1
|
Jabłońska M, Karpińska-Tymoszczyk M, Surma M, Narwojsz A, Reszka M, Błaszczak W, Sawicki T. Enrichment of shortcrust pastry cookies with bee products: polyphenol profile, in vitro bioactive potential, heat-induced compounds content, colour parameters and sensory changes. Sci Rep 2024; 14:23652. [PMID: 39384866 PMCID: PMC11464765 DOI: 10.1038/s41598-024-74811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Bee products, including bee pollen (BP) and bee bread (BB) are natural sources that contain a diverse range of bioactive compounds. The objective of this study was to investigate the potential of BP and BB to enhance the functional properties of shortcrust pastry cookies. The impact on BP and BB on the colour parameters, polyphenolic compounds content, heat-induced compounds content (acrylamide, furfural, 5-hydroxymethylfurfural (HMF)), antioxidant properties, and inhibitory effects against advanced glycation end products (AGEs) formation and acetylcholinesterase (AChE) activity was examine by enriching cookies with 3 and 10% of BP or BB. The incorporation of BP or BB resulted in a notable darkening of the cookies. The spectroscopic and chromatographic analyses revealed that the cookies enriched with bee products exhibited an elevated content of phenolic compounds. The antioxidant activity (AA) of the enriched cookies exhibited an average increase of 2- to 3-fold in the ABTS test and 2-fold in the DPPH test. All cookies exhibited inhibitory potential against AGEs formation, witch inhibitory rates ranging from 10.64 to 46.22% in the BSA-GLU model and 1.75-19.33% in BSA-MGO model. The cookies enriched with 10% BP were characterised by to the highest level of AChE activity inhibition (13.72%). The incorporation of BB and BP resulted in elevated concentration of acrylamide, furfural, and HMF. Our findings suggest that bee products may serve as a valuable addition to food ingredients, significantly enhancing the functional properties of shortcrust pastry cookies. However, further investigation is necessary to address the increased level of heat-induced compounds.
Collapse
Affiliation(s)
- Monika Jabłońska
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45F, 10-718, Olsztyn, Poland.
| | - Mirosława Karpińska-Tymoszczyk
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45F, 10-718, Olsztyn, Poland
| | - Magdalena Surma
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149, Kraków, Poland
| | - Agnieszka Narwojsz
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45F, 10-718, Olsztyn, Poland
| | - Mateusz Reszka
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45F, 10-718, Olsztyn, Poland
| | - Wioletta Błaszczak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Tomasz Sawicki
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45F, 10-718, Olsztyn, Poland.
| |
Collapse
|
2
|
Wang C, Wang Y, Song Y, Ren M, Gao Z, Ren J. Effect of onion skin powder on color, lipid, and protein oxidative stability of premade beef patty during cold storage. Sci Rep 2024; 14:20816. [PMID: 39242593 PMCID: PMC11379821 DOI: 10.1038/s41598-024-71265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
The impact of premade beef patty (BBP) with red onion skin powder (OSP) at 0, 1, 2, and 3% levels on color, lipid, and protein oxidative stability, and infection degree of microorganisms during cold storage was investigated. The objective was to determine the effect of color by L*, a*, b*, and the content of MetMb. The inhibitory effect of OSP on the oxidation of lipid and protein was studied based on TBARS and the carbonyl content of protein in samples at different storage times. TVB-N content was used to characterize the degree of infection of microorganisms and their effect on meat quality. The results showed that the addition of OSP reduced the pH, L *, a*, and b * values of BBP, and improved the hardness, springiness, gumminess, and cohesiveness of BBP, but had no significant effect on the chewiness of BBP (p > 0.05). After 12 days of storage, the carbonyl group and TBARS content in the BBP supplemented with 3%OSP was significantly lower than that in the control group (p < 0.05). Furthermore, the addition of OSP significantly inhibited the TVB-N increase during beef patty storage. These results indicated that OSP has a good research prospect as a natural antioxidant or preservative.
Collapse
Affiliation(s)
- Cuntang Wang
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, People's Republic of China.
- Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar, 161006, People's Republic of China.
| | - Yuqing Wang
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, People's Republic of China
- Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar, 161006, People's Republic of China
| | - Yang Song
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, People's Republic of China
- Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar, 161006, People's Republic of China
| | - Manni Ren
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, People's Republic of China
- Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar, 161006, People's Republic of China
| | - Zengming Gao
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, People's Republic of China
- Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar, 161006, People's Republic of China
| | - Jian Ren
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, People's Republic of China.
- Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar, 161006, People's Republic of China.
| |
Collapse
|
3
|
da Silva VT, Mateus N, de Freitas V, Fernandes A. Plant-Based Meat Analogues: Exploring Proteins, Fibers and Polyphenolic Compounds as Functional Ingredients for Future Food Solutions. Foods 2024; 13:2303. [PMID: 39063388 PMCID: PMC11275277 DOI: 10.3390/foods13142303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
As the lack of resources required to meet the demands of a growing population is increasingly evident, plant-based diets can be seen as part of the solution, also addressing ethical, environmental, and health concerns. The rise of vegetarian and vegan food regimes is a powerful catalyzer of a transition from animal-based diets to plant-based diets, which foments the need for innovation within the food industry. Vegetables and fruits are a rich source of protein, and bioactive compounds such as dietary fibres and polyphenols and can be used as technological ingredients (e.g., thickening agents, emulsifiers, or colouring agents), while providing health benefits. This review provides insight on the potential of plant-based ingredients as a source of alternative proteins, dietary fibres and antioxidant compounds, and their use for the development of food- and alternative plant-based products. The application of these ingredients on meat analogues and their impact on health, the environment and consumers' acceptance are discussed. Given the current knowledge on meat analogue production, factors like cost, production and texturization techniques, upscaling conditions, sensory attributes and nutritional safety are factors that require further development to fully achieve the full potential of plant-based meat analogues.
Collapse
Affiliation(s)
- Vasco Trincão da Silva
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana Fernandes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
4
|
Katırcıoğlu B, Navruz-Varlı S. Effects of different preparation and cooking processes on the bioactive molecules of Allium vegetables. Front Nutr 2024; 11:1350534. [PMID: 38962447 PMCID: PMC11220264 DOI: 10.3389/fnut.2024.1350534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Allium species are among the most widely cultivated vegetables for centuries for their positive effects on human health and their variety of uses in food preparation and cooking. Preparation and cooking processes create chemical changes that can affect the concentration and bioavailability of bioactive molecules. Understanding the changes in bioactive compounds and bioactive activities in Allium vegetables resulting from preparation and cooking processes is essential for better retention of these compounds and better utilization of their health benefits. This study aimed to investigate the effects of different preparation and cooking processes on the bioactive molecules of Allium vegetables. This review concludes that bioactive compounds in Allium vegetables are affected by each preparation and cooking process depending on variables including method, time, temperature. Owing to differences in the matrix and structure of the plant, preparation and cooking processes show different results on bioactive compounds and bioactive activities for different vegetables. Continued research is needed to help fill gaps in current knowledge, such as the optimal preparation and cooking processes for each Allium vegetable.
Collapse
Affiliation(s)
- Beyza Katırcıoğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye
| | - Semra Navruz-Varlı
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| |
Collapse
|
5
|
Djordjević M, Djordjević M, Starowicz M, Krupa-Kozak U. Plant-Based Antioxidants in Gluten-Free Bread Production: Sources, Technological and Sensory Aspects, Enhancing Strategies and Constraints. Antioxidants (Basel) 2024; 13:142. [PMID: 38397740 PMCID: PMC10886132 DOI: 10.3390/antiox13020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The recognized contribution of antioxidant compounds to overall health maintenance and spotted deficiencies in celiac patients' diets has driven more intensive research regarding antioxidant compounds' inclusion in gluten-free bread (GFB) production during the last decade. The presented review gathered information that provided insights into plant-based antioxidant sources which are applicable in GFB production through the resulting changes in the technological, sensory, and nutritional quality of the resulting antioxidant-enriched GFB. The influence of the bread-making process on the antioxidant compounds' content alteration and applied methods for their quantification in GFB matrices were also discussed, together with strategies for enhancing the antioxidant compounds' content, their bioaccessibility, and their bioavailability, highlighting the existing contradictions and constraints. The addition of plant-based antioxidant compounds generally improved the antioxidant content and activity of GFB, without a profound detrimental effect on its technological quality and sensory acceptability, and with the extent of the improvement being dependent on the source richness and the amount added. The determination of a pertinent amount and source of plant-based antioxidant material that will result in the production of GFB with desirable nutritional, sensory, and technological quality, as well as biological activity, remains a challenge to be combated by elucidation of the potential mechanism of action and by the standardization of quantification methods for antioxidant compounds.
