1
|
Yang J, Guo S, Zeng X, Bai W, Sun B, Zhang Y. Synthesis of taste active γ-glutamyl peptides with pea protein hydrolysate and their taste mechanism via in silico study. Food Chem 2024; 430:136988. [PMID: 37544154 DOI: 10.1016/j.foodchem.2023.136988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Pea (Pisum sativum L.) protein hydrolysate (PPH) has a bitter taste, which has limited its use in food industry. γ-Glutamylation is used to debitter PPH. Results showed that the bitterness of PPH was decreased significantly due to the formation of γ-glutamyl peptides, including 16 γ-[Glu](n=1/2)-amino acids (AAs) and 8 newly discovered γ-glutamyl tripeptides (γ-Glu-Asn-Phe, γ-Glu-Leu-Val, γ-Glu-Leu-Tyr, γ-Glu-Gly-Leu, γ-Glu-Gly-Phe, γ-Glu-Gly-Tyr, γ-Glu-Val-Val, and γ-Glu-Gln-Tyr). Their total production concentrations were 27.25 μmol/L and 77.76 μmol/L, respectively. The γ-Glu-AA-AAs presented an umami-enhancing, salty-enhancing, and kokumi taste when their concentration reached 1.67 ± 0.20 ∼ 2.07 ± 0.20, 1.65 ± 0.25 ∼ 2.29 ± 0.45 and 0.68 ± 0.19 ∼ 1.03 ± 0.22 mmol/L, respectively. The γ-Glu-AA-AAs exhibited a kokumi taste by entering the Venus flytrap (VFT) of the calcium-sensing receptor and interacting with Ser147, Ala168, and Ser170. γ-Glu-AA-AAs can enhance the umaminess of Monosodium Glutamate (MSG) as they can enter the binding pocket of the taste receptor type 1 subunit 3 (T1R3)-MSG complex.
Collapse
Affiliation(s)
- Juan Yang
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Siqi Guo
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
2
|
He W, Huang X, Kelimu A, Li W, Cui C. Streamlined Efficient Synthesis and Antioxidant Activity of γ-[Glutamyl] (n≥1)-tryptophan Peptides by Glutaminase from Bacillus amyloliquefaciens. Molecules 2023; 28:4944. [PMID: 37446606 DOI: 10.3390/molecules28134944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
As a group of naturally occurring peptides in various foods, γ-glutamyl peptides possess a unique Kokumi taste and health benefits. However, few studies have focused on the functionality of γ-glutamyl peptides. In this study, the γ-[glutamyl] (n=1, 2, 3)-tryptophan peptides were synthesized from a solution of glutamine (Gln) and tryptophan (Trp) employing L-glutaminase from Bacillus amyloliquefaciens. Four different γ-glutamyl peptides were identified from the reaction mixture by UPLC-Q-TOF-MS/MS. Under optimal conditions of pH 10, 37 °C, 3 h, 0.1 mol/L Gln: 0.1 mol/L Trp = 1:3, and glutaminase at 0.1% (m/v), the yields of γ-l-glutamyl-l-tryptophan (γ-EW), γ-l-glutamyl-γ-l-glutamyl-l-tryptophan (γ-EEW) and γ-l-glutamyl-γ-l-glutamyl-γ-l-glutamyl-l-tryptophan (γ-EEEW) were 51.02%, 26.12% and 1.91% respectively. The antioxidant properties of the reaction mixture and the two peptides (γ-EW, γ-EEW) identified from the reaction media were further compared. Results showed that γ-EW exhibited the highest DPPH•, ABTS•+ and O2•--scavenging activity (EC50 = 0.2999 mg/mL, 67.6597 μg/mL and 5.99 mg/mL, respectively) and reducing power (EC50 = 4.61 mg/mL), while γ-EEW demonstrated the highest iron-chelating activity (76.22%). Thus, the synthesized mixture may be used as a potential source of antioxidant peptides for food and nutraceutical applications.
