1
|
Zhang YH, Lei PD, Ding Y, Zhai XT, Wan XC, Li WX, Zhang Y, Lv HP, Lin Z, Zhu Y. Uncovering characteristic and enantiomeric distribution of volatile components in Huangshan Maofeng and Zhejiang baked green teas. Food Chem 2025; 465:142001. [PMID: 39581079 DOI: 10.1016/j.foodchem.2024.142001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024]
Abstract
Huangshan Maofeng (HSMF) is a famous baked green tea from the Anhui Province of China, known for its "clean and fresh" flavor. Zhejiang, another major tea-producing province, focuses on the production of green teas. This study aimed to analyze the characteristic aroma components and specific enantiomeric distribution of significant chiral volatile compounds in HSMF and Zhejiang baked green tea (ZJ-BGT) with respect to their origins, cultivars and grades using stir bar sorptive extraction combined with non-targeted gas chromatography-mass spectrometry (GC-MS) and enantiomeric GC-MS approaches. Unique enantiomeric distributions were identified for 2-methylbutanal, γ-nonanolactone, jasmine lactone, α-pinene, cis-linalool oxide (furanoid), and linalool in HSMF and ZJ-BGT. Furthermore, the concentrations of hexanal, cis-3-hexenyl butyrate, geraniol, and the enantiomeric ratio of R-α-terpineol demonstrated a positive correlation with the HSMF grade. Additionally, S-jasmine lactone and R-γ-nonanolactone present in HSMF, along with S-linalool found in ZJ-BGT, significantly contribute to the flavor quality of their respective teas.
Collapse
Affiliation(s)
- Yu-Hui Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Pan-Deng Lei
- Tea Research Institution, Anhui Academy of Agricultural Sciences, Huangshan 245000, China.
| | - Yong Ding
- Tea Research Institution, Anhui Academy of Agricultural Sciences, Huangshan 245000, China.
| | - Xiao-Ting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Xiao-Chun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Wei-Xuan Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Yue Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Hai-Peng Lv
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Zhi Lin
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Yin Zhu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
2
|
Tao M, Guo W, Liang J, Liu Z. Unraveling the key cooked off-flavor compounds in thermally sterilized green tea beverages, and masking effect of tea raw material baking. Food Chem 2025; 464:141671. [PMID: 39423534 DOI: 10.1016/j.foodchem.2024.141671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/13/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
The occurrence of the cooked off-flavor during the thermal sterilization of green tea beverages negatively impacts their quality. This study aimed to identify the key cooked off-flavor compounds by molecular sensory science. The increase of 12 compounds, including malty (e.g., 3-methylbutanal), floral (e.g., linalool), sweet (e.g., methional), and smoky (2-methoxy-4-vinylphenol) compounds, contributed to the development of the cooked off-flavor. Additionally, the loss of five aroma compounds-dimethyl sulfide, (E)-β-ionone, 2-methylbutanal, 1-penten-3-one, and (E,Z)-2,6-nonadienal-also caused the emergence this undesirable flavor. One potential solution to reduce the cooked off-flavor was the baking of tea raw materials. While baking did not significantly reduce the concentration of off-flavor compounds, it led to an increase in eight roasty aroma compounds, such as pyrazines and pyrroles, which helped partially mask the cooked off-flavor in green tea beverages.
Collapse
Affiliation(s)
- Meng Tao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Wenli Guo
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Jin Liang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhengquan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
3
|
Mao YL, Wang JQ, Wang F, Cao QQ, Yin JF, Xu YQ. Effect of different drying temperature settings on the color characteristics of Tencha. Food Chem X 2024; 24:101963. [PMID: 39582648 PMCID: PMC11584762 DOI: 10.1016/j.fochx.2024.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Color is critical factor in the commercialization of Matcha. In this study, sensory evaluation, color difference analysis, as well as targeted and non-targeted analyses were employed to investigate the impact of different drying temperature settings on the color characteristics of Tencha. The findings revealed that compared to a single drying temperature setting, a two-stage or multi-stage drying process more effectively preserved the color quality of Tencha. Specifically, a setting involving an initial period of high-temperature drying followed by low-temperature drying (samples T_6, T_7, T_10, and T_13) resulted in superior tea color quality, characterized by higher chlorophyll content and lower levels of lutein and β-carotene. Chemometric analysis identified chlorophylls and their derivatives (chlorophyll a/b, pheophytin a/b, pyropheophytin a/b) as the key factors influencing Tencha's color. These results can provide valuable insights for optimizing tea processing methods to enhance quality.
Collapse
Affiliation(s)
- Ya-Lin Mao
- Modern Agricultural institute, Jiaxing Vocational & Technical College, Jiaxing 314036, China
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Jie-Qiong Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Fang Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Qing-Qing Cao
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| |
Collapse
|
4
|
Wang JQ, Gao Y, Feng ZH, Deng SH, Chen JX, Wang F, Li YF, Zhang YB, Yin JF, Zeng L, Zhou WB, Xu YQ. Chemometrics and sensomics-assisted identification of key odorants responsible for retort odor in shelf-stored green tea infusion: A case study of Biluochun. Food Res Int 2024; 195:114953. [PMID: 39277260 DOI: 10.1016/j.foodres.2024.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
The deterioration of aroma quality in tea beverages during the shelf life is a significant issue. In this study, sensomics techniques were employed to identify the characteristic factor contributing to aroma degradation in green tea infusion. Samples A (no/faint retort odor) and B (high intensity retort odor) were selected based on their retort-like odor intensity after heat treatment simulating shelf-life conditions. The key odorants were identified through a combination of chemometrics analysis, comparative aromatic extract dilution analysis (cAEDA), detection frequency analysis (DFA), and odor-specific magnitude estimation (OSME). Subsequently, eight odorants, including linalool (892.451 μg/L), (E)-β-damascenone (5.105 μg/L), phenylacetaldehyde (27.720 μg/L), nonanal (2201.439 μg/L), α-terpineol (7.166 μg/L), geraniol (0.499 μg/L), theaspirane (0.044 μg/L), and 2-hydroxy-5-methylacetophenone (2.973 μg/L), were identified as the key substances contributing to the retort-like odor in sample B. Aroma recombination and omission test further demonstrated that elevated concentrations of nonanal, geraniol, phenylacetaldehyde, and theaspirane might be the primary reasons for the retort odor observed in samples.
Collapse
Affiliation(s)
- Jie-Qiong Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China; College of Food Science, Southwest University, Chongqing 400715, China
| | - Ying Gao
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China.
| | - Zhi-Hui Feng
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Si-Han Deng
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Jian-Xin Chen
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Fang Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Yi-Fan Li
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Ying-Bin Zhang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Wei-Biao Zhou
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, 117542 Singapore, Singapore
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China.
| |
Collapse
|
5
|
Wang JQ, Tang BM, Gao Y, Chen JX, Wang F, Yin JF, Zeng L, Zhou WB, Xu YQ. Impact of heat treatment on the flavor stability of Longjing green tea beverages: Metabolomic insights and sensory correlations. Food Res Int 2024; 193:114867. [PMID: 39160050 DOI: 10.1016/j.foodres.2024.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024]
Abstract
The flavor stability of tea beverages during storage has long been a concern. The study aimed to explore the flavor stability of Longjing green tea beverage using accelerated heat treatment trials, addressing the shortage of lengthy storage trials. Sensory evaluations revealed changes in bitterness, umami, overall harmonization, astringency, and ripeness as treatment duration increased. Accompanied by a decrease in L-values, ΔE and an increase in a and b-values. Seventeen non-volatile metabolites and three volatile metabolites were identified differential among samples by metabolomics, with subsequent correlation analysis indicating associations between sensory attributes and specific metabolites. Umami was linked to epigallocatechin 3,5-digallate and alpha-D-glucopyranose, astringency was correlated with ellagic acid and 1-ethyl-1H-pyrrole. Ripeness showed associations with ellagic acid, 6,7-dihydroxycoumarin, heptanal, and benzaldehyde, and overall harmonization was linked to 6,7-dihydroxycoumarin, β-myrcene, α-terpineol, and heptanal. A series of verification tests confirmed the feasibility of accelerated heat treatment trials to replace traditional storage trials. These results offer valuable insights into unraveling the complex relationship between sensory and chemical profiles of green tea beverages.