Collapse
Affiliation(s)
- Marijana Djordjević
- Institute of Food Technology in Novi Sad, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Miljana Djordjević
- Institute of Food Technology in Novi Sad, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Małgorzata Starowicz
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Street, 10-748 Olsztyn, Poland; (M.S.); (U.K.-K.)
| | - Urszula Krupa-Kozak
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Street, 10-748 Olsztyn, Poland; (M.S.); (U.K.-K.)
| |
Collapse
|
6
|
Bueno C, Thys R, Tischer B. Potential Effects of the Different Matrices to Enhance the Polyphenolic Content and Antioxidant Activity in Gluten-Free Bread. Foods 2023; 12:4415. [PMID: 38137219 PMCID: PMC10742646 DOI: 10.3390/foods12244415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Gluten-related disorders, including celiac disease, wheat allergy, and non-celiac gluten sensitivity, have emerged as a significant phenomenon affecting people worldwide, with an estimated prevalence of nearly 5% globally. The only currently available treatment for this disease involves the exclusion of gluten from the diet, which is particularly challenging in the case of bakery products. Gluten-free bread (GFB) presents certain disadvantages when compared to traditional wheat bread, including inferior sensory attributes, technological characteristics, and lower protein and fiber content. Numerous studies have focused on strategies to improve these aspects of GFB. However, there are limited reviews regarding the content of the bioactive compounds of GFB, such as polyphenols. Polyphenols are molecules found in various foods that play a vital role in protecting the body against oxidative stress. This is particularly relevant for individuals with gluten intolerance or celiac disease, as they often experience increased oxidative stress and inflammation. Therefore, the objective of this review is to explore the use of different strategies for increasing the polyphenolic content and the antioxidant properties of GFB. Gluten-free cereals and pseudocereals are the most used matrices in GFB. Buckwheat can be a valuable matrix to enhance the nutritional profile and antioxidant properties of GFB, even more so when the whole grain is used. In the same way, the addition of various by-products can effectively increase the bioactive compounds and antioxidant activity of GFB. Furthermore, regarding the contribution of the phenolics to the bitterness, astringency, color, flavor, and odor of food, it is essential to analyze the sensory properties of these breads to ensure not only enriched in bioactive compounds, but also good consumer acceptance. In vitro studies are still in few number and are very important to execute to provide a better understanding of the bioactive compounds after their consumption.
Collapse
Affiliation(s)
| | - Roberta Thys
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (C.B.); (B.T.)
| | | |
Collapse
|
7
|
Bains A, Sridhar K, Singh BN, Kuhad RC, Chawla P, Sharma M. Valorization of onion peel waste: From trash to treasure. CHEMOSPHERE 2023; 343:140178. [PMID: 37714483 DOI: 10.1016/j.chemosphere.2023.140178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Globally, fruits and vegetables are consumed as raw, processed, or as an additive, accounting for approximately 50% of total food wastage. Among the fruits and vegetables, onion is well known for its potential bioactive components; however, peels of onion are a major concern for the environmental health and food industries. Effective utilization methods for valorizing the onion peel should be needed to develop value-added products, which are more eco-friendly, cost-effective, and sustainable. Therefore, this review attempts to emphasize the conventional and emerging valorization techniques for onion peel waste to generate value-added products. Several vital applications including anticancerous, antiobesity, antimicrobial, and anti-inflammatory activities are thoroughly discussed. The findings showed that the use of advanced technologies like ultrasound-assisted extraction, microwave-assisted extraction, and enzymatic extraction, demonstrated improved extraction efficiency and higher yield of bioactive compounds, which showed the anticancerous, antiobesity, antimicrobial, and anti-inflammatory properties. However, in-depth studies are recommended to elucidate the mechanisms of action and potential synergistic effects of the bioactive compounds derived from onion peel waste, and to promote the sustainable utilization of onion peel waste in the long-term.
Collapse
Affiliation(s)
- Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, 641021, India
| | - Brahma Nand Singh
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Ramesh Chander Kuhad
- Sharda School of Basic Sciences and Research, Sharda University, Greater Noida - 201310, Uttar Pradesh, India; DPG Institute of Management and Technology, Sector-34, Gurugram - 122004, Haryana, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Minaxi Sharma
- CARAH ASBL, Rue Paul Pastur, 11, Ath, 7800, Belgium.
| |
Collapse
|
8
|
Ozkan G, Günal-Köroğlu D, Capanoglu E. Valorization of fruit and vegetable processing by-products/wastes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 107:1-39. [PMID: 37898537 DOI: 10.1016/bs.afnr.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Fruit and vegetable processing by-products and wastes are of great importance due to their high production volumes and their composition containing different functional compounds. Particularly, apple, grape, citrus, and tomato pomaces, potato peel, olive mill wastewater, olive pomace and olive leaves are the main by-products that are produced during processing. Besides conventional techniques, ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid extraction (sub-critical water extraction), supercritical fluid extraction, enzyme-assisted extraction, and fermentation are emerging tools for the recovery of target compounds. On the other hand, in the view of valorization, it is possible to use them in active packaging applications, as a source of bioactive compound (oil, phenolics, carotenoids), as functional ingredients and as biofertilizer and biogas sources. This chapter explains the production of fruit and vegetable processing by-products/wastes. Moreover, the valorization of functional compounds recovered from the fruit and vegetable by-products and wastes is evaluated in detail by emphasizing the type of the by-products/wastes, functional compounds obtained from these by-products/wastes, their extraction conditions and application areas.