Collapse
Affiliation(s)
- Wenjiang He
- Infinitus (China) Co., Ltd., Guangzhou 510640, China
| | - Xiaoling Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Abulimiti Kelimu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Nongda East Road 311, Urumqi 830052, China
| | - Wenzhi Li
- Infinitus (China) Co., Ltd., Guangzhou 510640, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Cao L, Hunt CJ, Lin S, Meyer AS, Li Q, Lametsch R. Elucidation of the Molecular Mechanism of Bovine Milk γ-Glutamyltransferase Catalyzed Formation of γ-Glutamyl-Valyl-Glycine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2455-2463. [PMID: 36706241 DOI: 10.1021/acs.jafc.2c08386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
γ-Glu-Val-Gly (γ-EVG) is a potent kokumi peptide that can be synthesized through the transpeptidase reaction catalyzed by γ-glutamyl transferase from bovine milk (BoGGT). To explore the molecular mechanism between BoGGT and l-glutamine, γ-glutamyl peptides were generated through the transpeptidase reaction catalyzed by BoGGT at various reaction conditions. Quantitation of γ-glutamyl peptides, structure prediction of BoGGT, molecular docking, and molecular dynamic simulations were performed. Membrane-free BoGGT had a higher transpeptidase activity with Val-Gly as an acceptor than membrane BoGGT. The suitable conditions for γ-EVG production using BoGGT were 100 mM Val-Gly, 20 mM Gln, 1.2 U/mL BoGGT, pH 8.5, and 37 °C, and 13.1 mM γ-EVG was produced. The hydrogen bonds are mainly formed between residues from the light subunit of BoGGT (Thr380, Thr398, Ser450, Ser451, Met452, and Gly473) and the l-glutamine donor. NaCl might inhibit the transpeptidase activity by destroying the hydrogen bonds between BoGGT and l-glutamine, thereby increasing the distance between the hydroxyl oxygen atom on Thr380 of BoGGT and the amide carbon atom on l-glutamine.
Collapse
Affiliation(s)
- Lichuang Cao
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Cameron J Hunt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Shang Lin
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Qian Li
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| |
Collapse
|
4
|
Li Q, Zhang L, Lametsch R. Increase of Kokumi γ-Glutamyl Peptides in Porcine Hemoglobin Hydrolysate Using Bacterial γ-Glutamyltransferase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15894-15902. [PMID: 36473160 DOI: 10.1021/acs.jafc.2c07045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The kokumi sensation of protein hydrolysates could be enhanced by γ-glutamylation through forming a series of γ-glutamyl di- and tri-peptides. In this study, porcine hemoglobin hydrolysate was γ-glutamylated using enzymes from Bacillus amyloliquefaciens (Ba) or Bacillus licheniformis (Bl), which are sold as glutaminases but identified as γ-glutamyltransferases (GGTs). To yield more γ-glutamyl peptides, reaction conditions were optimized in terms of GGT source (BaGGT and BlGGT), substrate concentration (10, 20, and 40%), reaction time (3, 6, 12, and 24 h), and glutamine supplementation (20, 40, and 80 mM). Results showed that both the GGTs had the highest transpeptidase activity at similar pH values but different temperatures. In addition, BaGGT had stronger catalytic ability to form γ-glutamyl dipeptides, while BlGGT was more capable to generate γ-Glu-Val-Gly. Adding glutamine was more efficient to obtain more target peptides than adjusting the hydrolysate concentration and reaction time. This study contributes to the valorization of animal side streams.
Collapse
Affiliation(s)
- Qian Li
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - Longteng Zhang
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| |
Collapse
|
5
|
Cao L, Li Q, Lametsch R. Comparative analysis of substrate affinity and catalytic efficiency of γ-glutamyltransferase from bovine milk and Bacillus amyloliquefaciens. Food Chem 2022; 405:134930. [DOI: 10.1016/j.foodchem.2022.134930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
|
6
|
Xiang H, Huang H, Sun-Waterhouse D, Hu X, Li L, Waterhouse GI, Tang R, Xiong J, Cui C. Enzymatically synthesized γ-[Glu](n≥1)-Gln as novel calcium-binding peptides to deliver calcium with enhanced bioavailability. Food Chem 2022; 387:132918. [DOI: 10.1016/j.foodchem.2022.132918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022]
|
7
|
Wu J, Sun Y, Huan X, Cui C. Reaction Mixtures Rich in [γ-Glu] (n≥1)-Arg Derived from Enzymatic Synthesis as Potential Salt and Umami Enhancers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10584-10592. [PMID: 35984991 DOI: 10.1021/acs.jafc.2c03501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Some arginyl dipeptides and γ-glutamyl peptides have been identified as salt and umami enhancers. These compounds provide an operable approach for reducing sodium uptake without losing the palatability of foods. γ-Glu-Arg was hinted to have a taste-enhancing effect in the past, but few research studies have focused on it. In the present study, a series of γ-glutamyl peptides containing Arg such as γ-Glu-Arg, [γ-Glu](n=2)-Arg, [γ-Glu](n=3)-Arg, [γ-Glu](n=4)-Arg, [γ-Glu](n=5)-Arg, [γ-Glu](n=6)-Arg, [γ-Glu](n=7)-Arg, and [γ-Glu](n=8)-Arg were synthesized using glutaminase from Bacillus amyloliquefaciens in the presence of Gln and Arg. A high solid concentration of 30% was found to increase the production of [γ-Glu](1≤n≤4)-Arg. Sensory evaluation revealed that individual [γ-Glu](n=1,2,3,4)-Arg has a slightly bitter and astringent taste. [γ-Glu](n=1,2)-Arg (1.0 mg/mL) significantly increased the umaminess in the mixture of salt and sodium glutamate but showed no significant effect on saltiness in the salt solution, whereas [γ-Glu](n=3,4)-Arg and postenzymatic reaction mixtures (1.0 mg/mL) significantly increased both saltiness and umaminess. [γ-Glu](n=3,4)-Arg and postenzymatic mixtures in the system with 30% solid concentrations showed a high and similar taste-enhancing effect. Moreover, umaminess and saltiness increased 1.9 and 2.4 times in the simulated broth, respectively, while saltiness increased 1.5 times in the salt solution by the addition of postenzymatic reaction mixtures in the system with 30% solid concentrations at 20.0 mg/mL. These results indicated that [γ-Glu](n=1,2,3,4)-Arg and postenzymatic reaction mixtures rich in [γ-Glu](n≥1)-Arg were potential salt or umami enhancers.
