1
|
Zhao L, Wang L, Wang N, Gao X, Zhang B, Zhao Y, Wang N. Cooking Alters the Metabolites of Onions and Their Ability to Protect Nerve Cells from Lead Damage. Foods 2024; 13:3707. [PMID: 39594122 PMCID: PMC11593875 DOI: 10.3390/foods13223707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Onions (Allium cepa L.) are nutritious vegetables; however, variations in processing methods can influence their chemical composition and functional properties. Raw processing and cooking are the two main food-processing methods for onions, but it is not clear what kind of changes these two methods cause. In the present study, ultrahigh-resolution liquid chromatography-mass spectrometry (UHPLC-MS) was utilized to observe the changes in onion composition during cooking and to investigate the protective effects of raw and cooked onion extracts against lead damage in vitro and at the cellular level. Many compounds were identified, including amino acids, nucleosides, flavonoids, and organosulfur compounds. Cooking causes changes in the content of numerous amino acids (e.g., DL-glutamine) in onions and increases nucleoside content (e.g., 5'-S-methyl-5'-thioadenosine, adenine). Both raw and cooked onion extracts can reduce neuronal cell damage caused by lead exposure, but cooking increased the free radical scavenging (e.g., DPPH, ABTS, hydroxyl radicals) and chelating of lead ions (up to about 25%) of the onion extracts. In conclusion, cooking can cause changes in the chemical composition of onions and increase their antioxidant and lead chelating capacity.
Collapse
Affiliation(s)
- Li Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
| | - Liping Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
| | - Nan Wang
- College of Food Sciences and Engineering, Ningbo University, Ningbo 315211, China;
| | - Xinchang Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
| | - Bin Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China;
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Bazzaz S, Abbasi A, Ghotbabad AG, Pourjafar H, Hosseini H. Novel Encapsulation Approaches in the Functional Food Industry: With a Focus on Probiotic Cells and Bioactive Compounds. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10364-7. [PMID: 39367980 DOI: 10.1007/s12602-024-10364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Bioactive substances can enhance host health by modulating biological reactions, but their absorption and utilization by the body are crucial for positive effects. Encapsulation of probiotics is rapidly advancing in food science, with new approaches such as 3D printing, spray-drying, microfluidics, and cryomilling. Co-encapsulation with bioactives presents a cost-effective and successful approach to delivering probiotic components to specific colon areas, improving viability and bioactivity. However, the exact method by which bioactive chemicals enhance probiotic survivability remains uncertain. Co-crystallization as an emerging encapsulation method improves the physical characteristics of active components. It transforms the structure of sucrose into uneven agglomerated crystals, creating a porous network to protect active ingredients. Likewise, electrohydrodynamic techniques are used to generate fibers with diverse properties, protecting bioactive compounds from harsh circumstances at ambient temperature. Electrohydrodynamic procedures are highly adaptable, uncomplicated, and easily expandable, resulting in enhanced product quality and functionality across various food domains. Furthermore, food byproducts offer nutritional benefits and technical potential, aligning with circular economy principles to minimize environmental impact and promote economic growth. Hence, industrialized nations can capitalize on the growing demand for functional foods by incorporating these developments into their traditional cuisine and partnering with businesses to enhance manufacturing and production processes.
Collapse
Affiliation(s)
- Sara Bazzaz
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atiyeh Ghafouri Ghotbabad
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Henao-Ardila A, Quintanilla-Carvajal MX, Moreno FL. Emulsification and stabilisation technologies used for the inclusion of lipophilic functional ingredients in food systems. Heliyon 2024; 10:e32150. [PMID: 38873677 PMCID: PMC11170136 DOI: 10.1016/j.heliyon.2024.e32150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
Food industry is increasingly using functional ingredients to improve the food product quality. Lipid-containing functional ingredients are important sources of nutrients. This review examines the current state of emulsification and stabilisation technologies for incorporating lipophilic functional ingredients into food systems. Lipophilic functional ingredients, such as omega-3 fatty acids, carotenoids, and fat-soluble vitamins, offer numerous health benefits but present challenges due to their limited solubility in water-based food matrices. Emulsification techniques enable the dispersion of these ingredients in aqueous environments, facilitating their inclusion in a variety of food products. This review highlights recent advances in food emulsion formulation, emulsification methods and stabilisation techniques which, together, improve the stability and bioavailability of lipophilic compounds. The role of various emulsifiers, stabilizers, and encapsulation materials in enhancing the functionality of these ingredients is also explored. Furthermore, the review discusses different stabilisation techniques which can yield in emulsion in a solid or liquid state. By providing a comprehensive overview of current technologies, this review aims to guide future research and application in the development of functional foods enriched with lipophilic ingredients.