Collapse
Affiliation(s)
- Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey.
| | - Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
9
|
Günal-Köroğlu D, Turan S, Capanoglu E. Protein–phenolic interactions in lentil and wheat crackers with onion skin phenolics: effects of processing and in vitro gastrointestinal digestion. Food Funct 2023; 14:3538-3551. [PMID: 37009695 DOI: 10.1039/d2fo02885a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
This study aimed to evaluate the protein–phenolic interaction in functional crackers made of wheat/lentil flour with onion skin phenolics (onion skin powder: OSP, onion skin phenolic extract: OSE, or quercetin: Q) after in vitro gastrointestinal digestion.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey.
| | - Semra Turan
- Department of Food Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
10
|
Novel use of kitchen waste: protection of boiler quality steel from corrosion in acidic media using onion waste. CHEMICAL PAPERS 2023; 77:1107-1127. [PMID: 36312322 PMCID: PMC9589875 DOI: 10.1007/s11696-022-02549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022]
Abstract
An eco-friendly approach to inhibit the corrosion of boiler quality (BQ) steel by onion waste in acidic media was investigated. The extract from onion peel was characterized using the conventional extraction method and was characterized using HPLC. The efficacy of the onion peel extract (OPE) as a green corrosion inhibitor was studied using the weight loss method and a variety of electrochemical techniques, including open-circuit potential (OCP), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS). The Tafel polarization revealed that at 200 mg L-1 of onion peel extract (OPE), corrosion current density was reduced maximum in both 1 (M) HCl and 0.5 (M) H2SO4 media. From the electrochemical impedance spectroscopy studies, the maximum inhibition efficiencies of 91.30% and 90.71% were found at 200 mg L-1 in 1 (M) HCl and 0.5 (M) H2SO4, respectively. The Langmuir isotherm was determined to be the best-fitting model, and the thermodynamic parameter, such as free energy Δ G ads ∘ , was computed, which indicated the physisorption of OPE onto the BQ surface. In theoretical investigations, density functional theory DFT was used to determine the adsorption efficiency and reactive sites of the OPE molecule by exploring various quantum chemical parameters. Supplementary Information The online version contains supplementary material available at 10.1007/s11696-022-02549-7.
Collapse
|
11
|
Milk Thistle Oilseed Cake Flour Fractions: A Source of Silymarin and Macronutrients for Gluten-Free Bread. Antioxidants (Basel) 2022; 11:antiox11102022. [PMID: 36290745 PMCID: PMC9598143 DOI: 10.3390/antiox11102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
The utilization of plant by-products as functional food ingredients has received increasing attention in the last decade. One such by-product generated during milk thistle oil pressing is oilseed cakes, which could be used as a novel food ingredient. Therefore, the study aimed at investigating the effects of the addition of milk thistle oilseed cake (MTOC) flour fractions obtained via dry sieving, differing in particle size (unsieved; coarse: >710 µm; medium: 315−710 µm; and fine: <315 µm), on the quality of gluten-free bread and stability of silymarin during breadmaking. The 10% addition of the fractions into gluten-free bread increased the protein, fibre, fat, ash and silymarin content. The breads with the coarse fraction had the highest content of fibre, whereas the breads with the fine fraction excelled in protein, fat and ash content. The medium fraction was characterized as the richest source of silymarin, whilst the fine fraction was the poorest. Silymarin constituents were slightly released during dough rising but also partially decomposed during baking; moreover, silydianin was the most susceptible and degraded the most. The enriched breads had better sensory and textural properties compared to the control bread. The results suggest that MTOC flour fractions can improve the potential health benefits and nutritional profile of gluten-free bread.
Collapse
|
12
|
Sagar NA, Kumar Y, Singh R, Nickhil C, Kumar D, Sharma P, Om Pandey H, Bhoj S, Tarafdar A. Onion waste based-biorefinery for sustainable generation of value-added products. BIORESOURCE TECHNOLOGY 2022; 362:127870. [PMID: 36049716 DOI: 10.1016/j.biortech.2022.127870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Waste derived from the onion processing sector can be harnessed for the production of organic acids, polyphenols, polysachharides, biofuels and pigments. To sustainably utilize onion processing residues, different biorefinery strategies such as enzymatic hydrolysis, fermentation and hydrothermal carbonization have been widely investigated. This review discusses the recent advances in the biorefinery approaches used for valorization of onion processing waste followed by the production of different value-added products from diverse classes of onion waste. The review also highlights the current challenges faced by the bioprocessing sector for the utilization of onion processing waste and perspectives to tackle them.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Yogesh Kumar
- Department of Food Technology, Faculty of Science and Humanities, SRM University, Sonipat, Haryana 131 029, India
| | - Ramveer Singh
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand 249 404, India
| | - C Nickhil
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784 028, India
| | - Deepak Kumar
- Division of Food Technology, Department of Nutrition and Dietetics, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana 121 004, India
| | - Praveen Sharma
- Department of Botany, Rotary Institute of Management and Technology, Chandausi, Uttar Pradesh 244 412, India
| | - Hari Om Pandey
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Suvarna Bhoj
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India.
