorefining and Advanced Materials Research Center, SRUC Barony Campus, Dumfries, Scotland, UK
| | - Rouf Ahmad Dar
- Sam Hiiginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh 211007 India
| | - Saroj Bala
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
9
|
Muhammad G, Wang J, Xiong W, Lv Y, Zhang S, Zhao A, Jahanbakhsh-Bonab P, Solovchenko A, Xu J, Asraful Alam M. Polyol based deep eutectic solvent-assisted pretreatment for enhanced lutein extraction from Chlorella pyrenoidosa. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Low KL, Idris A, Yusof NM. An optimized strategy for lutein production via microwave-assisted microalgae wet biomass extraction process. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Mary Leema JT, Persia Jothy T, Dharani G. Rapid green microwave assisted extraction of lutein from Chlorella sorokiniana (NIOT-2) - Process optimization. Food Chem 2022; 372:131151. [PMID: 34601422 DOI: 10.1016/j.foodchem.2021.131151] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Abstract
Chloropycean microalgae are looked up as a prospective alternate source for the production of xanthophyll carotenoid lutein. Despite, the market significance and multitude of nutraceutical applications of lutein commercial production from microalgae still remains a challenge due to the prohibitive downstream cost. This necessitates innovative less energy intensive, high lutein yielding green processes. The present work presents a comprehensive study on the rapid green microwave assisted extraction (MAE) of lutein from marine chlorophycean microalgae Chlorella sorokiniana (NIOT-2). The process parameters of microwave assisted alkali pre-treatment like exposure time (ET), alkali concentration (AC) and solid (biomass): liquid (aqueous Potassium hydroxide-KOH) ratio (S: L ratio) were optimized using single factor and response surface method (RSM) experiments. The optimized conditions for microwave assisted alkali pre-treatment (ET:1.47 min; AC: 8.16 M KOH and S:L ratio of 36.8:1 (mg/mL) augmented the lutein yield (20.69 ± 1.2 mg/g) 3.26 fold when compared to conventional extraction (6.35 ± 0.44 mg/g). Lutein extracted using optimized MAE conditions was purified and characterized. Visualization of the MAE extracted algal biomass using Scanning electron microscope confirmed the effective cell disruption. X-ray diffraction (XRD) analysis of microwave assisted alkali treated biomass (83.85%) revealed a significantly higher crystallinity index when compared to untreated control (17.28%). MAE pre-treatment can thus be propounded as a suitable process for lutein extraction from marine microalgae due to its amalgamated rapidity, homogenous heating, less energy intensiveness and high extraction yield.
Collapse
Affiliation(s)
- J T Mary Leema
- Marine Biotechnology Division, National Institute of Ocean Technology, (Ministry of Earth Sciences, Government of India), Velachery - Tambaram Main Road, Pallikaranai, Chennai 600 100, Tamil Nadu, India.
| | - T Persia Jothy
- Marine Biotechnology Division, National Institute of Ocean Technology, (Ministry of Earth Sciences, Government of India), Velachery - Tambaram Main Road, Pallikaranai, Chennai 600 100, Tamil Nadu, India
| | - G Dharani
- Marine Biotechnology Division, National Institute of Ocean Technology, (Ministry of Earth Sciences, Government of India), Velachery - Tambaram Main Road, Pallikaranai, Chennai 600 100, Tamil Nadu, India.
| |
Collapse
|
12
|
Cassani L, Marcovich NE, Gomez-Zavaglia A. Valorization of fruit and vegetables agro-wastes for the sustainable production of carotenoid-based colorants with enhanced bioavailability. Food Res Int 2022; 152:110924. [DOI: 10.1016/j.foodres.2021.110924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022]
|
13
|
The Association between Carotenoids and Head and Neck Cancer Risk. Nutrients 2021; 14:nu14010088. [PMID: 35010963 PMCID: PMC8746385 DOI: 10.3390/nu14010088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Head and neck cancer (HNC) includes oral cavity cancer (OCC), pharyngeal cancer (PC), and laryngeal cancer (LC). It is one of the most frequent cancers in the world. Smoking and alcohol consumption are the typical well-known predictors of HNC. Human papillomavirus (HPV) is an increasing etiological factor for oropharyngeal cancer (OPC). Moreover, food and nutrition play an important role in HNC etiology. According to the World Cancer Research Fund and the American Institute for Cancer Research, an intake of non-starchy vegetables and fruits could decrease HNC risk. The carotenoids included in vegetables and fruits are well-known antioxidants which have anti-mutagenic and immune regulatory functions. Numerous studies have shown the relationship between carotenoid intake and a lower HNC risk, but the role of carotenoids in HNC risk is not well defined. The goal of this review is to present the current literature regarding the relationship between various carotenoids and HNC risk.