Collapse
Affiliation(s)
- Jie-Qiong Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China; College of Food Science, Southwest University, Chongqing 400715, China
| | - Bang-Ming Tang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Ying Gao
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Jian-Xin Chen
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Fang Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Wei-Biao Zhou
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, 117542 Singapore, Singapore
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China.
| |
Collapse
|
6
|
An Y, Qiao D, Jing T, Li S. Extensive ICP-MS and HPLC-QQQ detections reveal the content characteristics of main metallic elements and polyphenols in the representative commercial tea on the market. Front Nutr 2024; 11:1450348. [PMID: 39188975 PMCID: PMC11345263 DOI: 10.3389/fnut.2024.1450348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The content of polyphenols and metal elements in tea has an important impact on the choice of consumers. In this study, we conducted a comparative analysis of ten elements including Fe, Mg, Al, Zn, Cu, Mn, Ni, Cr, Pb, and As in 122 representative tea samples from 20 provinces. The results showed that the difference of metal content among six tea categories was greater than that among provinces, and the overall metal content of black tea was relatively higher. The contents of all elements from high to low were: Mg > Mn > Al > Fe > Zn > Cu > Ni > Cr > Pb > As. The contents of Ni, Fe, Al, Zn and Mn showed significant differences among multiple types of tea categories. While the detection rates of Pb and As were 10.7 and 24.6%, respectively. The contents of all elements were in line with the national limit standards. Meanwhile, the relative contents of theanine, caffeine and a total of 53 polyphenolic compounds in 122 tea samples were detected. The analysis showed that the content of these compounds differed least between green and yellow tea, and the largest difference between black tea and oolong tea. This study provides important support for consumers to choose tea rationally.
Collapse
Affiliation(s)
- Yanlin An
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Dahe Qiao
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shize Li
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
- College of Life Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
Liang S, Gao Y, Granato D, Ye JH, Zhou W, Yin JF, Xu YQ. Pruned tea biomass plays a significant role in functional food production: A review on characterization and comprehensive utilization of abandon-plucked fresh tea leaves. Compr Rev Food Sci Food Saf 2024; 23:e13406. [PMID: 39030800 DOI: 10.1111/1541-4337.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/18/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
Tea is the second largest nonalcoholic beverage in the world due to its characteristic flavor and well-known functional properties in vitro and in vivo. Global tea production reaches 6.397 million tons in 2022 and continues to rise. Fresh tea leaves are mainly harvested in spring, whereas thousands of tons are discarded in summer and autumn. Herein, pruned tea biomass refers to abandon-plucked leaves being pruned in the non-plucking period, especially in summer and autumn. At present, no relevant concluding remarks have been made on this undervalued biomass. This review summarizes the seasonal differences of intrinsic metabolites and pays special attention to the most critical bioactive and flavor compounds, including polyphenols, theanine, and caffeine. Additionally, meaningful and profound methods to transform abandon-plucked fresh tea leaves into high-value products are reviewed. In summer and autumn, tea plants accumulate much more phenols than in spring, especially epigallocatechin gallate (galloyl catechin), anthocyanins (catechin derivatives), and proanthocyanidins (polymerized catechins). Vigorous carbon metabolism induced by high light intensity and temperature in summer and autumn also accumulates carbohydrates, such as soluble sugars and cellulose. The characteristics of abandon-plucked tea leaves make them not ideal raw materials for tea, but suitable for novel tea products like beverages and food ingredients using traditional or hybrid technologies such as enzymatic transformation, microbial fermentation, formula screening, and extraction, with the abundant polyphenols in summer and autumn tea serving as prominent flavor and bioactive contributors.
Collapse
Affiliation(s)
- Shuang Liang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
8
|
Sun L, Wen S, Zhang S, Li Q, Cao J, Chen R, Chen Z, Zhang Z, Li Z, Li Q, Lai Z, Sun S. Study on flavor quality formation in green and yellow tea processing by means of UPLC-MS approach. Food Chem X 2024; 22:101342. [PMID: 38665631 PMCID: PMC11043817 DOI: 10.1016/j.fochx.2024.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Yellow tea (YT) has an additional process of yellowing before or after rolling than green tea (GT), making YT sweeter. We analyzed the variations of composition and taste throughout the withering, fixing and rolling steps using UPLC-MS/MS and sensory evaluation, and investigated the influence of various yellowing times on flavor profile of YT. 532 non-volatile metabolites were identified. Withering and fixing were the important processes to form the taste quality of GT. Withering, fixing and yellowing were important processes to form flavor profile of YT. Withering mainly regulated bitterness and astringency, and fixing mainly regulated bitterness, astringency and sweetness of YT and GT. Yellowing mainly regulated sweetness of YT. Trans-4-hydroxy-L-proline and glutathione reduced form as the key characteristic components of YT, increased significantly during yellowing mainly through Arginine and proline metabolism and ABC transporters. The paper offers a systematic insight into intrinsic mechanisms of flavor formation in YT and GT.
Collapse
Affiliation(s)
- Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Suwan Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
- College of Food Science/Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Zhongzheng Chen
- College of Food Science/Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, China
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Zhigang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| |
Collapse
|
9
|
Hu Y, Chen W, Gouda M, Yao H, Zuo X, Yu H, Zhang Y, Ding L, Zhu F, Wang Y, Li X, Zhou J, He Y. Fungal fermentation of Fuzhuan brick tea: A comprehensive evaluation of sensory properties using chemometrics, visible near-infrared spectroscopy, and electronic nose. Food Res Int 2024; 186:114401. [PMID: 38729704 DOI: 10.1016/j.foodres.2024.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
Fuzhuan brick tea (FBT) fungal fermentation is a key factor in achieving its unique dark color, aroma, and taste. Therefore, it is essential to develop a rapid and reliable method that could assess its quality during FBT fermentation process. This study focused on using electronic nose (e-nose) and spectroscopy combination with sensory evaluations and physicochemical measurements for building machine learning (ML) models of FBT. The results showed that the fused data achieved 100 % accuracy in classifying the FBT fermentation process. The SPA-MLR method was the best prediction model for FBT quality (R2 = 0.95, RMSEP = 0.07, RPD = 4.23), and the fermentation process was visualized. Where, it was effectively detecting the degree of fermentation relationship with the quality characteristics. In conclusion, the current study's novelty comes from the established real-time method that could sensitively detect the unique post-fermentation quality components based on the integration of spectral, and e-nose and ML approaches.
Collapse
Affiliation(s)
- Yan Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Wei Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Nutrition and Food Science, National Research Centre, Dokki, Gizah 12622, Egypt
| | - Huan Yao
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xinxin Zuo
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Huahao Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yuying Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lejia Ding
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Fengle Zhu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Jihong Zhou
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Ma YY, Wang JQ, Gao Y, Cao QQ, Wang F, Chen JX, Feng ZH, Yin JF, Xu YQ. Effect of the type of brewing water on the sensory and physicochemical properties of light-scented and strong-scented Tieguanyin oolong teas. Food Chem X 2024; 21:101099. [PMID: 38235347 PMCID: PMC10792187 DOI: 10.1016/j.fochx.2023.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
Variations in the quality of brewing water profoundly impact tea flavor. This study systematically investigated the effects of four common water sources, including pure water (PW), mountain spring water (MSW), mineral water (MW) and natural water (NW) on the flavor of Tieguanyin tea infusion. Brewing with MW resulted in a flat taste and turbid aroma, mainly due to the low leaching of tea flavor components and complex interactions with mineral ions (mainly Ca2+, Mg2+). Tea infusions brewed with NW exhibited the highest relative contents of total volatile compounds, while those brewed with PW had the lowest. NW and MSW, with moderate mineralization, were conducive to improving the aroma quality of tea infusion and were more suitable for brewing both aroma types of Tieguanyin. These findings offer valuable insights into the effect of brewing water on the sensory and physicochemical properties of oolong teas.