Collapse
Affiliation(s)
- Alejandra Henao-Ardila
- Doctorate in Biosciences, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - María Ximena Quintanilla-Carvajal
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Fabián Leonardo Moreno
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| |
Collapse
|
4
|
Nejatian M, Ghandehari Yazdi AP, Fattahi R, Saberian H, Bazsefidpar N, Assadpour E, Jafari SM. Improving the storage and oxidative stability of essential fatty acids by different encapsulation methods; a review. Int J Biol Macromol 2024; 260:129548. [PMID: 38246446 DOI: 10.1016/j.ijbiomac.2024.129548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Linoleic acid and α-linolenic acid are the only essential fatty acids (EFAs) known to the human body. Other fatty acids (FAs) of the omega-6 and omega-3 families originate from linoleic acid and α-linolenic acid, respectively, by the biological processes of elongation and desaturation. In diets with low fish consumption or vegetarianism, these FAs play an exclusive role in providing two crucial FAs for maintaining our body's vital functions; docosahexaenoic acid and arachidonic acid. However, these polyunsaturated FAs are inherently sensitive to oxidation, thereby adversely affecting the storage stability of oils containing them. In this study, we reviewed encapsulation as one of the promising solutions to increase the stability of EFAs. Accordingly, five main encapsulation techniques could be classified: (i) spray drying, (ii) freeze drying, (iii) emulsification, (iv) liposomal entrapment, and (v) other methods, including electrospinning/spraying, complex coacervation, etc. Among these, spray drying was the frequently applied technique for encapsulation of EFAs, followed by freeze dryers. In addition, maltodextrin and gum Arabic were the main wall materials in carriers. Paying attention to industrial scalability and lower cost of the encapsulation process by the other methods are the important aspects that should be given more attention in the future.
Collapse
Affiliation(s)
- Mohammad Nejatian
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran; Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Pouya Ghandehari Yazdi
- Department of Research and Development, Zarmacaron Company, Zar Industrial and Research Group, Alborz, Iran.
| | - Reza Fattahi
- Department of Research and Development, Zarmacaron Company, Zar Industrial and Research Group, Alborz, Iran
| | - Hamed Saberian
- Technical Centre of Agriculture, Academic Center for Education, Culture and Research (ACECR), Isfahan University of Technology, Isfahan, Iran
| | - Nooshin Bazsefidpar
- Department of Research and Development, Zarmacaron Company, Zar Industrial and Research Group, Alborz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
5
|
Anand V, Ksh V, Kar A, Varghese E, Vasudev S, Kaur C. Encapsulation efficiency and fatty acid analysis of chia seed oil microencapsulated by freeze-drying using combinations of wall material. Food Chem 2024; 430:136960. [PMID: 37531916 DOI: 10.1016/j.foodchem.2023.136960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
Chia seed oil (CSO) was encapsulated using whey protein concentrate (WPC) and modified tapioca starch (MTS) through freeze-drying. A central composite design was used to evaluate the effect of independent variables (MTS:WPC ratio, homogenization pressure, and oil content). Encapsulation efficiency (EE) and α-linolenic acid content (ALA) were evaluated for all runs. The results showed that higher MTS ratios led to maximum ALA retention, while higher WPC ratios led to maximum EE. The optimized conditions resulted in high EE (97 %), ALA content (59.54 %), and a Ω-3:Ω-6 ratio (3.34). The fatty acid composition, oxidative and thermal stability showed that the MTS:WPC ratio of 25:75 was the best combination for encapsulating CSO. The encapsulated CSO with a balanced Ω-3:Ω-6 ratio can be used as a functional ingredient in foods for health benefits.
