1
|
Alibekov RS, Urazbayeva KU, Azimov AM, Rozman AS, Hashim N, Maringgal B. Advances in Biodegradable Food Packaging Using Wheat-Based Materials: Fabrications and Innovations, Applications, Potentials, and Challenges. Foods 2024; 13:2964. [PMID: 39335892 PMCID: PMC11431393 DOI: 10.3390/foods13182964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
This article explores the advancements in biodegradable food packaging materials derived from wheat. Wheat, a predominant global cereal crop, offers a sustainable alternative to conventional single-use plastics through its starch, gluten, and fiber components. This study highlights the fabrication processes of wheat-based materials, including solvent casting and extrusion, and their applications in enhancing the shelf life and quality of packaged foods. Recent innovations demonstrate effectiveness in maintaining food quality, controlling moisture content, and providing microbiological protection. Despite the promising potential, challenges such as moisture content and interfacial adhesion in composites remain. This review concludes with an emphasis on the environmental benefits and future trends in wheat-based packaging materials.
Collapse
Affiliation(s)
- Ravshanbek S Alibekov
- Food Biotechnology Scientific-Research Laboratory, M. Auezov' South-Kazakhstan University, Tauke Khan Avenie, 5, Shymkent 160000, Kazakhstan
| | - Klara U Urazbayeva
- Food Biotechnology Scientific-Research Laboratory, M. Auezov' South-Kazakhstan University, Tauke Khan Avenie, 5, Shymkent 160000, Kazakhstan
| | - Abdugani M Azimov
- Food Biotechnology Scientific-Research Laboratory, M. Auezov' South-Kazakhstan University, Tauke Khan Avenie, 5, Shymkent 160000, Kazakhstan
| | - Azri Shahir Rozman
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norhashila Hashim
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- SMART Farming Technology Research Centre (SFTRC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Bernard Maringgal
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| |
Collapse
|
2
|
Cabello-Olmo M, Krishnan PG, Araña M, Oneca M, Díaz JV, Barajas M, Rovai M. Development, Analysis, and Sensory Evaluation of Improved Bread Fortified with a Plant-Based Fermented Food Product. Foods 2023; 12:2817. [PMID: 37569086 PMCID: PMC10417715 DOI: 10.3390/foods12152817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
In response to the demand for healthier foods in the current market, this study aimed to develop a new bread product using a fermented food product (FFP), a plant-based product composed of soya flour, alfalfa meal, barley sprouts, and viable microorganisms that showed beneficial effects in previous studies. White bread products prepared with three different substitution levels (5, 10, and 15%) of FFP were evaluated for physical characteristics (loaf peak height, length, width), color indices (lightness, redness/greenness, yellowness/blueness), quality properties (loaf mass, volume, specific volume), protein content, crumb digital image analysis, and sensory characteristics. The results revealed that FFP significantly affected all studied parameters, and in most cases, there was a dose-response effect. FFP supplementation affected the nutritional profile and increased the protein content (p < 0.001). The sensory test indicated that consumer acceptance of the studied sensory attributes differed significantly between groups, and bread with high levels of FFP (10 and 15% FFP) was generally more poorly rated than the control (0%) and 5% FFP for most of the variables studied. Despite this, all groups received acceptable scores (overall liking score ≥ 5) from consumers. The sensory analysis concluded that there is a possible niche in the market for these improved versions of bread products.