Collapse
Affiliation(s)
- Yuan-Yuan Ma
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie-Qiong Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Qing-Qing Cao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Fang Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Jian-Xin Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Zhi-Hui Feng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| |
Collapse
|
11
|
Xu Y, Wang J, Wu Z, Huang J, Li Z, Xu J, Long D, Ye T, Wang G, Yin J, Luo Z, Xu Y. The role of glutathione in stabilizing aromatic volatile organic compounds in Rougui Oolong tea: A comprehensive study from content to mechanisms. Food Chem 2024; 437:137802. [PMID: 37866345 DOI: 10.1016/j.foodchem.2023.137802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Chinese Oolong tea is widely known for its intricate aroma. However, the degradation of volatile organic compounds (VOCs) poses significant challenges for the tea products. In this study, glutathione (GSH) has an excellent preservation effect on VOCs in both the VOCs extract and the tea infusion during storage, specifically slowing the degradation of hexanal (by 66.39% and 35.09%) and heptanal (by 67.46% and 63.50%). Additionally, the addition of GSH maintained higher levels of active ingredients in tea infusion, including epigallocatechin, procyanidin B1, glutamic acid, and L-(+)-arginine, with respective increases of 184.09, 2.92, 4.10, and 6.35 times. The sulfhydryl group of GSH formed a covalent bond with hexanal and 2-methylbutanal, therefore improving the stability of VOCs. These findings provided a valuable insight for developing effective VOC preservation techniques for water-based tea products.
Collapse
Affiliation(s)
- Yanqun Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, People's Republic of China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; Food Research Institute, Ever Maple Food Science and Technology Co., Ltd., Hangzhou 311200, People's Republic of China
| | - Jieqiong Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, People's Republic of China
| | - Ziqing Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jing Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhenbiao Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jiayi Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Dan Long
- Food Research Institute, Ever Maple Food Science and Technology Co., Ltd., Hangzhou 311200, People's Republic of China
| | - Tian Ye
- Food Research Institute, Ever Maple Food Science and Technology Co., Ltd., Hangzhou 311200, People's Republic of China
| | - Gennv Wang
- Food Research Institute, Ever Maple Food Science and Technology Co., Ltd., Hangzhou 311200, People's Republic of China
| | - Junfeng Yin
- Food Research Institute, Ever Maple Food Science and Technology Co., Ltd., Hangzhou 311200, People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Yongquan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, People's Republic of China.
| |
Collapse
|
12
|
Wang X, He C, Cui L, Liu Z, Liang J. Effects of Different Expansion Temperatures on the Non-Volatile Qualities of Tea Stems. Foods 2024; 13:398. [PMID: 38338533 PMCID: PMC10855559 DOI: 10.3390/foods13030398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Tea stems are a type of tea by-product, and a considerable amount of them is discarded during picking, with their value often being overlooked. To enhance the utilization of tea stems, we investigated the effects of different expansion temperatures on the non-volatile compounds of tea stems. The results showed that the contents of EC, EGC, EGCG, tea polyphenols, and amino acids all decreased with the expansion temperature, while the contents of GA and C increased. The best effect was observed at 220 °C for 20 s. Additionally, as the temperature increased, the umami and aftertaste of astringency values of tea stems decreased, and the value of bitterness increased. Meanwhile, the value of sweetness decreased first and then increased. EGC was identified as the key differential compound of tea stems at different temperatures. In this investigation, determining the optimum expansion temperature was deemed advantageous for enhancing the flavor quality of tea stems, consequently elevating the utilization efficacy of tea stems and tea by-products.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Changxu He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Leyin Cui
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhengquan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jin Liang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
13
|
Lu X, Lin Y, Tuo Y, Liu L, Du X, Zhu Q, Hu Y, Shi Y, Wu L, Lin J. Optimizing Processing Techniques of Oolong Tea Balancing between High Retention of Catechins and Sensory Quality. Foods 2023; 12:4334. [PMID: 38231828 DOI: 10.3390/foods12234334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/19/2024] Open
Abstract
Catechins are the major flavor substances in teas, which have a variety of health effects; however, high catechin and high sensory quality are a pair of contradictions that are difficult to coordinate. To explore the processing procedure with high catechins and high sensory quality, a single-factor processing experiment was carried out over the processing production of oolong tea. Combined with orthogonal partial least square discriminant analysis (OPLS-DA), correlation analysis, and principal component analysis (PCA), the optimal production procedure for oolong tea is as follows: red light withering for 8 h, leaf rotating for 10 min with a total standing time for 8 h, drum roasting for 5 min at 290 °C, low-temperature rolling (flattening at 4 °C for 5 min, without pressure for 1 min and under pressure for 5 min), microwave drying (800 W for 7.5 min). This study demonstrates a significant increase in the retention of catechins, which contributes to the mellow and brisk tastes of oolong tea, addressing the challenge of catechin content and sensory quality. Our study provides a novel insight into the relationship between the oolong tea processing and flavor formation.
Collapse
Affiliation(s)
- Xiaofeng Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanyan Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanming Tuo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijia Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxin Du
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunfei Hu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yutao Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
14
|
Wang S, Chen X, Wang E, Zhang Y, Tang Y, Wei Y, He W. Comparison of Pivot Profile (PP), Rate-All-That-Apply (RATA), and Pivot-CATA for the sensory profiling of commercial Chinese tea products. Food Res Int 2023; 173:113419. [PMID: 37803757 DOI: 10.1016/j.foodres.2023.113419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 10/08/2023]
Abstract
Rapid sensory profiling methods relying on consumers' perceptions are getting prevalent and broadly utilized by labs and companies to supersede conventional sensory profiling methodologies. Till now, various intensity-based sensory methods such as the newly proposed Pivot-Check-All-That-Apply (CATA) are limitedly developed and compared. In this investigation, Pivot Profile (PP), Rate-All-That-Apply (RATA), and Pivot-CATA methods were applied and validated using tea consumers and commercial Chinese tea products as samples. Data from three approaches were collected, analyzed by correspondence analysis (CA), and used to compare the three methods assessing the panel assessment process, sensory maps, confidence ellipses, and practical applications. Pivot-CATA exhibited a high similarity with RATA (RV = 0.873), and a lower similarity with PP (RV = 0.629). Of the three intensity-related methods, confidence ellipses on the RATA sensory map were the smallest and overlapped the least. However, Pivot-CATA consumed less time in collecting data and its questionnaire was more friendly to participants compared with PP and made the difference in intensity of samples more noticeable to the participants than RATA due to the existence of the pivot sample. Its experimental versatility also allows for a wide range of applications, indicating that the Pivot-CATA is an approach with great promise for routine use.
Collapse
Affiliation(s)
- Shiqin Wang
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China
| | - Xinlei Chen
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China
| | - Enze Wang
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China
| | - Yifang Zhang
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China
| | - Yihang Tang
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China
| | - Yujia Wei
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China
| | - Wenmeng He
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China.
| |
Collapse
|
15
|
Wang D, Wang C, Su W, Lin CC, Liu W, Liu Y, Ni L, Liu Z. Characterization of the Key Aroma Compounds in Dong Ding Oolong Tea by Application of the Sensomics Approach. Foods 2023; 12:3158. [PMID: 37685091 PMCID: PMC10486682 DOI: 10.3390/foods12173158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The Dong Ding oolong tea (DDT), grown and produced in Taiwan, is widely appreciated for its unique flavor. Despite its popularity, research on the aroma components of DDT remains incomplete. To address this gap, this study employed a sensomics approach to comprehensively characterize the key aroma compounds in DDT. Firstly, sensory evaluation showed that DDT had a prominent caramel aroma. Subsequent analysis using gas chromatography-olfactory mass spectrometry (GC-O-MS) and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF-MS) identified a total of 23 aroma-active compounds in DDT. Notably, three pyrazine compounds with roasted notes, namely 2-ethyl-5-methylpyrazine, 2-ethyl-3,5-dimethylpyrazine, and 2,3-diethyl-5-methylpyrazine, along with seven floral- and fruit-smelling compounds, namely 6-methyl-5-hepten-2-one, 3,5-octadien-2-one, linalool, (E)-linalool oxide, geraniol, (Z)-jasmone, and (E)-nerolidol, were identified as the key aroma compounds of DDT. Omission experiments further validated the significant contribution of the three pyrazines to the caramel aroma of DDT. Moreover, the content of 2-ethyl-3,5-dimethylpyrazine, 2,3-diethyl-5-methylpyrazine, (Z)-jasmone, 6-methyl-5-hepten-2-one and 2-ethyl-5-methylpyrazine was found to be higher in the high-grade samples, while (E)-nerolidol, linalool, geraniol and 3,5-octadien-2-one were found to be more abundant in the medium-grade samples. These findings provide valuable information for a better understanding of the flavor attributes of DDT.