Collapse
Affiliation(s)
- Vishnu Anand
- Division of Food Science & Post Harvest Technology, ICAR-IARI, New Delhi 110012, India
| | - Vikono Ksh
- Division of Food Science & Post Harvest Technology, ICAR-IARI, New Delhi 110012, India
| | - Abhijit Kar
- ICAR - National Institute of Secondary Agriculture, Namkum, Ranchi 834010, India.
| | - Eldho Varghese
- Fishery Resources Assessment Division (FRAD), ICAR-Central Marine Fisheries Research Institute, Kochi 682018, India
| | - Sujata Vasudev
- Division of Genetics, ICAR-IARI, New Delhi 110012, India
| | - Charanjit Kaur
- Division of Food Science & Post Harvest Technology, ICAR-IARI, New Delhi 110012, India.
| |
Collapse
|
6
|
Henao-Ardila A, Quintanilla-Carvajal MX, Santagapita PR, Caldas-Abril M, Bonilla-Bravo V, Moreno FL. Effect of wall material on lipophilic functional compounds of high oleic palm oil emulsions encapsulated by Refractance Window drying. Heliyon 2023; 9:e21499. [PMID: 38027781 PMCID: PMC10651459 DOI: 10.1016/j.heliyon.2023.e21499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
High-oleic palm oil is a food-grade oil with desirable properties, as it is characterised by having an oleic acid concentration above 50 % and a high vitamin E and provitamin A content. This study investigated the effect of different combinations of two wall materials (whey protein (WP) and Capsul®, a commercial octenyl succinic anhydride modified starch (OSA-MS)) on the concentration of provitamin A, vitamin E and oleic acid, and the physical properties of high oleic palm oil emulsions encapsulated by Refractance Window drying technology. Wall material composition significantly affected (p < 0.05) all response variables, and R2 values were above 0.75 for all responses. Phytonutrient preservation showed its highest at an OSA-MS: WP concentration ratio of 1: 3. Optimal results were achieved (minimum moisture content, water activity and hygroscopicity, and maximum encapsulation efficiency and phytonutrient preservation) at an OSA-MS concentration of 8.13 % and WP concentration of 91.87 %. Flakes were obtained as a solid structure that protects oil's phytonutrients with 94 %, 75 % and 87 % of preservation of oleic acid, vitamin E and carotenoids, respectively. It shows that the wall material combination and encapsulation technique are suitable for obtaining lipophilic functional compounds.
Collapse
Affiliation(s)
- Alejandra Henao-Ardila
- Doctorate in Biosciences, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - María Ximena Quintanilla-Carvajal
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Patricio Román Santagapita
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica & CIHIDECAR (Centro de Investigaciones en Hidratos de Carbono, CONICET-UBA), Buenos Aires, Argentina
| | - Miguel Caldas-Abril
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Valentina Bonilla-Bravo
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Fabián Leonardo Moreno
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| |
Collapse
|
7
|
Li W, Li W, Wan Y, Zhou T, Wang L. Thymol-loaded Zein-pectin composite nanoparticles as stabilizer to fabricate Pickering emulsion of star anise essential oil for improved stability and antimicrobial activity. J Food Sci 2023; 88:3807-3819. [PMID: 37530639 DOI: 10.1111/1750-3841.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 08/03/2023]
Abstract
The aim of the present study was to prepare a new antimicrobial Pickering emulsion of which the star anise essential oil was added to the oil phase, and to investigate the effect of stabilization by bio-based active nanoparticles consisting of zein and pectin loaded with thymol. First, the thymol-loaded zein/pectin composite nanoparticles (ZTNPs) were fabricated as uniformly distributed spherical nanoparticles with an average diameter of 200 nm through antisolvent precipitation. Second, the effects of nanoparticles' concentration, oil phase ratio, and storage time on the stability of emulsions were explored according to particle size potential, interfacial tension, rheology, and micromorphology. Finally, the antibacterial results showed that Pickering emulsion inhibited Escherichia coli and Staphylococcus aureus compared to the control group by nearly 7 log colony-forming unit/g at 36 h, which was twice as much as the inhibition by thymol or star anise essential oils and ZTNPs. Therefore, the proposed Pickering emulsion with star anise essential oil could be used as a green and safe plant-derived antimicrobial agent in the food industry.