| |
Collapse
|
13
|
Kumar M, Barbhai MD, Hasan M, Dhumal S, Singh S, Pandiselvam R, Rais N, Natta S, Senapathy M, Sinha N, Amarowicz R. Onion (
Allium cepa
L.) peel: A review on the extraction of bioactive compounds, its antioxidant potential, and its application as a functional food ingredient. J Food Sci 2022; 87:4289-4311. [DOI: 10.1111/1750-3841.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 07/25/2022] [Accepted: 07/31/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division ICAR—Central Institute for Research on Cotton Technology Mumbai India
| | - Mrunal D Barbhai
- Chemical and Biochemical Processing Division ICAR—Central Institute for Research on Cotton Technology Mumbai India
| | - Muzaffar Hasan
- Agro Produce Processing Division ICAR—Central Institute of Agricultural Engineering Bhopal India
| | - Sangram Dhumal
- Division of Horticulture RCSM College of Agriculture Kolhapur India
| | - Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology Punjab University Chandigarh India
| | - Ravi Pandiselvam
- Division of Physiology, Biochemistry and Post‐Harvest Technology ICAR—Central Plantation Crops Research Institute (CPCRI) Kasaragod Kerala India
| | - Nadeem Rais
- Department of Pharmacy Bhagwant University Ajmer India
| | - Suman Natta
- ICAR—National Research Centre for Orchids Pakyong India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension College of Agriculture, Wolaita Sodo University Wolaita Sodo Ethiopia
| | - Neha Sinha
- Department of Horticulture Fruit and Fruit Technology Bihar Agriculture University Bhagalpur Bihar India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences Olsztyn Poland
| |
Collapse
|
14
|
Development of Functional Pizza Base Enriched with Jujube (Ziziphus jujuba) Powder. Foods 2022; 11:foods11101458. [PMID: 35627028 PMCID: PMC9141078 DOI: 10.3390/foods11101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Functional and enriched foods are increasingly in demand in the global market due to their benefits for human health and their prevention of several diseases. The aim of this work was to develop a functional pizza base, produced in the Neapolitan style, exploiting the beneficial properties of jujube. The jujube fruit is rich in phenolic compounds with high antioxidant activity and represents a good candidate for functional food development. The doughs were prepared by replacing the wheat flour with 2.5%, 5.0%, and 7.5% (w/w) of Ziziphus jujube powder (ZJP) and were subsequently cooked. Chemical analyses showed that both total phenolic compounds and antioxidant activity grew with the increase of ZJP. The addition of ZJP darkened the pizza base and raised its hardness, gumminess, and chewiness. However, no difference was found in the springiness and cohesiveness of the samples with or without ZJP. These results suggest that jujube powder can be successfully introduced into pizza dough as a functional ingredient.
Collapse
|
15
|
Villasante J, Espinosa-Ramírez J, Pérez-Carrillo E, Heredia-Olea E, Metón I, Almajano MP. Evaluation of non-extruded and extruded pecan (Carya illinoinensis) shell powder as functional ingredient in bread and wheat tortilla. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Sęczyk Ł, Król B, Kołodziej B. Wheat rolls fortified with Greek oregano ( Origanum vulgare ssp. hirtum (Link) Ietswaart) leaves – phytochemical changes during processing and simulated digestion, nutrient digestibility, and functional properties. Food Funct 2022; 13:7781-7793. [DOI: 10.1039/d2fo01350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fortification with Greek oregano affects in vitro bioaccessibility of phytochemicals, protein and starch digestibility, and functional properties of wheat rolls.