Collapse
Affiliation(s)
- Daoliang Wang
- Institute of Food Science and Technology, Fuzhou University, Fuzhou 350108, China; (D.W.); (C.W.); (W.S.); (L.N.)
| | - Cainan Wang
- Institute of Food Science and Technology, Fuzhou University, Fuzhou 350108, China; (D.W.); (C.W.); (W.S.); (L.N.)
- Fujian Institute of Food Science and Technology, Fuzhou 350108, China
| | - Weiying Su
- Institute of Food Science and Technology, Fuzhou University, Fuzhou 350108, China; (D.W.); (C.W.); (W.S.); (L.N.)
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 300150, China;
| | - Wei Liu
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou 350108, China;
| | - Yuan Liu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Li Ni
- Institute of Food Science and Technology, Fuzhou University, Fuzhou 350108, China; (D.W.); (C.W.); (W.S.); (L.N.)
| | - Zhibin Liu
- Institute of Food Science and Technology, Fuzhou University, Fuzhou 350108, China; (D.W.); (C.W.); (W.S.); (L.N.)
| |
Collapse
|
16
|
Li Y, Yu S, Yang S, Ni D, Jiang X, Zhang D, Zhou J, Li C, Yu Z. Study on taste quality formation and leaf conducting tissue changes in six types of tea during their manufacturing processes. Food Chem X 2023; 18:100731. [PMID: 37397192 PMCID: PMC10314197 DOI: 10.1016/j.fochx.2023.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
This study fristly investigated the taste quality formation and leaf conducting tissue changes in six types of Chinese tea (green, black, oolong, yellow, white, and dark) made from Mingke No.1 variety. Non-targeted metabolomics showed the vital manufacturing processes (green tea-de-enzyming, black tea-fermenting, oolong tea-turning-over, yellow tea-yellowing, white tea-withering, and dark tea-pile-fermenting) were highly related to their unique taste formation, due to different fermentation degree in these processes. After drying, the retained phenolics, theanine, caffeine, and other substances significantly impacted each tea taste quality formation. Meanwhile, the tea leaf conducting tissue structure was significantly influenced by high processing temperature, and the change of its inner diameter was related to moisture loss during tea processing, as indicated by its significant different Raman characteristic peaks (mainly cellulose and lignin) in each key process. This study provides a reference for process optimization to improve tea quality.
Collapse
Affiliation(s)
- Yuchuan Li
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Songhui Yu
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Shuya Yang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Dejiang Ni
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Xinfeng Jiang
- Jiangxi Institute of Cash Crops /The Key Laboratory of Tea Quality and Safety Control in Jiangxi Province, Nanchang 330203, People's Republic of China
| | - De Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Jirong Zhou
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Chunlei Li
- Agricultural College, Weifang University of Science & Technology, Weifang, Shandong 262700, People's Republic of China
| | - Zhi Yu
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
17
|
Li Y, Zhang J, Jia H, Pan Y, Xu YQ, Wang Y, Deng WW. Metabolite analysis and sensory evaluation reveal the effect of roasting on the characteristic flavor of large-leaf yellow tea. Food Chem 2023; 427:136711. [PMID: 37390734 DOI: 10.1016/j.foodchem.2023.136711] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Roasting is essential for processing large-leaf yellow tea (LYT). However, the effect of the roasting on the metabolic and sensory profiles of LYT remains unknown. Herein, the metabolomics and sensory quality of LYT at five roasting degrees were evaluated by liquid/gas chromatography mass spectrometry and quantitative descriptive analysis. A higher degree of roasting resulted in a significantly stronger crispy rice, fried rice, and smoky-burnt aroma (p < 0.05), which is closely associated with heterocyclic compound accumulation (concentrations: 6.47 ± 0.27 - 1065.00 ± 5.58 µg/g). Amino acids, catechins, flavonoid glycosides and N-ethyl-2-pyrrolidone-substituted flavan-3-ol varied with roasting degree. The enhancement of crispy-rice and burnt flavor coupled with the reduction of bitterness and astringency. Correlations analysis revealed the essential compounds responsible for roasting degree, including 2,3-diethyl-5-methylpyrazine, hexanal, isoleucine, N-ethyl-2-pyrrolidone-substituted flavan-3-ol (EPSF), and others. These findings provide a theoretical basis for improving the specific flavors of LYT.
Collapse
Affiliation(s)
- Yifan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
| | - Huiyan Jia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
| | - Yue Pan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China.
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China.
| |
Collapse
|
18
|
Jin G, Zhu Y, Cui C, Yang C, Hu S, Cai H, Ning J, Wei C, Li A, Hou R. Tracing the origin of Taiping Houkui green tea using 1H NMR and HS-SPME-GC-MS chemical fingerprints, data fusion and chemometrics. Food Chem 2023; 425:136538. [PMID: 37300997 DOI: 10.1016/j.foodchem.2023.136538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/17/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
The narrow geographical traceability of green tea is both important and challenging. This study aimed to establish multi-technology metabolomic and chemometric approaches to finely discriminate the geographic origins of green teas. Taiping Houkui green tea samples were analyzed by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry and 1H NMR of polar (D2O) and non-polar (CDCl3). Common dimension, low-level and mid-level data fusion approaches were tested to verify if the combination of several analytical sources can improve the classification ability of samples from different origins. In assessments of tea from six origins, the single instrument data test set results in 40.00% to 80.00% accuracy. Data fusion improved single-instrument performance classification with mid-level data fusion to obtain 93.33% accuracy in the test set. These results provide comprehensive metabolomic insights into the origin of TPHK fingerprinting and open up new metabolomic approaches for quality control in the tea industry.
Collapse
Affiliation(s)
- Ge Jin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Yuanyuan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chuanjian Cui
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chen Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Shaode Hu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Huimei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Aoxia Li
- Anhui Lanxiang Houkui Tea Co., Ltd., Huangshan, Anhui 245703, China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
19
|
Tang MG, Zhang S, Xiong LG, Zhou JH, Huang JA, Zhao AQ, Liu ZH, Liu AL. A comprehensive review of polyphenol oxidase in tea (Camellia sinensis): Physiological characteristics, oxidation manufacturing, and biosynthesis of functional constituents. Compr Rev Food Sci Food Saf 2023; 22:2267-2291. [PMID: 37043598 DOI: 10.1111/1541-4337.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 04/14/2023]
Abstract
Polyphenol oxidase (PPO) is a metalloenzyme with a type III copper core that is abundant in nature. As one of the most essential enzymes in the tea plant (Camellia sinensis), the further regulation of PPO is critical for enhancing defensive responses, cultivating high-quality germplasm resources of tea plants, and producing tea products that are both functional and sensory qualities. Due to their physiological and pharmacological values, the constituents from the oxidative polymerization of PPO in tea manufacturing may serve as functional foods to prevent and treat chronic non-communicable diseases. However, current knowledge of the utilization of PPO in the tea industry is only available from scattered sources, and a more comprehensive study is required to reveal the relationship between PPO and tea obviously. A more comprehensive review of the role of PPO in tea was reported for the first time, as its classification, catalytic mechanism, and utilization in modulating tea flavors, compositions, and nutrition, along with the relationships between PPO-mediated enzymatic reactions and the formation of functional constituents in tea, and the techniques for the modification and application of PPO based on modern enzymology and synthetic biology are summarized and suggested in this article.