Collapse
Affiliation(s)
- Miriam Cabello-Olmo
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Padmanaban G. Krishnan
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Miriam Araña
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Maria Oneca
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Jesús V. Díaz
- Pentabiol S.L., Polígono Noain-Esquiroz s/n, 31191 Pamplona, Spain
| | - Miguel Barajas
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Maristela Rovai
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
3
|
Pořízka J, Slavíková Z, Bidmonová K, Vymětalová M, Diviš P. Physiochemical and Sensory Properties of Bread Fortified with Wheat Bran and Whey Protein Isolates. Foods 2023; 12:2635. [PMID: 37444373 DOI: 10.3390/foods12132635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
This study investigated the effect of fortifying baked goods with wheat bran (WBPI) and whey protein isolates (WPI) on their physicochemical and sensory properties. The aim was to enhance the nutritional value by incorporating high-protein ingredients. WBPI and WPI, which are rich in essential amino acids, were chosen to create high-protein flour blends. The main advantage of WBPI is that it is derived from readily available and inexpensive wheat bran. High-protein flour blends fortified with substitutions of 5%, 10%, and 15% flour with WBPI and WPI were subjected to chemical and rheological analysis. WBPI substitution slightly increased water binding and softening, but it resulted in a decrease in dough quality. In contrast, WPI substitution prolonged dough development time, improved dough stability, and enhanced farinographic quality. WBPI-substituted dough exhibited comparable extensographic properties to the reference flour, with 5% WBPI substitution leading to improved energy and dough resistance. However, as the level of WBPI flour substitution increased, extensographic parameters gradually declined without further enhancing the dough's mechanical properties. Samples with 5% WPI substitution demonstrated superior mechanical properties compared to the reference sample. Baguette with high WBPI substitution was associated with reduced overall acceptance due to a bitter taste caused by the presence of small peptides, ferulic acid, and tannins, as confirmed by correlation analysis.
Collapse
Affiliation(s)
- Jaromír Pořízka
- Faculty of Chemistry, Brno University of Technology, 612 00 Brno, Czech Republic
| | - Zuzana Slavíková
- Faculty of Chemistry, Brno University of Technology, 612 00 Brno, Czech Republic
| | - Karolína Bidmonová
- Faculty of Chemistry, Brno University of Technology, 612 00 Brno, Czech Republic
| | - Miroslava Vymětalová
- Mlýny J. Voženílek, Ltd., Průmyslová 107, 503 02 Předměřice nad Labem, Czech Republic
| | - Pavel Diviš
- Faculty of Chemistry, Brno University of Technology, 612 00 Brno, Czech Republic
| |
Collapse
|
4
|
Hadidi M, Garcia SR, Ziogkas D, McClements DJ, Moreno A. Cereal bran proteins: recent advances in extraction, properties, and applications. Crit Rev Food Sci Nutr 2023; 64:10583-10607. [PMID: 37366171 DOI: 10.1080/10408398.2023.2226730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The projected global population is expected to reach around 9.7 billion by 2050, indicating a greater demand for proteins in the human diet. Cereal bran proteins (CBPs) have been identified as high-quality proteins, with potential applications in both the food and pharmaceutical industries. In 2020, global cereal grain production was 2.1 billion metric tonnes, including wheat, rice, corn, millet, barley, and oats. Cereal bran, obtained through milling, made up 10-20% of total cereal grain production, varying by grain type and milling degree. In this article, the molecular composition and nutritional value of CBPs are summarized, and recent advances in their extraction and purification are discussed. The functional properties of CBPs are then reviewed, including their solubility, binding, emulsifying, foaming, gelling, and thermal properties. Finally, current challenges to the application of CBPs in foods are highlighted, such as the presence of antinutritional factors, low digestibility, and allergenicity, as well as potential strategies to improve the nutritional and functional properties by overcoming these challenges. CBPs exhibit nutritional and functional attributes that are similar to those of other widely used plant-based protein sources. Thus, CBPs have considerable potential for use as ingredients in food, pharmaceutical, and other products.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Samuel Rodriguez Garcia
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Dimitrios Ziogkas