Collapse
Affiliation(s)
- Łukasz Sęczyk
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| | - Beata Król
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| | - Barbara Kołodziej
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| |
Collapse
|
17
|
Bhosale YK, Perumal T, Varghese SM, Vincent H, Ramachandran SV. Utilization of shallot bio-waste (Allium cepa L. var. aggregatum) fractions for the production of functional cookies. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Shallot harvesting and processing produce various waste streams, and the current study aims to investigate the effects of shallot bio-waste powder (SWP) substitution on different flour properties. Increased SWP to 50% substitution of stalk and petiole showed a rise in swelling capacity (43.33%) and water absorption (342.22%), and oil absorption (320.73%), respectively. Foaming capacity improved from 48.00% in control to 60.26% in 30% flower substitution and further decreases to 51.28% at 50%. Pasting properties reduced at higher SWP substitution and the highest drop in peak viscosity was observed at Stalk-50 (457.33 cP). Subsequently, developed functional cookies showed enhanced fiber, ash, total phenol, and total flavonoids with 3, 2, 7, and 5 fold, respectively. Cookies developed with higher substitution were of darker color and higher hardness and fracturability. Sensory evaluation with fuzzy analysis revealed better acceptance for stalk and petiole (10%) and peel (5%) of final cookies with elevated nutritional value.
Collapse
Affiliation(s)
- Yuvraj K. Bhosale
- Food Processing Business Incubation Centre , Indian Institute of Food Processing Technology, Ministry of Food Processing Industries, Government of India , Pudukkottai Road , Thanjavur 613005 , Tamil Nadu , India
| | - Thivya Perumal
- Food Processing Business Incubation Centre , Indian Institute of Food Processing Technology, Ministry of Food Processing Industries, Government of India , Pudukkottai Road , Thanjavur 613005 , Tamil Nadu , India
| | - Shery M. Varghese
- Food Processing Business Incubation Centre , Indian Institute of Food Processing Technology, Ministry of Food Processing Industries, Government of India , Pudukkottai Road , Thanjavur 613005 , Tamil Nadu , India
- Bharathidasan University , Tiruchirappalli , Tamil Nadu , India
| | - Hema Vincent
- Food Processing Business Incubation Centre , Indian Institute of Food Processing Technology, Ministry of Food Processing Industries, Government of India , Pudukkottai Road , Thanjavur 613005 , Tamil Nadu , India
| | - Sinija Vadakkepulppara Ramachandran
- Food Processing Business Incubation Centre , Indian Institute of Food Processing Technology, Ministry of Food Processing Industries, Government of India , Pudukkottai Road , Thanjavur 613005 , Tamil Nadu , India
| |
Collapse
|
18
|
Silva CT, Souza MC, Machado APDF, Nascimento RDP, Cunha DT, Bezerra RMN, Rostagno MA. Thermal stability and sensory evaluation of a bioactive extract from roasted coffee (
Coffea arabica
) beans added at increasing concentrations to conventional bread. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Camila Telles Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS) School of Applied Sciences (FCA) University of Campinas (UNICAMP) Limeira Brazil
| | - Mariana Corrêa Souza
- Multidisciplinary Laboratory of Food and Health (LabMAS) School of Applied Sciences (FCA) University of Campinas (UNICAMP) Limeira Brazil
| | | | | | - Diogo Thimoteo Cunha
- Multidisciplinary Laboratory of Food and Health (LabMAS) School of Applied Sciences (FCA) University of Campinas (UNICAMP) Limeira Brazil
| | - Rosângela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS) School of Applied Sciences (FCA) University of Campinas (UNICAMP) Limeira Brazil
| | - Mauricio Ariel Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS) School of Applied Sciences (FCA) University of Campinas (UNICAMP) Limeira Brazil
| |
Collapse
|
19
|
Preparation and characterization of chitosan-based antioxidant composite films containing onion skin ethanolic extracts. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Ou J. Incorporation of polyphenols in baked products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:207-252. [PMID: 34507643 DOI: 10.1016/bs.afnr.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bakery foods, including breads, cakes, cookies, muffins, rolls, buns, crumpets, pancakes, doughnuts, waffles, and bagels, etc., have been an important diet of humans for thousands of years. As the nutraceuticals with various biological activities, polyphenols, especially polyphenol-enriched products are widely used in bakery foods. The polyphenol-enriched products are mainly from fruits and vegetables, including fruits in whole, juice, puree, jam, and the powder of dried fruits, pomace, and peels. Incorporation of these products not only provide polyphenols, but also supply other nutrients, especially dietary fibers for bakery products. This chapter discussed the thermal stability of different types of polyphenols during baking, and the effect of polyphenols on the sensory attributes of baked foods. Moreover, their role in mitigation of reactive carbonyl species and the subsequent formation of advanced glycation end products, antioxidant and antimicrobial activities have been also discussed. Since polyphenols are subjected to high temperature for dozens of minutes during baking, future works need to focus on the chemical interactions of polyphenols and their oxidized products (quinones) with other food components, and the safety consequence of these interactions.