Collapse
Affiliation(s)
- Meng-Ge Tang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng Zhang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Li-Gui Xiong
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing-Hui Zhou
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Jian-An Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Ai-Qing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhong-Hua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Ai-Ling Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
20
|
Jiang Z, Han Z, Zhu M, Wan X, Zhang L. Effects of thermal processing on transformation of polyphenols and flavor quality. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
21
|
Song F, Xiang H, Li Z, Li J, Li L, Fang Song C. Monitoring the baking quality of Tieguanyin via electronic nose combined with GC-MS. Food Res Int 2023; 165:112513. [PMID: 36869452 DOI: 10.1016/j.foodres.2023.112513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Roasting is extremely important for Tieguanyin oolong tea production because it strongly affects its chemical composition and sensory quality. In addition, there were significant differences in the preference for roasted tea among different people. However, the effect of roasting degree on the aroma characteristics and flavor quality of Tieguanyin tea is still unclear. To further study this, an electronic nose combined with gas chromatography-mass spectrometry (GC-MS) was used to monitor the baking process of Tieguanyin. The physicochemical indexes, sensory quality, and odor characteristics of the tea leaves subjected to different roasting conditions were measured. The increase in the roasting degree caused a decrease in the amount of taste substances such as tea polyphenols, catechins, and amino acids and a sharp increase in the phenol to ammonia ratio. Sensory evaluation results showed that moderate roasting could help improve the quality of the tea leaves. The results obtained using the electronic nose and GC-MS showed that there were substantial differences in the volatile substances, and 103 flavor compounds were highly correlated with the aroma characteristics of roasted tea with different roasting degrees. In addition, the electronic nose combined with various classification models could better distinguish tea leaves with different roasting degrees. Among them, the accuracy of the RF training set and prediction set reached>98.44%. The results of this study will aid in comprehensively monitoring the effects of the baking process on the flavor, chemical composition, and aroma of Tieguanyin as well as in distinguishing Tieguanyin tea leaves with different qualities.
Collapse
Affiliation(s)
- Feihu Song
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hao Xiang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Zhenfeng Li
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jing Li
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Luqing Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China.
| | - Chun Fang Song
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
22
|
Effect of β-glucosidase on the aroma of liquid-fermented black tea juice as an ingredient for tea-based beverages. Food Chem 2023; 402:134201. [DOI: 10.1016/j.foodchem.2022.134201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022]
|
23
|
Comparative analysis of different grades of Tieguanyin oolong tea based on metabolomics and sensory evaluation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Yang C, Cui C, Zhu Y, Xia X, Jin G, Liu C, Li Y, Xue X, Hou R. Effect of brewing conditions on the chemical and sensory profiles of milk tea. Food Chem X 2022; 16:100453. [PMID: 36185102 PMCID: PMC9516450 DOI: 10.1016/j.fochx.2022.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 01/18/2023] Open
Abstract
The brewing conditions of beverage milk tea determine the taste of milk tea. This study investigated the changes in sensory characteristics and small molecule compounds in milk tea made from large-leaf yellow tea under different brewing conditions by sensory analysis, colorimeter, and LC-MS. The results show that the tea to milk ratio is the most important process affecting the taste, and the color values of b* (+yellow, - blue) can be used to evaluate the taste of milk tea made from large leaf yellow tea. The composition of small molecular compounds is affected by tea to milk ratio, which can change the taste of milk tea. l-cysteine and 8-methylsulfinyloctyl glucosinolate are significantly positively correlated with taste by metabolomics analysis. l-cysteine was used to verify the analysis results by LC-MS. The total acceptance of milk tea is improved by adding l-cysteine at a low level (0.025-0.035 mM).
Collapse
Affiliation(s)
| | | | - Yuanyuan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Key Lab of Food Nutrition and Safety, Anhui Agricultural University, Hefei 230036, China
| | - Xinyu Xia
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Key Lab of Food Nutrition and Safety, Anhui Agricultural University, Hefei 230036, China
| | - Ge Jin
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Key Lab of Food Nutrition and Safety, Anhui Agricultural University, Hefei 230036, China
| | - Cunjun Liu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Key Lab of Food Nutrition and Safety, Anhui Agricultural University, Hefei 230036, China
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Key Lab of Food Nutrition and Safety, Anhui Agricultural University, Hefei 230036, China
| | - Xiuheng Xue
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Key Lab of Food Nutrition and Safety, Anhui Agricultural University, Hefei 230036, China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Key Lab of Food Nutrition and Safety, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
25
|
Ultrasonication Effects on Quality of Tea-Based Beverages. BEVERAGES 2022. [DOI: 10.3390/beverages9010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tea is the most popular consumed drink after water. Teas and tea-based beverages have grown in popularity due to bioactive compounds. Tea-based beverages have started to take their place in the market. Extraction is a crucial step for the production of functional tea-based beverages. Compared to conventional methods, ultrasound is attractive due to its lower energy requirements, and shorter extraction time. This review aimed to discuss recent marketing aspects of tea-based beverages as well as the potential and challenges of a novel infusion technique. This review describes the health benefits and technological aspects of tea-based beverages in relation to how to best solve nutritional and microbial concerns. Current and future challenges and opportunities of the novel infusion technique and its scaling-up for the extraction of bioactive compounds are also covered in the present review.
Collapse
|
26
|
Yang P, Wang H, Cao Q, Song H, Xu Y, Lin Y. Aroma-active compounds related to Maillard reaction during roasting in Wuyi Rock tea. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Study on the color effects of (-)-epigallocatechin-3-gallate under different pH and temperatures in a model beverage system. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Yang Y, Zhao X, Wang R. Research progress on the formation mechanism and detection technology of bread flavor. J Food Sci 2022; 87:3724-3736. [PMID: 35894512 DOI: 10.1111/1750-3841.16254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
With a long history of fermentation technology and rich flavors, bread is widely consumed by people all around the world. The consumer market is huge and the demand is wide. However, the formation mechanism of bread baking flavor has not been completely defined. In order to improve the breadmaking process and the quality of bread, the main flavor substances produced in bread baking, the formation mechanism, and the detection technology of bread baking flavor are carefully summarized in this paper. The generation conditions and formation mechanism of flavor substances during the bread baking process are expounded, and the limitations of some current bread flavor detection technologies are proposed, which will provide theoretical basis for effectively regulating the generation of flavor substances in the bread baking process and making bread with good flavor and rich nutrition in the future.
Collapse
Affiliation(s)
- Yuxia Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, China
| | - Xiuhong Zhao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, China
| | - Rong Wang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, China
| |
Collapse
|
29
|
Zeng Z, Jiang Y, Ma C, Chen J, Zhang X, Lin J, Liu Y, Guo J. Numerical Analysis on Heat Characteristics of the Ventilation Basket for Fresh Tea Leaves. Foods 2022; 11:foods11152178. [PMID: 35892763 PMCID: PMC9330920 DOI: 10.3390/foods11152178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
Plastic baskets are commonly used as containers for fresh tea leaves during storage and transport after harvest. Nevertheless, there are significant challenges in controlling the core temperature of the basket since fresh tea leaves still maintain a certain degree of respiration after being harvested, with extremely high temperatures being the major factor for the color change of fresh tea leaves. A numerical model was developed to improve the temperature control of the plastic basket, by which the influence of different structural parameters on the core temperature in the plastic baskets with fresh tea leaves was analyzed. The accuracy of the model in predicting airflow and temperature distributions was validated against experimental data. The maximum RMSE was 1.158 °C and the maximum MRE was 5.410% between the simulated and test temperature value. The maximum deviation between the simulated velocity and test velocity was 0.11 m/s, the maximum RE was 29.05% and the maximum SD was 0.024. The results show that a plastic basket with a ventilation duct efficiently decreased the temperature of the fresh tea leaves and significantly affected the heat transfer between the fresh tea leaves and the ambient air compared to the plastic basket without a ventilation duct. Furthermore, the effect on the heat transfer was further expanded by the use of a plastic basket with a ventilation duct when the plastic baskets were stacked. The maximum temperature differences were 0.52 and 0.40 according to the stacked and single-layer products, respectively. The ambient temperature and the bulk density of the fresh tea leaves have a significant influence on the core temperature.