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| | | | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
5
|
Xu S, Wang H, Wang Y, Zhou X, Yao Y, Zhang L, Li H, Pei J. Alterations of selenium level and speciation during milling and cooking in different wheat cultivars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1684-1691. [PMID: 36575976 DOI: 10.1002/jsfa.12405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Selenium (Se) deficiency is a recognized problem that threatens the health of people worldwide, and wheat is grown worldwide and is one of the major sources of dietary Se. Since there are few studies that have investigated the changes in Se content and speciation of different varieties of Se-enriched wheat from primary to deep processing, we studied four naturally Se-enriched kinds of wheat and two Se-fertilized kinds of wheat. RESULTS Glutenin- and albumin-bound Se accounted for the highest proportion of protein-bound Se in refined wheat flour (7.29 ± 0.19 to 10.82 ± 0.50% and 6.16 ± 0.34 to 8.45 ± 0.07%); water-soluble polysaccharide-bound Se accounted for the highest proportion of polysaccharide-bound Se in refined wheat flour (12.02 ± 0.54 to 24.62 ± 1.87%). Coarse bran Se content was significantly higher than refined wheat flour (137.94 ± 7.80 to 174.55 ± 5.09% for unpeeled wheat, 147.27 ± 10.96 to 187.72 ± 17.70% for peeled wheat). The peeling and processing of wheat into flour had different effects on Se the content and speciation dependent on the particular wheat variety. Whole wheat flour enabled better retention of selenomethionine (101.64 ± 2.32 to 138.41 ± 2.84% for unpeeled wheat, 158.59 ± 13.72 to 250.20 ± 4.94% for peeled wheat). The cooking process had no significant effect on Se content, but Se species were possibly interconverted. CONCLUSION The organic Se content of different varieties of Se-enriched wheat was different, but the milling and cooking process retained the total Se and Se speciation better, which could be used for daily Se supplementation for Se-deficient people. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sinan Xu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Han Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yanan Wang
- Hebei General Agricultural Technology Extension Station, Shijiazhuang, China
| | - Xianghan Zhou
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yaya Yao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Lijing Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Huijing Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jiawei Pei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Wu Q, Tian Q, Zhang D, Zhang Y. Effect of Sitophilus zeamais (Coleoptera: Curculionidae) Infestation on the Protein Physicochemical and Structural Properties of Wheat Grain. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:2092-2104. [PMID: 36287645 DOI: 10.1093/jee/toac168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 06/16/2023]
Abstract
Boring pests such as Sitophilus zeamais (S. zeamais) are major threats in grain storage. However, how these pests affect the proteins of stored grains remains largely unknown. Here we aimed to investigate the effect of S. zeamais infestation on wheat protein during postharvest storage. In this study, wheat grain infested by S. zeamais was sampled at egg (4 d), larval (20 d), pupal (35 d), and adult stages (45 d), respectively. The protein's physicochemical and structural properties and the edible quality of whole wheat noodle were analyzed. The results showed that S. zeamais infestation significantly decreased the quality of wheat protein by altering its constitution and structure properties. Especially, compared with the control, the content of wet and dry gluten, gluten index, sodium dodecyl sulfate sedimentation volume, sulfhydryl groups, and disulfide bonds in insect-infested wheat decreased by 19.40, 5.42, 18.40, 8.12, 29.13, and 14.30%, respectively, during the storage period of one life cycle of S. zeamais. Additionally, the proportions of wheat protein fractions (albumin [1.16-fold], globulin [0.96-fold], gliadin [1.16-fold], and glutenin [0.95-fold]) and secondary structures (α-helix [0.91-fold], β-fold [0.96-fold], β-turn [1.06-fold], and random coil [1.05-fold]) of protein changed significantly, and the gluten network structure was broken in S. zeamais-infested wheat. Furthermore, the color of whole wheat noodle became darker, cooking loss rate increased, and textural properties (hardness, adhesiveness, springiness, cohesiveness, chewiness, and resilience) decreased as well. The results in the present study provided new insights for analyzing the quality deterioration mechanism and further quality improvement of boring pests-infested wheat grain.