Collapse
Affiliation(s)
- Wei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Wenqing Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Yulian Wan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Tao Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Longfeng Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| |
Collapse
|
8
|
Yang D, Yao X, Wang L, Xu K, Li D, Liu N, Midgley A, Liu D, Katsuyoshi N. Physicochemical stability of Pickering emulsion stabilized with spherical and fibrous iron ions loaded whey protein isolate/gum Arabic complexes. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Pickering Emulsions as Vehicles for Bioactive Compounds from Essential Oils. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227872. [PMID: 36431978 PMCID: PMC9693335 DOI: 10.3390/molecules27227872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Pickering emulsions are emulsion systems stabilized by solid particles at the interface of oil and water. Pickering emulsions are considered to be natural, biodegradable, and safe, so their applications in various fields-such as food, cosmetics, biomedicine, etc.-are very promising, including as a vehicle for essential oils (EOs). These oils contain volatile and aromatic compounds and have excellent properties, such as antifungal, antibacterial, antiviral, and antioxidant activities. Despite their superior properties, EOs are prone to evaporation, decompose when exposed to light and oxygen, and have low solubility, limiting their industrial applications. Several studies have shown that EOs in Pickering emulsions displays less sensitivity to evaporation and oxidation, stronger antibacterial activity, and increased solubility. In brief, the application of Pickering emulsions for EOs is interesting to explore. This review discusses recent progress in the application of Pickering emulsions, particularly as EO carriers, drug carriers, antioxidant and antimicrobial carriers, and in active packaging.
Collapse
|
10
|
Optimization of Wall Material Composition for Production of Spray-dried Sacha Inchi Oil Microcapsules with Desirable Physicochemical Properties. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Xie S, Qu P, Luo S, Wang C. Potential uses of milk proteins as encapsulation walls for bioactive compounds: A review. J Dairy Sci 2022; 105:7959-7971. [PMID: 36028346 DOI: 10.3168/jds.2021-21127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 05/11/2022] [Indexed: 11/19/2022]
Abstract
Milk proteins have received much awareness due to their bioactivity. However, their encapsulation functions have not attracted enough attention. Milk proteins as encapsulation walls can increase the bioavailability of bioactive compounds. As the benefits of bioactive compounds are critically determined by bioavailability, the effect of interactions between milk proteins and active substances is a critical topic. In the present review, we summarize the effects of milk proteins as encapsulation walls on the bioavailability of active substances with a special focus. The methods and mechanisms of interactions between milk proteins and active substances are also discussed. The evidence collected in the present review suggests that when active substances are encapsulated by milk proteins, the bioavailability of active substances can be significantly affected. This review also provides valuable guidelines for the use of milk protein-based microcarriers.