Collapse
Affiliation(s)
- Zhixiong Zeng
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (Y.J.); (J.C.); (X.Z.); (J.L.); (Y.L.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 525000, China
| | - Yihong Jiang
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (Y.J.); (J.C.); (X.Z.); (J.L.); (Y.L.)
| | - Chengying Ma
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Jin Chen
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (Y.J.); (J.C.); (X.Z.); (J.L.); (Y.L.)
| | - Xiaodan Zhang
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (Y.J.); (J.C.); (X.Z.); (J.L.); (Y.L.)
| | - Jicheng Lin
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (Y.J.); (J.C.); (X.Z.); (J.L.); (Y.L.)
| | - Yanhua Liu
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (Y.J.); (J.C.); (X.Z.); (J.L.); (Y.L.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 525000, China
| | - Jiaming Guo
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (Y.J.); (J.C.); (X.Z.); (J.L.); (Y.L.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 525000, China
- Correspondence: ; Tel./Fax: +86-020-8528-2860
| |
Collapse
|
30
|
Li Y, Ran W, He C, Zhou J, Chen Y, Yu Z, Ni D. Effects of different tea tree varieties on the color, aroma, and taste of Chinese Enshi green tea. Food Chem X 2022; 14:100289. [PMID: 35356696 PMCID: PMC8958318 DOI: 10.1016/j.fochx.2022.100289] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
Chinese Enshi green tea quality varies with tea tree varieties. Chlorophyll and chlorophyllide determine the green tea color. Echa 10 endows Enshi green tea with fresh and mellow taste. Echa 10 endows Enshi green tea with clear flavor and honeysuckle fragrance. Phenethyl alcohol, jasmine, dodecane and octadecane contribute to honeysuckle scent.
Green tea processed by Echa 10 was shown to have a fresh and mellow taste as well as clean aroma with a clear honeysuckle fragrance. The colors of different Enshi green teas are closely related with the content of chlorophyll and chlorophyllide. The five green teas also vary in their aroma style. Echa 10 imparts a special honeysuckle fragrance, which was further analyzed by molecular sensory analysis and the formation of this honeysuckle fragrance was attributed to the key components of dodecane, octadecane, phenethyl alcohol, and jasmonone. In aroma evaluation, Echa 10 green tea showed the best performance, which is mainly related with the content of geraniol, linalool, phenethyl alcohol, and benzyl alcohol. Additionally, Echa 10 scored the highest in taste evaluation, which is mainly determined by the contents and ratios of tea polyphenols, amino acids, caffeine, and soluble sugars.
Collapse
|
31
|
Wang JQ, Fu YQ, Chen JX, Wang F, Feng ZH, Yin JF, Zeng L, Xu YQ. Effects of baking treatment on the sensory quality and physicochemical properties of green tea with different processing methods. Food Chem 2022; 380:132217. [DOI: 10.1016/j.foodchem.2022.132217] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/27/2021] [Accepted: 01/19/2022] [Indexed: 01/20/2023]
|
32
|
Zhou H, Liu Y, Yang J, Wang H, Ding Y, Lei P. Comprehensive profiling of volatile components in Taiping Houkui green tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Comparative Analysis of Volatile Compounds in Tieguanyin with Different Types Based on HS-SPME-GC-MS. Foods 2022; 11:foods11111530. [PMID: 35681280 PMCID: PMC9180349 DOI: 10.3390/foods11111530] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
Tieguanyin (TGY) is one kind of oolong tea that is widely appreciated for its aroma and taste. To study the difference of volatile compounds among different types of TGY and other oolong teas, solid-phase microextraction−gas chromatography−mass spectrometry and chemometrics analysis were conducted in this experiment. Based on variable importance in projection > 1 and aroma character impact > 1, the contents of heptanal (1.60−2.79 μg/L), (E,E)-2,4-heptadienal (34.15−70.68 μg/L), (E)-2-octenal (1.57−2.94 μg/L), indole (48.44−122.21 μg/L), and (E)-nerolidol (32.64−96.63 μg/L) in TGY were higher than in other varieties. With the increase in tea fermentation, the total content of volatile compounds decreased slightly, mainly losing floral compounds. Heavily fermented tea contained a higher content of monoterpenoids, whereas low-fermentation tea contained higher contents of sesquiterpenes and indole, which could well distinguish the degree of TGY fermentation. Besides, the volatiles analysis of different grades of TGY showed that the special-grade tea contained more aroma compounds, mainly alcohols (28%). (E,E)-2,4-Heptadienal, (E)-2-octenal, benzeneacetaldehyde, and (E)-nerolidol were the key volatile compounds to distinguish different grades of TGY. The results obtained in this study could help enrich the theoretical basis of aroma substances in TGY.
Collapse
|
34
|
Liang S, Gao Y, Fu YQ, Chen JX, Yin JF, Xu YQ. Innovative technologies in tea beverage processing for quality improvement. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Koláčková T, Sumczynski D, Minařík A, Yalçin E, Orsavová J. The Effect of In Vitro Digestion on Matcha Tea (Camellia sinensis) Active Components and Antioxidant Activity. Antioxidants (Basel) 2022; 11:antiox11050889. [PMID: 35624753 PMCID: PMC9137484 DOI: 10.3390/antiox11050889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 01/13/2023] Open
Abstract
This study investigates the effects of in vitro digestion on the antioxidant activity and release of phenolics, xanthine alkaloids, and L-theanine contents of matcha. It establishes digestibility values between 61.2–65.8%. Considering native matcha, the rutin content (303–479 µg/g) reached higher values than catechin (10.2–23.1 µg/g). Chlorogenic acid (2090–2460 µg/g) was determined as predominant. Rutin, quercetin, ferulic, ellagic, and caffeic acid were the least-released phenolics, and their remaining residues reached 76–84%. Protocatechuic, hydroxybenzoic acid, epigallocatechin, and epigallocatechin-3-gallate were the best-released phenolics, with the remaining residues under 1%. Caffeine, L-theanine, and theobromine contents in native matcha reached 16.1, 9.85, and 0.27 mg/g, respectively. Only caffeine (3.66–5.26 mg/g) and L-theanine (0.09–0.15 mg/g) were monitored in the undigested residue, representing 13 and 0.1% of the remaining part, respectively. A chemiluminescence assay showed that water-soluble antioxidants showed significant antioxidant activity in native matcha, while lipid-soluble compounds showed higher antioxidant activity in the undigested samples. Cinnamic and neochlorogenic acids were determined as the main contributors to the ACW values in the undigested matcha, epicatechin, and quercetin in the ACL fraction. The application of the digestion process reduced the antioxidant activity by more than 94%. SEM has proved specific digestion patterns of in vitro digestibility of matcha.
Collapse
Affiliation(s)
- Tereza Koláčková
- Department of Food Analysis and Chemistry, Tomas Bata University in Zlín, Nám. T.G. Masaryka 1279, 76001 Zlín, Czech Republic;
| | - Daniela Sumczynski
- Department of Food Analysis and Chemistry, Tomas Bata University in Zlín, Nám. T.G. Masaryka 1279, 76001 Zlín, Czech Republic;
- Correspondence:
| | - Antonín Minařík
- Department of Physics and Materials Engineering, Tomas Bata University in Zlín, Vavrečkova 275, 76001 Zlín, Czech Republic;
| | - Erkan Yalçin
- Department of Food Engineering, Gölköy Campus, Bolu Abant Ízzet Baysal University, Bolu 14030, Turkey;
| | - Jana Orsavová
- Language Centre, Tomas Bata University in Zlín, Štefánikova 5670, 76001 Zlín, Czech Republic;
| |
Collapse
|
36
|
Effects of Hydrogen Peroxide Produced by Catechins on the Aroma of Tea Beverages. Foods 2022; 11:foods11091273. [PMID: 35563996 PMCID: PMC9102859 DOI: 10.3390/foods11091273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Hydrogen peroxide has a significant effect on the flavor of tea beverages. In this study, the yield of hydrogen peroxide in (-)-epigallocatechin gallate (EGCG) solution was first investigated and found to be significantly enhanced under specific conditions, and the above phenomenon was amplified by the addition of linalool. Then, an aqueous hydrogen peroxide solution was added to a linalool solution and it was found that the concentration of linalool was significantly reduced in the above-reconstituted system. These findings were verified by extending the study system to the whole green tea infusions. The results suggested that the production of hydrogen peroxide in tea beverages may be dominated by catechins, with multiple factors acting synergistically, thereby leading to aroma deterioration and affecting the quality of tea beverages. The above results provided a feasible explanation for the deterioration of flavor quality of green tea beverages with shelf life.