Collapse
Affiliation(s)
- Qiong Wu
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Qisheng Tian
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Dongdong Zhang
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Yurong Zhang
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| |
Collapse
|
7
|
Influence of Some Spaghetti Processing Variables on Technological Attributes and the In Vitro Digestion of Starch. Foods 2022; 11:foods11223650. [PMID: 36429241 PMCID: PMC9689111 DOI: 10.3390/foods11223650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Durum semolina spaghetti is known to have a low-moderate glycaemic index but the impact of various processing variables during the manufacture and cooking of pasta does affect pasta structure and potentially could alter starch digestion. In this study, several process variables were investigated to see if they can impact the in vitro starch digestion in spaghetti while also monitoring the pasta’s technological quality. Cooking time had a large impact on pasta starch digestion and reducing cooking from fully cooked to al dente and using pasta of very high protein content (17%), reduced starch digestion extent. The semolina particle size distribution used to prepare pasta impacted pasta quality and starch digestion to a small extent indicating a finer semolina particle size (<180 µm) may promote a more compact structure and help to reduce starch digestion. The addition of a structural enzyme, Transglutaminase in the pasta formulae improved overcooking tolerance in low protein pasta comparable to high protein pasta with no other significant effects and had no effect on starch digestion over a wide protein range (8.6−17%). While cold storage of cooked pasta was expected to increase retrograded starch, the increase in resistant starch was minor (37%) with no consequent improvement in the extent of starch digestion. Varying three extrusion parameters (die temperature, die pressure, extrusion speed) impacted pasta technological quality but not the extent of starch digestion. Results suggest the potential to subtly manipulate the starch digestion of pasta through some processing procedures.
Collapse
|
8
|
Teterycz D, Sobota A, Starek A. Possibility of using wheat germ and wheat germ protein isolate for high‐protein pasta production. Cereal Chem 2022. [DOI: 10.1002/cche.10602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dorota Teterycz
- Division of Engineering and Cereals Technology, Department of Plant Food Technology and Gastronomy, Faculty of Food Science and BiotechnologyUniversity of Life Sciences in LublinSkromna 820‐704LublinPoland
| | - Aldona Sobota
- Division of Engineering and Cereals Technology, Department of Plant Food Technology and Gastronomy, Faculty of Food Science and BiotechnologyUniversity of Life Sciences in LublinSkromna 820‐704LublinPoland
| | - Agnieszka Starek
- Department of Biological Bases of Food and Feed TechnologiesUniversity of Life Sciences in LublinGłęboka 2820‐612LublinPoland
| |
Collapse
|
9
|
Yan J, Lv Y, Ma S. Wheat bran enrichment for flour products: Challenges and Solutions. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingyao Yan
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Yiming Lv
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Sen Ma
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| |
Collapse
|
10
|
Azeez S, Chinma CE, Makanjuola AJ, Afolabi RO, Kolawole FL, Yohanna A. Effect of cashew nut protein concentrate substitution on the physicochemical properties, antioxidant activity and consumer acceptability of wheat bread. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2200-2208. [PMID: 35602457 PMCID: PMC9114187 DOI: 10.1007/s13197-021-05233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 06/03/2023]
Abstract
The effect of incorporating different proportions (5, 10, 15 and 20%) of cashew nut protein concentrate (CNPC) on the physicochemical properties, antioxidant activity and consumer acceptability of bread was investigated. Substitution of wheat flour with CNPC increased the water and oil absorption capacity, swelling capacity, peak and final viscosities. Substitution of CNPC in wheat bread significantly increased the protein (12.69-22.04 g/100 g), ash, crude fiber, calcium, magnesium, iron (2.09-3.36 mg/100 g), phosphorus and zinc (0.79-1.57 mg/100 g) content, while carbohydrate value decreased. Substitution of wheat flour with CNPC in bread increased the loaf weight while specific volume decreased (4.36-2.21 cm3/g). Acceptable bread was prepared with up to 15% CNPC; which contained the highest total phenolics (2.64 mg GAE/g), DPPH radical scavenging activity (71.22 µmol TE/100 g), ferric reducing antioxidant power (427.77 µmol TE/100 g) and ABTS radical scavenging activity (195.68 µmol TE/100 g) than the 100% wheat bread (1.28 mg GAE/g, 40.81 µmol TE/100 g, 375.62 µmol TE/100 g and 154.02 µmol TE/100 g).