Collapse
Affiliation(s)
- Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou, China.
| |
Collapse
|
21
|
Fortification of multigrain flour with onion skin powder as a natural preservative: Effect on quality and shelf life of the bread. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100992] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Effect of By-Products from Selected Fruits and Vegetables on Gluten-Free Dough Rheology and Bread Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of the study was to investigate the effect of using various by-products (orange and apple pomace, tomato peel, pepper peel, prickly pear peel, and prickly pear seed peel) on the dough rheology and properties of gluten-free bread. The by-products were incorporated into a gluten-free bread formulation based on corn and chickpea flours (2/1 w/w). Different levels of each by-product (0, 2.5, 5, and 7.5% in the basic replacement) were tested. Wheat bread and gluten-free bread without the addition of by-products were used as controls. The results indicated that the by-products increased the maximum dough height, the total CO2 production, and CO2 retention coefficient compared to unenriched gluten-free dough. The highest K-value consistency coefficient was observed for the dough enriched with the prickly pear peel. The addition of by-products significantly improved (p < 0.0001) the specific volume of gluten-free bread, with values increasing from 1.48 to 2.50 cm3/g. The hierarchical cluster analysis and the constellation plot showed four groups: the wheat bread group, the second group containing the gluten-free control bread, the group with bread enriched by pomace, and the group with bread enriched with peels, exhibit the same effect on gluten-free bread and the peels exhibit the same effect on gluten-free bread.
Collapse
|
23
|
Cytotoxicity of adducts formed between quercetin and methylglyoxal in PC-12 cells. Food Chem 2021; 352:129424. [PMID: 33706136 DOI: 10.1016/j.foodchem.2021.129424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Quercetin (Que) or quercetin-containing food stuffs are widely incorporated in bakery foods for improving food texture and health effects, and scavenging reactive aldehydes, such as methylglyoxal (MGO) that exhibits various deleterious effects including contribution to neurodegeneration. This study aimed to investigate the cytotoxicity of the adducts formed between quercetin and MGO resulted from the incorporation of quercetin in foods. Two highly-purified adducts (Que-mono-MGO and Que-di-MGO) were found to display higher cytotoxicity than their precursor MGO and quercetin. They elevated apoptosis via upregulation of expression of apoptotic markers, including p-P38, cleaved caspase-9 and -3, and pro-apoptotic Bax. They induced mitochondrial dysfunction via decreasing mitochondrial membrane potential and increasing lactate dehydrogenase release. Moreover, they attenuated levels of p-Akt, Nrf2, NQO-1, and HO-1, proving that they induced neurodegeneration apoptosis through mitochondria-mediated signaling pathways (PI3K-Akt and Nrf2-HO-1/NQO-1). These findings indicated that the safety consequence of MGO after scavenged by polyphenols needs to be concerned.
Collapse
|
24
|
Baked red pepper (Capsicum annuum L.) powder flavor analysis and evaluation under different exogenous Maillard reaction treatment. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Gu R, Chang X, Bai G, Li X, Di Y, Liu X, Sun L, Wang Y. Effects of household cooking methods on changes of tissue structure, phenolic antioxidant capacity and active component bioaccessibility of quinoa. Food Chem 2021; 350:129138. [PMID: 33592364 DOI: 10.1016/j.foodchem.2021.129138] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 11/28/2022]
Abstract
The effects of four household cooking methods including germination (Ger), baking, normal pressure steaming (NPS) and high pressure steaming (HPS) treatments, on tissue structure, tocopherol, antioxidant capacity and active component (ferulic acid and tocopherol) bioaccessibility of different colored quinoa were investigated. The results showed that Ger increased the phenolic contents and antioxidant capacity, but decreased the contents of tocopherol. The steaming processes destroyed the tissue structure of quinoa to a large extent, causing a significant loss of phenolic/flavonoid components and the resultant decreased antioxidant capacity. The baking process had minimum impact on tissue structure and active components due to the protection of hypocotyl-radicle axis. Besides, through in vitro simulated digestion, Ger improved the bioaccessibility of ferulic acid, and steaming processes increased that of tocopherol. Conclusively, to develop the expected nutritional value of quinoa, several alternative cooking methods are provided according to the respective effects.