Collapse
|
37
|
Tong Y, Zhu R, Li C, Guo H, Huang C, Zhou S, Gong S, Fan F. A novel application of
check‐all‐that‐apply
with semi‐trained assessors for tea sensory characterization and preference: Using Longjing tea as a case study. J SENS STUD 2022. [DOI: 10.1111/joss.12742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi‐Lin Tong
- Zhejiang University Tea Research Institute Hangzhou China
| | - Ruo‐Lan Zhu
- Zhejiang University Tea Research Institute Hangzhou China
| | - Chun‐Lin Li
- Zhejiang University Tea Research Institute Hangzhou China
| | - Hao‐Wei Guo
- Zhejiang University Tea Research Institute Hangzhou China
| | | | - Sen‐Jie Zhou
- Zhejiang University Tea Research Institute Hangzhou China
| | - Shu‐Ying Gong
- Zhejiang University Tea Research Institute Hangzhou China
| | - Fang‐Yuan Fan
- Zhejiang University Tea Research Institute Hangzhou China
| |
Collapse
|
38
|
Mei S, Cao Y, Zhang G, Zhou S, Wang Y, Gong S, Chu Q, Chen P. Construction of Sensory/Mass Spectrometry Feedback Platform for Seeking Aroma Contributors during the Aroma Enhancement of Congou Black Tea. PLANTS 2022; 11:plants11060823. [PMID: 35336705 PMCID: PMC8951376 DOI: 10.3390/plants11060823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Baking is widely accepted for aroma enhancement of black tea, and studies have mainly focused on the aroma or chemical substances under a specified baking condition. Understanding of the feedback between aroma substances and characteristics is urgently needed. Therefore, a mutual feedback platform (SES/MS) combined sensory evaluation system (SES) with gas chromatography–mass spectrometry (GC-MS) was established. Based on this platform, we found that baking at 90 °C for 4 h or 5 h could maintain the primary aroma attributes and increase characteristic aroma attributes—these were considered to be the best baking conditions for Yunnan congou black tea. Meanwhile, 47 volatiles were identified, among which, pyrrole and benzaldehyde appeared to have a caramel aroma, and 2-furanmethanol and α-terpineol presented a baked aroma. This study reveals the dynamic change of aroma profiles and compounds during the aroma enhancement, and provides an optional template for researchers, focused on the relationship between quality and aroma attributes of teas.
Collapse
Affiliation(s)
- Sifan Mei
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China; (S.M.); (Y.C.); (G.Z.); (S.Z.); (S.G.)
| | - Yanyan Cao
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China; (S.M.); (Y.C.); (G.Z.); (S.Z.); (S.G.)
| | - Gang Zhang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China; (S.M.); (Y.C.); (G.Z.); (S.Z.); (S.G.)
| | - Su Zhou
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China; (S.M.); (Y.C.); (G.Z.); (S.Z.); (S.G.)
- Department of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- School of Humanities and Education, Chongqing City Management College, Chongqing 401331, China;
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China; (S.M.); (Y.C.); (G.Z.); (S.Z.); (S.G.)
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China; (S.M.); (Y.C.); (G.Z.); (S.Z.); (S.G.)
- Correspondence: (Q.C.); (P.C.)
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China; (S.M.); (Y.C.); (G.Z.); (S.Z.); (S.G.)
- Correspondence: (Q.C.); (P.C.)
| |
Collapse
|
39
|
|
40
|
Wang Z, Cui H, Ma M, Hayat K, Zhang X, Ho CT. Controlled Formation of Pyrazines: Inhibition by Ellagic Acid Interaction with N-(1-Deoxy-d-xylulos-1-yl)-glycine and Promotion through Ellagic Acid Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1618-1628. [PMID: 35089027 DOI: 10.1021/acs.jafc.1c07391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The effect of ellagic acid on the formation of pyrazine, methylpyrazine, 2,3-methylpyrazine, 2,6-methylpyrazine, 2,5-methylpyrazine, and trimethylpyrazine in the xylose-glycine Maillard reaction model was researched. Ellagic acid could either inhibit or promote pyrazine formation, depending on its addition time point and the pH of the system. The addition of ellagic acid during the accumulation period of an Amadori compound inhibited pyrazine formation by capturing the Amadori compound in the xylose-glycine Maillard system and decreasing the pyrazine precursors. The inhibitory effect of ellagic acid on pyrazine formation got more obvious with an increase in the pH of the system. However, when ellagic acid was added at the beginning of the xylose and glycine Maillard system and when the oxidizing substances such as glyoxal and methylglyoxal were significantly formed in the Maillard system, its oxidation could promote the formation of pyrazines.
Collapse
Affiliation(s)
- Ziyan Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Mengyu Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
41
|
A targeted and nontargeted metabolomics study on the oral processing of epicatechins from green tea. Food Chem 2022; 378:132129. [PMID: 35042106 DOI: 10.1016/j.foodchem.2022.132129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 01/14/2023]
Abstract
Oral processing (OP), referring to the whole process of food digestion in human mouth, has a major influence on food flavor perception. This study focused on the compositional changes of the four green tea epicatechins (viz., EC, EGC, ECG, EGCG) during OP, based on targeted and nontargeted metabolomics. It was found that the four epicatechins were all extensively lost through transformation undergoing OP, among which EC was the most stable one, whereas EGCG the least. EGCG was further revealed to be susceptible to human oral cavity in the simulated OP in vitro. It could be converted physically by precipitating with mucin in saliva, and chemically through hydrolysis and dimerization, mediated mainly by the neutral pH condition. The OP of epicatechins also caused salivary composition changes possibly involving health benefits of green tea. These findings could raise awareness of the interactions between epicatechins, or any other food materials, with human mouth.
Collapse
|
42
|
Liang S, Granato D, Zou C, Gao Y, Zhu Y, Zhang L, Yin JF, Zhou W, Xu YQ. Processing technologies for manufacturing tea beverages: From traditional to advanced hybrid processes. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
43
|
Shelf-Life Stability of Ready-to-Use Green Rooibos Iced Tea Powder-Assessment of Physical, Chemical, and Sensory Properties. Molecules 2021; 26:molecules26175260. [PMID: 34500693 PMCID: PMC8433966 DOI: 10.3390/molecules26175260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Green rooibos extract (GRE), shown to improve hyperglycemia and HDL/LDL blood cholesterol, has potential as a nutraceutical beverage ingredient. The main bioactive compound of the extract is aspalathin, a C-glucosyl dihydrochalcone. The study aimed to determine the effect of common iced tea ingredients (citric acid, ascorbic acid, and xylitol) on the stability of GRE, microencapsulated with inulin for production of a powdered beverage. The stability of the powder mixtures stored in semi-permeable (5 months) and impermeable (12 months) single-serve packaging at 30 °C and 40 °C/65% relative humidity was assessed. More pronounced clumping and darkening of the powders, in combination with higher first order reaction rate constants for dihydrochalcone degradation, indicated the negative effect of higher storage temperature and an increase in moisture content when stored in the semi-permeable packaging. These changes were further increased by the addition of crystalline ingredients, especially citric acid monohydrate. The sensory profile of the powders (reconstituted to beverage strength iced tea solutions) changed with storage from a predominant green-vegetal aroma to a fruity-sweet aroma, especially when stored at 40 °C/65% RH in the semi-permeable packaging. The change in the sensory profile of the powder mixtures could be attributed to a decrease in volatile compounds such as 2-hexenal, (Z)-2-heptenal, (E)-2-octenal, (E)-2-nonenal, (E,Z)-2,6-nonadienal and (E)-2-decenal associated with "green-like" aromas, rather than an increase in fruity and sweet aroma-impact compounds. Green rooibos extract powders would require storage at temperatures ≤ 30 °C and protection against moisture uptake to be chemically and physically shelf-stable and maintain their sensory profiles.