Collapse
Affiliation(s)
- Siyu Xie
- Inner Mongolia YiLi Industrial Group Co. Ltd., Hohhot, China 010110; Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China 010110
| | - Peng Qu
- Inner Mongolia YiLi Industrial Group Co. Ltd., Hohhot, China 010110; Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China 010110
| | - Shubo Luo
- Inner Mongolia YiLi Industrial Group Co. Ltd., Hohhot, China 010110; Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China 010110
| | - Caiyun Wang
- Inner Mongolia YiLi Industrial Group Co. Ltd., Hohhot, China 010110; Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China 010110.
| |
Collapse
|
12
|
Suwannasang S, Zhong Q, Thumthanaruk B, Vatanyoopaisarn S, Uttapap D, Puttanlek C, Rungsardthong V. Physicochemical properties of yogurt fortified with microencapsulated Sacha Inchi oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
López-Pedrouso M, Lorenzo JM, Moreira R, Franco D. Potential applications of Pickering emulsions and high internal phase emulsions (HIPEs) stabilized by starch particles. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Mesquita Magalhães Costa A, Rachel Antunes Gaspar B, Calado V, Valeriano Tonon R, Guedes Torres A. Microencapsulation of pomegranate (Punica granatum L.) seed oil by complex coacervation: Stability and application in an instant caffè latte beverage. Food Chem 2022; 381:132199. [PMID: 35121320 DOI: 10.1016/j.foodchem.2022.132199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022]
Abstract
Pomegranate seed oil (PSO) is rich in highly oxidizable bioactive conjugated linolenic acids (cLnA), limiting food applications. This study aimed to investigate the oxidative stability (room temperature for 90 days; 60 °C, for 10 days, vacuum-sealed or not), physical and morphological properties of PSO microparticles produced by complex coacervation (CC). An instant caffè latte beverage was formulated with PSO microparticles (30%) as a proof-of-application vehicle for the microparticles and physical properties were evaluated. CC was compared with spray drying. Although non-coacervated microparticles showed superior oxidative stability, coacervated microparticles were overall stable for 60 days and cLnA retention reduced 42% after γ-tocopherol exhaustion. Coacervated microparticles' structure was collapsed after 90 days. Storage under vacuum increased the oxidative stability at 60 °C. Microparticles showed high solubility and thermal stability, addition to the product promoted negligible changes in physical properties. This study brings new insights regarding cLnA stability and PSO application in food.
Collapse
Affiliation(s)
- André Mesquita Magalhães Costa
- Laboratório de Bioquímica Nutricional e de Alimentos and Laboratório de Bioquímica de Lipídios e Lipidômica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Bruna Rachel Antunes Gaspar
- Laboratório de Bioquímica Nutricional e de Alimentos and Laboratório de Bioquímica de Lipídios e Lipidômica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Verônica Calado
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Alexandre Guedes Torres
- Laboratório de Bioquímica Nutricional e de Alimentos and Laboratório de Bioquímica de Lipídios e Lipidômica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Guerra-Vázquez CM, Martínez-Ávila M, Guajardo-Flores D, Antunes-Ricardo M. Punicic Acid and Its Role in the Prevention of Neurological Disorders: A Review. Foods 2022; 11:252. [PMID: 35159404 PMCID: PMC8834450 DOI: 10.3390/foods11030252] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Millions of people worldwide are affected by neurodegenerative diseases (NDs). NDs are characterized by progressive damage and death of nerve cells accompanied by high levels of inflammatory biomarkers and oxidative stress conditions. Punicic acid, the main bioactive component of pomegranate (Punica granatum) seed oil, is an omega-5 isomer of conjugated α-linoleic acid that has shown strong anti-oxidative and anti-inflammatory effects that contributes towards its positive effect against a wide arrange of diseases. Punicic acid decreases oxidative damage and inflammation by increasing the expression of peroxisome proliferator-activated receptors. In addition, it can reduce beta-amyloid deposits formation and tau hyperphosphorylation by increasing the expression of GLUT4 protein and the inhibition of calpain hyperactivation. Microencapsulated pomegranate, with high levels of punicic acid, increases antioxidant PON1 activity in HDL. Likewise, encapsulated pomegranate formulations with high levels of punicic acid have shown an increase in the antioxidant PON1 activity in HDL. Because of the limited brain permeability of punicic acid, diverse delivery formulations have been developed to enhance the biological activity of punicic acid in the brain, diminishing neurological disorders symptoms. Punicic acid is an important nutraceutical compound in the prevention and treatment of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease.