Collapse
Affiliation(s)
- Ruijuan Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiaowen Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Guotao Bai
- Hohhot Customs District People's Republic of China, Hohhot, PR China
| | - Xiang Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yan Di
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.
| |
Collapse
|
26
|
Miranda-Ramos KC, Haros CM. Combined Effect of Chia, Quinoa and Amaranth Incorporation on the Physico-Chemical, Nutritional and Functional Quality of Fresh Bread. Foods 2020; 9:foods9121859. [PMID: 33322832 PMCID: PMC7764627 DOI: 10.3390/foods9121859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
With regard to constant technological innovations in the bakery sector in order to increase bread nutritional value without affecting its technological and sensory characteristics, we applied pseudocereals/oilseeds to obtain an optimal formulation. A factorial design 33 was used and the independent factors were chia flour (levels: 0, 10, 20% flour basis), quinoa flour (levels: 0, 20, 40% flour basis), and amaranth flour (levels: 0, 20, 40% flour basis). Their effects and interactions were studied through the response surface methodology to optimise the bread formulation from a holistic viewpoint, which included the nutritional, technological and sensory characteristics. The optimum formulation with the highest quality was the blend made with 10, 4, and 20% of chia, quinoa, and amaranth, respectively. The results showed a significant increase in protein amount, ash, lipids, and crumb firmness compared to wheat bread. The calorie value of the control sample and the optimised formula were significantly similar, bearing in mind the high lipid amounts present in raw materials. Loaf-specific volume slightly decreased in comparison to control bread, as expected in formulations with gluten-free raw materials and a large amount of fibre. The optimised formula presented nutritionally/functionally higher indexes and similar overall acceptability to the control bread (p < 0.05).
Collapse
Affiliation(s)
- Karla Carmen Miranda-Ramos
- Faculty of Chemical Engineering, University of Guayaquil, Cdla. Universitaria Av. Delta y Av. Kennedy, Guayaquil 090514, Ecuador;
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
| | - Claudia Monika Haros
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
- Correspondence: ; Tel.: +34-963-900-022; Fax: +34-963-636-301
| |
Collapse
|
27
|
Sagar NA, Pareek S. Dough rheology, antioxidants, textural, physicochemical characteristics, and sensory quality of pizza base enriched with onion (Allium cepa L.) skin powder. Sci Rep 2020; 10:18669. [PMID: 33122789 PMCID: PMC7596091 DOI: 10.1038/s41598-020-75793-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022] Open
Abstract
In the present research, wheat flour was replaced with onion skin powder (OSP) in 2%, 3.5%, and 5% concentration along with control to produce different pizza base variants. Prepared pizza doughs and base were investigated for different quality parameters. Rheology revealed that increased concentration of OSP elevated the storage modulus (G') (solid nature) of pizza doughs. Colour measurement of both the doughs and pizza base exhibited lightness in control (L* 86.46 ± 0.39) and darkness in 5% OSP variant (L* 46.43 ± 0.69). Physicochemical investigation showed no significant difference however, a gradual increase was obtained in fiber, water, and oil holding capacity of pizza base. Texture properties showed that the addition of OSP imparted an increased trend of hardness i.e. 5% OSP variant had maximum hardness (14.87 ± 0.20 N). A higher level of total phenols, total flavonoids, and antioxidant activity was obtained in fortified products, which exhibits onion skin as a natural source of antioxidants for functional foods. Sensory evaluation revealed OSP 2% as the most accepted variant in terms of overall acceptability. The storage study of the pizza base revealed that controlled environment was the best-suited atmosphere for a longer shelf-life of pizza base.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Plot No. 97, Sector 56, HSIIDC Industrial Estate, Kundli, Sonipat, Haryana, 131028, India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Plot No. 97, Sector 56, HSIIDC Industrial Estate, Kundli, Sonipat, Haryana, 131028, India.
| |
Collapse
|
28
|
Onion Peel Powder as an Antioxidant-Rich Material for Sausages Prepared from Mechanically Separated Fish Meat. Antioxidants (Basel) 2020; 9:antiox9100974. [PMID: 33050661 PMCID: PMC7601044 DOI: 10.3390/antiox9100974] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
Mechanically separated fish meat (MSFM) can be used for the manufacturing of ready-to-eat products, such as sausages; however, it is highly perishable. Several plant by-products, including onion peel, which is rich in polyphenol antioxidants, can be added to food to extend shelf life. This study investigated the effects of the addition of onion peel powder (OPP) to sausage made from MSFM. Sausages were divided into four groups with different amounts of added OPP: 0% (control), 1%, 2%, and 3%. Cooked sausages were stored for 28 days at 5 °C. Samples were analyzed for thiobarbituric acid reactive substances, antioxidant activity, total polyphenol content, pH, and organoleptic properties. The addition of OPP significantly increased antioxidant activity and total polyphenol content and decreased pH, indicating acidic nature of OPP. Polyphenols from OPP effectively suppressed lipid oxidation. A 1–2% addition of OPP enhanced sensory properties. After the 28-day storage, the control samples received the lowest sensory score, due to the presence of a strong fishy odor, which was not present in samples with OPP. HPLC–MS/MS analysis revealed that quercetin is the most dominant compound in OPP. Overall, the results indicate that the addition of OPP in amounts of 1–2% can extend shelf life, without the deterioration of sensory properties.
Collapse
|