Collapse
|
44
|
Zou C, Li RY, Chen JX, Wang F, Gao Y, Fu YQ, Xu YQ, Yin JF. Zijuan tea- based kombucha: Physicochemical, sensorial, and antioxidant profile. Food Chem 2021; 363:130322. [PMID: 34147900 DOI: 10.1016/j.foodchem.2021.130322] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/29/2021] [Accepted: 06/06/2021] [Indexed: 12/11/2022]
Abstract
Zijuan tea is a representative anthocyanin-rich tea cultivar in China. In this study, Zijuan tea was used to produce a novel kombucha beverage (ZTK). The physicochemical, sensory properties, and antioxidant activity of ZTK were compared with that of black tea kombucha (BTK) and green tea kombucha (GTK). Results indicated that after fermentation, the color of ZTK changed from yellowish-brown to salmon-pink, because its anthocyanins (4.5 mg/L) appeared red in acidic conditions. Meanwhile no significant changes of color were observed in BTK and GTK. The dynamic changes of pH, biomass, and concentrations of sugars, amino acids, and main organic acids were similar in three kombucha beverages, except catechins showing different trends. Moreover, ZTK showed the highest overall acceptability score, antioxidant activity, and concentration of volatiles among the three kombucha beverages. Therefore, Zijuan tea is suitable for the preparation of kombucha beverage with attractive color and health benefits.
Collapse
Affiliation(s)
- Chun Zou
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Ru-Yi Li
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Jian-Xin Chen
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Fang Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Ying Gao
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Yan-Qing Fu
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China.
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China.
| |
Collapse
|
45
|
Qi K, Xu M, Yin H, Wu L, Hu Y, Yang J, Liu C, Pan Y. Online Monitoring the Key Intermediates and Volatile Compounds Evolved from Green Tea Roasting by Synchrotron Radiation Photoionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1402-1411. [PMID: 33961425 DOI: 10.1021/jasms.1c00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Online monitoring of the volatile compounds during the tea roasting process is crucial to find the optimum roasting conditions and improve the quality of green tea. In this work, synchrotron radiation photoionization mass spectrometry (SR-PIMS) was utilized to online monitor the evolved gaseous compounds during the tea roasting process. By virtue of "soft" ionization and fast data acquisition characteristics of SR-PIMS, dozens of aroma compounds including alcohols, aldehydes, furans, and nitrogen- and sulfur-containing species were detected and identified in real time. Moreover, 5-hydroxymethylfurfural (5-HMF), the key intermediate of Maillard reactions, was found with high sensitivity. Evolution processes of all the products could be observed via the time- and temperature-resolved profiles in N2 and the air. Dehydration was found to be the first step during roasting. Oxygen in the air was found to accelerate the formation rate of various stable species and intermediates in the course of the thermal treatment of fresh green tea. The formation mechanisms of evolved compounds such as three sulfur-containing compounds, i.e., dimethyl sulfide, hydrogen sulfide, and methanethiol, could be proposed according to the step-by-step formation process. The time-resolved results were demonstrated to be applicable in the evaluation of different roasting processes by statistical analysis. The optimum tea roasting temperature and duration are proposed to be around 200 °C and 1000 s.
Collapse
Affiliation(s)
- Keke Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Minggao Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Hao Yin
- National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Liutian Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Yonghua Hu
- Research and Development Centre, China Tobacco Anhui Industrial Co., Ltd., Hefei 230088, P. R. China
| | - Jiuzhong Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| |
Collapse
|
46
|
Xu C, Liang L, Li Y, Yang T, Fan Y, Mao X, Wang Y. Studies of quality development and major chemical composition of green tea processed from tea with different shoot maturity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Duan N, Yang S, Tian H, Sun B. The recent advance of organic fluorescent probe rapid detection for common substances in beverages. Food Chem 2021; 358:129839. [PMID: 33940297 DOI: 10.1016/j.foodchem.2021.129839] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
The beverage industry is confronted with tremendous challenges in terms of quality assurance. The allowed contents of common ingredients such as copper ions, hydrogen sulfide, cysteine and caffeine are stipulated by various governing bodies, and the beverage industry must ensure that it meets these requirements. Due to its unique advantages of high sensitivity, low cost and relatively low toxicity over high-performance liquid chromatography, atomic absorption spectrometry and nanomaterials, the use of organic fluorescent probes for the rapid detection of beverage contents has become a hot research topic. This review summarizes the detection of common substances in wine, tea, mineral water, milk and other beverages. Furthermore, the preparation of test paper and simple colour comparison are discussed to display the rapid qualitative capability of designed probes. To improve the current state of beverage safety, future trends and strategies for fast organic fluorescent probe detection in the beverage industry are also discussed.
Collapse
Affiliation(s)
- Ning Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Shaoxiang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Hongyu Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
48
|
Using Sensory Wheels to Characterize Consumers' Perception for Authentication of Taiwan Specialty Teas. Foods 2021; 10:foods10040836. [PMID: 33921366 PMCID: PMC8070119 DOI: 10.3390/foods10040836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
In the context of fair trade and protection of consumer rights, the aim of this study was to combat adulteration, counterfeiting, and fraud in the tea market, and rebuild the image of high-quality Taiwan teas. Experts at the Tea Research and Extension Station, Taiwan (TRES), are engaged in promotion of the systems of origin identification (AOC) and grading for authentication of Taiwan's premium teas. From tea evaluation competitions (bottom-up quality campaign), the flavor descriptions and consumers' perceptions were deconvoluted and characterized for the eight Taiwan specialty teas, namely, Bi-Luo-Chun, Wenshan Paochong, High-Mountain Oolong, Dongding Oolong, Tieh-Kuan-Yin, Red Oolong, Oriental Beauty, and Taiwan black tea. Then, according to the manufacturing processes, producing estates and flavor characters, the specialty teas were categorized into six sensory wheels. The flavor descriptors of the sensory wheels were also recognized in consumers' feedback. In recent years, the performance of international trade in tea also demonstrates that the policy guidelines for authentication of specialty teas are helpful to the production and marketing. Furthermore, the development of sensory wheels of Taiwan's specialty teas is the cornerstone to the establishment of the Taiwan-tea assortment and grading system (TAGs) for communication with the new generation consumers, enthusiasts, sellers, and producers.
Collapse
|
49
|
Zhu YM, Dong JJ, Jin J, Liu JH, Zheng XQ, Lu JL, Liang YR, Ye JH. Roasting process shaping the chemical profile of roasted green tea and the association with aroma features. Food Chem 2021; 353:129428. [PMID: 33714119 DOI: 10.1016/j.foodchem.2021.129428] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022]
Abstract
Roasting process impacts the chemical profile and aroma of roasted tea. To compare the impacts of far-infrared irradiation and drum roasting treatments (light, medium and heavy degrees), the corresponding roasted teas were prepared from steamed green tea for chemical analyses and quantitative descriptive analysis on aroma, and correlations between volatiles and aroma attributes were studied. There were 8 catechins, 13 flavonol glycosides and 105 volatiles quantified. Under heavy roasting treatments, most catechins and flavonol glycosides decreased, and aldehydes, ketones, furans, pyrroles/pyrazines, and miscellaneous greatly increased, while far-infrared irradiated teas had distinct nutty aroma compared with the roasty and burnt odor of drum roasted teas. The weighted correlation network analysis result showed that 56 volatiles were closely correlated with the aroma attributes of roasted teas. This study reveals the differential chemical and sensory changes of roasted teas caused by different roasting processes, and provides a novel way for flavor chemistry study.
Collapse
Affiliation(s)
- Yu-Meng Zhu
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jun-Jie Dong
- Zhejiang Camel Transworld (Organic Food) Co., Ltd., 16 Chachang Road, Yuhang District, Hangzhou 310000, China
| | - Jing Jin
- Zhejiang Agricultural Technical Extension Center, 29 Fengqidong Road, Hangzhou 310000, China
| | - Jin-Hua Liu
- Zhejiang Camel Transworld (Organic Food) Co., Ltd., 16 Chachang Road, Yuhang District, Hangzhou 310000, China
| | - Xin-Qiang Zheng
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jian-Liang Lu
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yue-Rong Liang
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
50
|
Baked red pepper (Capsicum annuum L.) powder flavor analysis and evaluation under different exogenous Maillard reaction treatment. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|