Collapse
Affiliation(s)
| | | | | | - Marilena Antunes-Ricardo
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey C.P. 64849, NL, Mexico; (C.M.G.-V.); (M.M.-Á.); (D.G.-F.)
| |
Collapse
|
16
|
The Improved Properties of Zein Encapsulating and Stabilizing Sacha Inchi Oil by Surfactant Combination of Lecithin and Tween 80. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02706-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Cortez-Trejo M, Wall-Medrano A, Gaytán-Martínez M, Mendoza S. Microencapsulation of pomegranate seed oil using a succinylated taro starch: Characterization and bioaccessibility study. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Akbarbaglu Z, Peighambardoust SH, Sarabandi K, Jafari SM. Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. Food Chem 2021; 359:129965. [PMID: 33975145 DOI: 10.1016/j.foodchem.2021.129965] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 12/16/2022]
Abstract
Spray-drying is known as a common and economical technique for the encapsulation of various nutrients and bioactive compounds. However, shear and thermal tensions during atomization and dehydration, as well as physicochemical instability during storage, result in a loss of these compounds. As a solution, bioactives are stabilized into different carriers, among which proteins and peptides are of particular importance due to their functional properties, surface activity, and film/shell formability around particles. Given the importance of stabilization of bioactive compounds during spray drying, this paper focuses on the role of composition and type of carriers, as well as the characteristics and efficiency of various protein-based carriers in the encapsulation and maintaining of physicochemical, structural, and functional properties, along with biological activity of bioactive compounds (e.g., oleoresins, sterols, polyphenols, anthocyanins, carotenoids, probiotics, and peptides), and nutrients (e.g., vitamins, fatty acids and minerals) alone or in combination with other biopolymers.
Collapse
Affiliation(s)
- Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Khashayar Sarabandi
- Department of Food Science & Technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
19
|
Comunian TA, Silva MP, Souza CJ. The use of food by-products as a novel for functional foods: Their use as ingredients and for the encapsulation process. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Whey protein isolate-gelatin nanoparticles enable the water-dispersibility and potentialize the antioxidant activity of quinoa oil (Chenopodium quinoa). PLoS One 2020; 15:e0240889. [PMID: 33125402 PMCID: PMC7598505 DOI: 10.1371/journal.pone.0240889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022] Open
Abstract
The quinoa oil presents benefits to health, but its low water dispersibility in the aqueous matrix and instability of bioactive compounds is challenging for food application. This study performed the physicochemical and chemical characterization of quinoa oil and evaluated its water dispersibility and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity after nanoencapsulation in porcine gelatin and combination with whey protein isolate by emulsification O/W technique. Thus, three formulations were obtained: 1) OG-containing quinoa oil and porcine gelatin in aqueous phase 2; 2) OWG1-containing quinoa oil, whey protein isolate, and porcine gelatin in aqueous phase 2; and 3) OWG2-containing quinoa oil and whey protein isolate in aqueous phase 1, and porcine gelatin in aqueous phase 2. The oil characterization showed that quinoa oil presented the predominance of linoleic acid (53.4%), and concentration of alpha and gamma-tocopherol, respectively, of 8.56 and 6.28 mg.100g-1. All formulations presented a smooth surface without depression or cracking, an average diameter between 165.77 and 529.70 nm. Fourier transform infrared spectroscopy indicated chemical interaction between the encapsulating agents and the oil in all formulations, being more intensified in OWG1 and OWG2. Based on this, these formulations showed higher dispersibility in aqueous solution [68% (3.48) and 71% (2.97)]. This resulted in higher antioxidant activity for OWG1 and OWG2, showing the amounts that reduces antioxidant activity by 50% equal to 5.30 (0.19) mg/mL and 5.54 (0.27) mg/mL, respectively, compared to quinoa oil [13.36 (0.28) mg/mL] (p < 0.05). Thus, quinoa oil nanoencapsulation proved to be an efficient alternative to enable water-dispersibility and enhance antioxidant activity, increasing its potential for application in the food industry.
Collapse
|