Collapse
Affiliation(s)
- Shakirah Azeez
- Department of Food Science and Technology, Federal University of Technology, Minna, Nigeria
| | - Chiemela Enyinnaya Chinma
- Department of Food Science and Technology, Federal University of Technology, Minna, Nigeria
- Africa Center of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna, Nigeria
| | - Amina Joke Makanjuola
- Department of Food Science and Technology, Federal University of Technology, Minna, Nigeria
| | | | - Fausat Lola Kolawole
- Department of Home Economics and Food Science, University of Ilorin, Ilorin, Nigeria
| | - Audu Yohanna
- Department of Animal Production, Federal University of Technology, Minna, Nigeria
| |
Collapse
|
11
|
Sissons M. Development of Novel Pasta Products with Evidence Based Impacts on Health-A Review. Foods 2022; 11:foods11010123. [PMID: 35010249 PMCID: PMC8750499 DOI: 10.3390/foods11010123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023] Open
Abstract
Pasta made from durum wheat is a widely consumed worldwide and is a healthy and convenient food. In the last two decades, there has been much research effort into improving the nutritional value of pasta by inclusion of nonconventional ingredients due to the demand by health-conscious consumers for functional foods. These ingredients can affect the technological properties of the pasta, but their health impacts are not always measured rather inferred. This review provides an overview of pasta made from durum wheat where the semolina is substituted in part with a range of ingredients (barley fractions, dietary fibre sources, fish ingredients, herbs, inulin, resistant starches, legumes, vegetables and protein extracts). Impacts on pasta technological properties and in vitro measures of phytonutrient enhancement or changes to starch digestion are included. Emphasis is on the literature that provides clinical or animal trial data on the health benefits of the functional pasta.
Collapse
Affiliation(s)
- Mike Sissons
- Department of Primary Industries, Tamworth Agricultural Institute, 4 Marsden Park Road, Tamworth, NSW 2340, Australia
| |
Collapse
|
12
|
Wang H, Li A, Kong L, Zhang X. Effect of Zn-Rich Wheat Bran With Different Particle Sizes on the Quality of Steamed Bread. Front Nutr 2021; 8:761708. [PMID: 34957180 PMCID: PMC8702855 DOI: 10.3389/fnut.2021.761708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Bran is the main by-product of wheat milling and the part of the grain with the highest Zn content. We investigated the effects of the particle sizes (coarse, D50 = 375.4 ± 12.3 μm; medium, D50 = 122.3 ± 7.1 μm; and fine, D50 = 60.5 ± 4.2 μm) and addition level (5–20%) of Zn-biofortified bran on the quality of flour and Chinese steamed bread. It was studied to determine if the Zn content of steamed bread could be enhanced without deleterious effects on quality. Dough pasting properties, such as peak viscosity, trough viscosity, final viscosity, breakdown, and setback, decreased significantly as the bran addition level was increased from 5 to 20% but did not significantly differ as a result of different bran particle sizes. Bran incorporation significantly increased hardness, gumminess, chewiness, and adhesiveness, whereas the springiness, cohesiveness, and specific volume of steamed bread decreased with the increase in bran addition. The optimal sensory score of steamed bread samples in the control and Zn fertilizer groups were obtained under 5% bran addition resulting in comparable flavor, and texture relative to control. Meanwhile, the Zn content of the steamed bread in the Zn fertilizer group was 40.2 mg/kg, which was 55.8% higher than that in the control group. Results indicated that adding the appropriate particle size and amount of bran would be an effective and practical way to solve the problem of the insufficient Zn content of steamed bread.