Collapse
|
14
|
Fan C, Liu Y, Shan Y, Cao X. A priori design of new natural deep eutectic solvent for lutein recovery from microalgae. Food Chem 2021; 376:131930. [PMID: 34968908 DOI: 10.1016/j.foodchem.2021.131930] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/24/2021] [Accepted: 12/20/2021] [Indexed: 11/04/2022]
Abstract
Lutein is an important functional food ingredient. However, its recovery processes developed so far seem to fail in sustainability criteria, regarding the urgent need for improved extraction ability while maintaining stability. This work aimed to study the design and application of natural deep eutectic solvent (NADES) for lutein recovery from Scenedesmus sp with the aid of COSMO-RS. The performance of the novel fenchyl alcohol/thymol-based system was studied comprehensively under different extraction parameters. Furthermore, thermal, light and storage stability of lutein in NADES were investigated. It was found that lutein recovery from microalgae should be performed using equimolar hydrogen-bond acceptor/donor at 60 °C within 70 min. The NADES could increase lutein yield compared with the conventional methodology using organic solvents. Besides, it significantly enhanced the lutein stability under various conditions. Hydrogen bond and Van der Waals interaction play crucial roles during target processing, elucidated by theoretical calculations and nuclear magnetic resonance.
Collapse
Affiliation(s)
- Chen Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Yang Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yuhang Shan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xueli Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
15
|
Use of microalgal lipids and carbohydrates for the synthesis of carbon dots via hydrothermal microwave treatment. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Zhu Y, Li X, Wang Y, Ren L, Zhao Q. Lutein extraction by imidazolium-based ionic liquid-water mixture from dried and fresh Chlorella sp. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Mehariya S, Goswami RK, Karthikeysan OP, Verma P. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. CHEMOSPHERE 2021; 280:130553. [PMID: 33940454 DOI: 10.1016/j.chemosphere.2021.130553] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Microalgae is a renewable bioresource with the potential to replace the conventional fossil-based industrial production of organic chemicals and pharmaceuticals. Moreover, the microalgal biomass contains carotenoids, vitamins, and other biomolecules that are widely used as food supplements. However, the microalgal biomass production, their composition variations, energy-intensive harvesting methods, optimized bio-refinery routes, and lack of techno-economic analysis are the major bottleneck for the life-sized commercialization of this nascent bio-industry. This review discusses the microalgae-derived key bioactive compounds and their applications in different sectors for human health. Furthermore, this review proposes advanced strategies to enhance the productivity of bioactive compounds and highlight the key challenges associated with a safety issue for use of microalgae biomass. It also provides a detailed global scenario and market demand of microalgal bioproducts. In conclusion, this review will provide the concept of microalgal biorefinery to produce bioactive compounds at industrial scale platform for their application in the nutraceutical and pharmaceutical sector considering their current and future market trends.
Collapse
Affiliation(s)
- Sanjeet Mehariya
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa Dell'Annunziata, Via Roma 29, 81031, Aversa, CE, Italy; Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Obulisamy Parthiba Karthikeysan
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA; Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA.
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
18
|
Liu C, Hu B, Cheng Y, Guo Y, Yao W, Qian H. Carotenoids from fungi and microalgae: A review on their recent production, extraction, and developments. BIORESOURCE TECHNOLOGY 2021; 337:125398. [PMID: 34139560 DOI: 10.1016/j.biortech.2021.125398] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
The demand for carotenoids from natural sources obtained by biological extraction methods is increasing with the development of biotechnology and the continued awareness of food safety. Natural plant-derived carotenoids have a relatively high production cost and are affected by the season, while microbial-derived carotenoids are favored due to their natural, high-efficiency, low production cost, and ease of industrialization. This article reviewed the following aspects of natural carotenoids derived from microorganisms: (1) the structures and properties of main carotenoids; (2) fungal and microalgal sources of the main carotenoids; (3) influencing factors and modes of improvement for carotenoids production; (4) efficient extraction methods for carotenoids; and (5) the commercial value of carotenoids. This review provided a reference and guidance for the development of natural carotenoids derived from microorganisms.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Bin Hu
- School of Biotechnology, Jiangnan University, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
19
|
Ávila-Román J, García-Gil S, Rodríguez-Luna A, Motilva V, Talero E. Anti-Inflammatory and Anticancer Effects of Microalgal Carotenoids. Mar Drugs 2021; 19:531. [PMID: 34677429 PMCID: PMC8539290 DOI: 10.3390/md19100531] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation is a key component of the immune system's response to pathogens, toxic agents, or tissue injury, involving the stimulation of defense mechanisms aimed to removing pathogenic factors and restoring tissue homeostasis. However, uncontrolled acute inflammatory response may lead to chronic inflammation, which is involved in the development of many diseases, including cancer. Nowadays, the need to find new potential therapeutic compounds has raised the worldwide scientific interest to study the marine environment. Specifically, microalgae are considered rich sources of bioactive molecules, such as carotenoids, which are natural isoprenoid pigments with important beneficial effects for health due to their biological activities. Carotenoids are essential nutrients for mammals, but they are unable to synthesize them; instead, a dietary intake of these compounds is required. Carotenoids are classified as carotenes (hydrocarbon carotenoids), such as α- and β-carotene, and xanthophylls (oxygenate derivatives) including zeaxanthin, astaxanthin, fucoxanthin, lutein, α- and β-cryptoxanthin, and canthaxanthin. This review summarizes the present up-to-date knowledge of the anti-inflammatory and anticancer activities of microalgal carotenoids both in vitro and in vivo, as well as the latest status of human studies for their potential use in prevention and treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Javier Ávila-Román