Collapse
Affiliation(s)
- Jing Wu
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yuanyuan Sun
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Xiang Huan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Chun Cui
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Effects of γ-Glutamylated Hydrolysates from Porcine Hemoglobin and Meat on Kokumi Enhancement and Oxidative Stability of Emulsion-Type Sausages. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Awad MF, El-Shenawy FS, El-Gendy MMAA, El-Bondkly EAM. Purification, characterization, and anticancer and antioxidant activities of L-glutaminase from Aspergillus versicolor Faesay4. Int Microbiol 2021; 24:169-181. [PMID: 33389217 DOI: 10.1007/s10123-020-00156-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
L-Glutaminase is an amidohydrolase which can act as a vital chemotherapeutic agent against various malignancies. In the present work, L-glutaminase productivity from Aspergillus versicolor Faesay4 was significantly increased by 7.72-fold (from 12.33 ± 0.47 to 95.15 ± 0.89 U/mL) by optimizing submerged fermentation parameters in Czapek's Dox (CZD) medium including an incubation period from 3 (12.33 ± 0.47 U/mL) to 6 days (23.36 ± 0.58 U/mL), an incubation temperature from 30 °C (23.36 ± 0.49 U/mL) to 25 °C (31.08 ± 0.60 U/mL), initial pH from pH 5.0 (8.49 ± 0.21 U/mL) to pH 7.0 (32.18 ± 0.57 U/mL), replacement of glucose (30.19 ± 0.52 U/mL) by sucrose (48.97 ± 0.67 U/mL) as the carbon source at a concentration of 2.0% (w/v), increasing glutamine concentration as the nitrogen source from 1.0% (w/v, 48.54 ± 0.48 U/mL) to 1.5% (w/v, 63.01 ± 0.60 U/mL), and addition of a mixture of KH2PO4 and NaCl (0.5% w/v for both) to SZD as the metal supplementation (95.15 ± 0.89 U/mL). Faesay4 L-glutaminase was purified to yield total activity 13,160 ± 22.76 (U), specific activity 398.79 ± 9.81 (U/mg of protein), and purification fold 2.1 ± 3.18 with final enzyme recovery 57.22 ± 2.17%. The pure enzyme showed a molecular weight of 61.80 kDa, and it was stable and retained 100.0% of its activity at a temperature ranged from 10 to 40 °C and pH 7.0. In our trials, to increase the enzyme activity by optimizing the assay conditions (which were temperature 60 °C, pH 7.0, substrate glutamine, substrate concentration 1.0%, and reaction time 60 min), the enzyme activity increased by 358.8% after changing the assay temperature from 60 to 30 °C and then increased by 138% after decreasing the reaction time from 60 to 40 min. However, both pH 7.0 and glutamine as the substrate remain the best assay parameters for the L-glutaminase activity. When the glutamine in the assay as the reaction substrate was replaced by asparagine, lysine, proline, methionine, cysteine, glycine, valine, phenylalanine, L-alanine, aspartic acid, tyrosine, and serine, the enzyme lost 23.86%, 29.0%, 31.0%, 48.3%, 50.0%, 73.6%, 74.51%, 80.42%, 82.5%, 83.43%, 88.36%, and 89.78% of its activity with glutamine, respectively. Furthermore, Mn2+, K+, Na+, and Fe3+ were enzymatic activators that increased the L-glutaminase activity by 25.0%, 18.05%, 10.97%, and 8.0%, respectively. Faesay4 L-glutaminase was characterized as a serine protease enzyme as a result of complete inhibition by all serine protease inhibitors (PMSF, benzamidine, and TLCK). Purified L-glutaminase isolated from Aspergillus versicolor Faesay4 showed potent DPPH scavenging activities with IC50 = 50 μg/mL and anticancer activities against human liver (HepG-2), colon (HCT-116), breast (MCF-7), lung (A-549), and cervical (Hela) cancer cell lines with IC50 39.61, 12.8, 6.18, 11.48, and 7.25 μg/mL, respectively.