Collapse
Affiliation(s)
- Huinan Wang
- Agronomy College, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Anfei Li
- Agronomy College, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Lingrang Kong
- Agronomy College, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Xiaocun Zhang
- Agronomy College, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| |
Collapse
|
13
|
Goel S, Singh M, Grewal S, Razzaq A, Wani SH. Wheat Proteins: A Valuable Resources to Improve Nutritional Value of Bread. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.769681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Triticum aestivum, commonly known as bread wheat, is one of the most cultivated crops globally. Due to its increasing demand, wheat is the source of many nutritious products including bread, pasta, and noodles containing different types of seed storage proteins. Wheat seed storage proteins largely control the type and quality of any wheat product. Among various unique wheat products, bread is the most consumed product around the world due to its fast availability as compared to other traditional food commodities. The production of highly nutritious and superior quality bread is always a matter of concern because of its increasing industrial demand. Therefore, new and more advanced technologies are currently being applied to improve and enrich the bread, having increased fortified nutrients, gluten-free, highly stable with enhanced shelf-life, and long-lasting. This review focused on bread proteins with improving wheat qualities and nutritional properties using modern technologies. We also describe the recent innovations in processing technologies to improve various quality traits of wheat bread. We also highlight some modern forms of bread that are utilized in different industries for various purposes and future directions.
Collapse
|
14
|
New ingredients and alternatives to durum wheat semolina for a high quality dried pasta. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Dough Rheological Properties, Microstructure and Bread Quality of Wheat-Germinated Bean Composite Flour. Foods 2021; 10:foods10071542. [PMID: 34359411 PMCID: PMC8304690 DOI: 10.3390/foods10071542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/31/2023] Open
Abstract
Germinated bean flour (GBF) was obtained and incorporated in different levels (5%, 10%, 15%, 20% and 25%) into dough and bread made from refined wheat flour. The incorporation of GBF into wheat flour led to a decrease of the water absorption value, dough consistency, baking strength, extensibility and improved tolerance for mixing, total gas production and α-amylase activity. Tan δ increased in a frequency-dependent manner for the samples with a GBF addition, whereas the G’ and G” decreased with the increased value of the temperature. According to the microscopic structures of the dough samples, a decrease of the starch area may be clearly seen for the samples with high levels of GBF addition in wheat flour. The bread evaluation showed that the specific volume, porosity and elasticity increased, whereas the firmness, gumminess and chewiness decreased up to a level of 15% GBF addition in wheat flour. The color parameters L*, a* and b* of the bread samples indicated a darkening effect of GBF on the crumb and crust. From the sensory point of view, the bread up to a 15% GBF addition was well-appreciated by the panelists. According to the data obtained, GBF could be recommended for use as an improver, especially up to a level of 15% addition in the bread-making industry.
Collapse
|
16
|
Hussain M, Saeed F, Niaz B, Afzaal M, Ikram A, Hussain S, Mohamed AA, Alamri MS, Anjum FM. Biochemical and nutritional profile of maize bran-enriched flour in relation to its end-use quality. Food Sci Nutr 2021; 9:3336-3345. [PMID: 34136198 PMCID: PMC8194740 DOI: 10.1002/fsn3.2323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
The core objective of current research was determined to nutritional and bioactive profile of maize bran (MB)-enriched flour in relation to its end-use product quality. Furthermore, rheological properties of MB-enriched flour at different levels (5%, 10%, and 15%) were explicated through farinograph and mixograph. Moreover, bread was prepared with the addition of MB-enriched flour and was characterized for nutritional and textural properties. Results showed that MB-enriched flour having high water absorption and water retaining potential up to 4%-7% as compared to wheat flour (WF). Moreover, dough height gradually decreased with the addition of MB due to water-binding ability of bran which causes a decrease in gas retention during fermentation. This resulted in bread volume decrease (4%-7%) as compared to WF. Furthermore, the moisture content and hardness increased with the addition of MB. The water activity of bread slightly increased with the addition of maize bran after 4-day storage. Conclusively, MB-enriched flour improved nutritional, textural, and sensorial properties of final product.