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Sara García-Gil
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Virginia Motilva
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Elena Talero
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| |
Collapse
|
20
|
Guzik P, Kulawik P, Zając M, Migdał W. Microwave applications in the food industry: an overview of recent developments. Crit Rev Food Sci Nutr 2021; 62:7989-8008. [PMID: 33970698 DOI: 10.1080/10408398.2021.1922871] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Microwave radiation has the ability to heat a material with dielectric properties. Material absorbs microwave energy and then converts it into heat, which gives the possibility of a wide use of microwaves in many industry sectors or agricultural sciences. Microwaves are especially widely used in food industry. The main objective of this paper is to present an overview of recent development regarding microwave applications in food industry. Many techniques in food processing (pasteurization, sterilization, drying, thawing, blanching and stunning) are assisted by microwave energy. It should be mentioned also the use of microwaves in nutrients and nutraceuticals production. Waste generation is an integral part of food production. Microwaves have also application in wastes management. The results of experiments, factors affecting heating and their practical application have been discussed. Many cases have been compared with conventional process methods. The use of microwaves shows many advantages. The most important aspect is shortening the time of the thermal process (even by 50%) and reducing the costs of the operation. In addition, it allows to increase the efficiency of processes while maintaining high quality. The examples of microwave applications given in the article are environmentally- friendly because the conditions of thermal processing allow for reducing the use of solvents and the amount of sewage by decreasing the demand for water. It is anticipated that microwaves will become increasingly popular, with the development of new microwave technologies solving many problems in the future.
Collapse
Affiliation(s)
- Paulina Guzik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Poland in Cracow, Krakow
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Poland in Cracow, Krakow
| | - Marzena Zając
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Poland in Cracow, Krakow
| | - Władysław Migdał
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Poland in Cracow, Krakow
| |
Collapse
|
21
|
Unlocking the Health Potential of Microalgae as Sustainable Sources of Bioactive Compounds. Int J Mol Sci 2021; 22:ijms22094383. [PMID: 33922258 PMCID: PMC8122763 DOI: 10.3390/ijms22094383] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae are known to produce a plethora of compounds derived from the primary and secondary metabolism. Different studies have shown that these compounds may have allelopathic, antimicrobial, and antipredator activities. In addition, in vitro and in vivo screenings have shown that several compounds have interesting bioactivities (such as antioxidant, anti-inflammatory, anticancer, and antimicrobial) for the possible prevention and treatment of human pathologies. Additionally, the enzymatic pathways responsible for the synthesis of these compounds, and the targets and mechanisms of their action have also been investigated for a few species. However, further research is necessary for their full exploitation and possible pharmaceutical and other industrial applications. Here, we review the current knowledge on the chemical characteristics, biological activities, mechanism of action, and the enzymes involved in the synthesis of microalgal metabolites with potential benefits for human health.
Collapse
|
22
|
Khoo KS, Chong YM, Chang WS, Yap JM, Foo SC, Khoiroh I, Lau PL, Chew KW, Ooi CW, Show PL. Permeabilization of Chlorella sorokiniana and extraction of lutein by distillable CO2-based alkyl carbamate ionic liquids. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117471] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Abstract
Lutein is particularly known to help maintain normal visual function by absorbing and attenuating the blue light that strikes the retina in our eyes. The effect of overexposure to blue light on our eyes due to the excessive use of electronic devices is becoming an issue of modern society due to insufficient dietary lutein consumption through our normal diet. There has, therefore, been an increasing demand for lutein-containing dietary supplements and also in the food industry for lutein supplementation in bakery products, infant formulas, dairy products, carbonated drinks, energy drinks, and juice concentrates. Although synthetic carotenoid dominates the market, there is a need for environmentally sustainable carotenoids including lutein production pathways to match increasing consumer demand for natural alternatives. Currently, marigold flowers are the predominant natural source of lutein. Microalgae can be a competitive sustainable alternative, which have higher growth rates and do not require arable land and/or a growth season. Currently, there is no commercial production of lutein from microalgae, even though astaxanthin and β-carotene are commercially produced from specific microalgal strains. This review discusses the potential microalgae strains for commercial lutein production, appropriate cultivation strategies, and the challenges associated with realising a commercial market share.
Collapse
|