Collapse
Affiliation(s)
- Mohamed F Awad
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Fareed Shawky El-Shenawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | | | | |
Collapse
|
10
|
WoldemariamYohannes K, Wan Z, Yu Q, Li H, Wei X, Liu Y, Wang J, Sun B. Prebiotic, Probiotic, Antimicrobial, and Functional Food Applications of Bacillus amyloliquefaciens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14709-14727. [PMID: 33280382 DOI: 10.1021/acs.jafc.0c06396] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bacillus amyloliquefaciens belongs to the genus Bacillus and family Baciliaceae. It is ubiquitously found in food, plants, animals, soil, and in different environments. In this review, the application of B. amyloliquefaciens in probiotic and prebiotic microbes in fermentation, synthesis, and hydrolysis of food compounds is discussed as well as further insights into its potential application and gaps. B. amyloliquefaciens is also a potential microbe in the synthesis of bioactive compounds including peptides and exopolysaccharides. In addition, it can synthesize antimicrobial compounds (e.g., Fengycin, and Bacillomycin Lb), which makes its novelty in the food sector greater. Moreover, it imparts and improves the functional, sensory, and shelf life of the end products. The hydrolysis of complex compounds including insoluble proteins, carbohydrates, fibers, hemicellulose, and lignans also shows that B. amyloliquefaciens is a multifunctional and potential microbe which can be applied in the food industry and in functional food processing.
Collapse
Affiliation(s)
- Kalekristos WoldemariamYohannes
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhen Wan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qinglin Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongyan Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
11
|
Li Q, Liu J, De Gobba C, Zhang L, Bredie WLP, Lametsch R. Production of Taste Enhancers from Protein Hydrolysates of Porcine Hemoglobin and Meat Using Bacillus amyloliquefaciens γ-Glutamyltranspeptidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11782-11789. [PMID: 32942857 DOI: 10.1021/acs.jafc.0c04513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To improve the flavor of hydrolysates from porcine hemoglobin and meat, γ-glutamyltranspeptidase (GGT) from Bacillus amyloliquefaciens was added to catalyze the formation of kokumi γ-glutamyl peptides via a γ-glutamyl transfer reaction. Quantitation of free amino acids and γ-glutamyl dipeptides was carried out in combination with sensory analysis. Sensory perception, especially the thick, complex, continuous, and overall kokumi sensation of both hemoglobin and meat hydrolysates, was greatly enhanced by γ-glutamylation. Due to the higher amount of glutamine present in meat hydrolysates, γ-glutamylated hydrolysates from meat contained higher concentrations of γ-glutamyl dipeptides and showed stronger kokumi sensation than the hemoglobin counterpart without the addition of glutamine. For hydrolysates from both raw materials, extra addition of glutamine (10 and 20 mM) was beneficial for obtaining higher concentrations of γ-glutamyl dipeptides but contributed little to the kokumi sensation. This study revealed that the kokumi sensation of protein hydrolysates could be intensified by a γ-glutamyl transfer reaction, and the enhanced kokumi sensation could be related to the generation of γ-glutamyl peptides.
Collapse
Affiliation(s)
- Qian Li
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Jing Liu
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Cristian De Gobba
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Longteng Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wender L P Bredie
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| |
Collapse
|
12
|
Lin J, Sun-Waterhouse D, Tang R, Cui C, Wang W, Xiong J. The effect of γ-[Glu] (1≤n≤5)-Gln on the physicochemical characteristics of frozen dough and the quality of baked bread. Food Chem 2020; 343:128406. [PMID: 33406571 DOI: 10.1016/j.foodchem.2020.128406] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/09/2020] [Accepted: 10/12/2020] [Indexed: 11/25/2022]
Abstract
This study was the first to examine the effects of γ-[Glu](1≤n≤5)-Gln (GGP, a taste enhancer; added at 0.5% or 5.0%) on the breadmaking using frozen dough. γ-[Glu](1≤n≤5)-Gln was produced using the method established in our research center. The addition of GGP at either level increased yeast viability, freezable water content and storage and loss moduli, decreased the free sulfhydryl content of dough during the frozen storage and freeze-thaw cycles, and improved the microstructure of frozen dough and texture of the baked bread. The addition of GGP at 0.5% led to a dough having the highest extensibility, and most complete and uniform starch-gluten network, and a baked bread crumb with the lowest hardness, best texture, and most uniform organization. These results indicated that GGP has great potential as a food-derived cryoprotectant/antifreeze agent for the baking industry.
Collapse
Affiliation(s)
- Junjie Lin
- College of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Runmei Tang
- College of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Chun Cui
- College of Food Science and Technology, South China University of Technology, Guangzhou 510640, China; Guangdong Wei-Wei Biotechnology Co., Ltd, Guangzhou 510640, China.
| | - Wei Wang
- College of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Jian Xiong
- College of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|