Collapse
Affiliation(s)
- Muzzamal Hussain
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Bushra Niaz
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Ali Ikram
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Shahzad Hussain
- Department of Food Science &Nutrition King Saud University RiyadhRiyadhSaudi Arabia
| | | | - Mohamed S. Alamri
- Department of Food Science &Nutrition King Saud University RiyadhRiyadhSaudi Arabia
| | | |
Collapse
|
17
|
Alzuwaid NT, Laddomada B, Fellows CM, Egan N, Sissons M. Supplementation of durum wheat spaghetti with wheat bran protein concentrate: Impacts on phytochemical profile and starch digestion. Cereal Chem 2021. [DOI: 10.1002/cche.10408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nabeel T. Alzuwaid
- School of Science and Technology University of New England Armidale NSW Australia
- NSW Department of Primary Industries Tamworth Agricultural Institute Tamworth NSW Australia
- University of Dhi‐Qar Nasiriyah Iraq
| | | | | | - Narelle Egan
- NSW Department of Primary Industries Tamworth Agricultural Institute Tamworth NSW Australia
| | - Mike Sissons
- NSW Department of Primary Industries Tamworth Agricultural Institute Tamworth NSW Australia
| |
Collapse
|
18
|
Cutillo S, Farahnaky A, Marcotuli I, Gadaleta A, Sissons M. In vitro
starch digestion and technological properties of spaghetti fortified with lupin protein isolate. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Silvia Cutillo
- NSW Department of Primary Industries Tamworth Agricultural Institute 4 Marsden Park Road Tamworth NSW2340Australia
- Department of Soil, Plant and Food Sciences University of Bari 'Aldo Moro' Via G. Amendola 165/A Bari Italy
| | - Asgar Farahnaky
- Biosciences and Food Technology School of Science RMIT University Bundoora West Campus Melbourne Vic.3083Australia
| | - Ilaria Marcotuli
- Department of Agricultural and Environmental Science University of Bari ‘Aldo Moro’ Via G. Amendola 165/A Bari70126Italy
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science University of Bari ‘Aldo Moro’ Via G. Amendola 165/A Bari70126Italy
| | - Mike Sissons
- NSW Department of Primary Industries Tamworth Agricultural Institute 4 Marsden Park Road Tamworth NSW2340Australia
| |
Collapse
|
19
|
Guiné RPF, Florença SG, Barroca MJ, Anjos O. The Link between the Consumer and the Innovations in Food Product Development. Foods 2020; 9:E1317. [PMID: 32962007 PMCID: PMC7554954 DOI: 10.3390/foods9091317] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
New lifestyles, higher incomes and better consumer awareness are increasing the demand for a year-round supply of innovative food products. In past decades, important developments have been achieved in areas related to food and the food industry. This review shows that factors influencing performance in new product development (NPD) are dynamic and continuously guiding project development. The data obtained by direct involvement of consumers can impact positively successful product development and enhance the company's financial performance. The study of consumer behaviour and attitudes towards new foods encompasses multiple aspects, such as preference, choice, desire to eat certain foods, buying intentions and frequency of consumption. Additionally, both the consumers' willingness to purchase and the willingness to pay a premium are important in NPD, launching and success.
Collapse
Affiliation(s)
- Raquel P. F. Guiné
- Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal;
| | - Sofia G. Florença
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4150-180 Porto, Portugal;
| | - Maria João Barroca
- Polytechnic Institute of Coimbra, Coimbra College of Agriculture, Bencanta, 3045-601 Coimbra, Portugal
- Department Chemistry, Molecular Physical-Chemistry R&D Unit, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Ofélia Anjos
- Polytechnic Institute of Castelo Branco, 6000-084 Castelo Branco, Portugal;
- CEF, Forest Research Centre, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
- CBP-BI, Plant Biotechnology Centre of Beira Interior, 6001-909 Castelo Branco, Portugal
| |
Collapse
|