1
|
Alcoléa M, Santana Junior MB, Oliveira KADM, Tussolini L, Leite MAG, Honorio-França AC, França EL, Pertuzatti PB. Bioactive compounds of honey from different regions of Brazil: the effect of simulated gastrointestinal digestion on antioxidant and antimicrobial properties. Food Funct 2024; 15:1310-1322. [PMID: 38197457 DOI: 10.1039/d3fo03620k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Monofloral and multifloral honey produced in different regions may have different bioactive compounds and antioxidant capacities, resulting in changes in the antimicrobial activity of honey. However, many of these compounds degrade due to the extreme digestion conditions, which may inhibit the antimicrobial activity. Given this context, this study aimed to describe the bioactive compounds of honey produced in Brazil and verify if honey samples from different botanical and geographical origins differ in bioactive compounds, and if honey maintains its antimicrobial activity after digestion simulation. Multivariate analysis was used to identify characteristics that differentiated the honey samples according to the botanical and geographical origin criteria. The amount of the bioactive compounds varied significantly: the total phenolic compound content varied from 20.49 to 101.44 mg GAE per 100 g, flavonoids varied from 1.41 to 13.52 mg QE per 100 g, phenolic acids varied from 13.61 to 56.41 mg CAE per 100 g, and carotenoids varied from 0.66 to 4.27 mg β-carotene per g. Multifloral honey (H22) produced in the dry season of northeastern Brazil presented the highest bioactive compound concentration except for the carotenoid content. HPLC-MS analysis showed the presence of six hydroxybenzoic acids, four hydroxycinnamic acids, eight flavonols, three flavanones, two flavones and two isoflavonoids; Pterodon pubescens monofloral honey (H14) from midwestern Brazil stood out in terms of the carotenoid content. All analyzed honey samples exhibited antimicrobial activity against Staphylococcus aureus and Escherichia coli bacteria before digestive process simulation, and bacteria were inhibited during in vitro digestion; this activity decreased during the simulation of the oral phase, remained in the gastric phase, and disappeared in the intestinal phase.
Collapse
Affiliation(s)
- Marla Alcoléa
- Universidade Federal de Mato Grosso, Programa de Pós-graduação em Imunologia e Parasitologia Básicas e Aplicadas, Instituto de Ciências Biológicas e da Saúde, Avenida Valdon Varjão 6390, 78600-000 Barra do Garças, Mato Grosso, Brazil.
| | - Marcel Bueno Santana Junior
- Universidade Federal de Mato Grosso, Engenharia de Alimentos, Instituto de Ciências Exatas e da Terra, Avenida Valdon Varjão 6390, 78600-000 Barra do Garças, Mato Grosso, Brazil
| | - Keily Alves de Moura Oliveira
- Universidade Federal de Mato Grosso, Engenharia de Alimentos, Instituto de Ciências Exatas e da Terra, Avenida Valdon Varjão 6390, 78600-000 Barra do Garças, Mato Grosso, Brazil
| | - Loyse Tussolini
- Universidade Federal de Mato Grosso, Engenharia de Alimentos, Instituto de Ciências Exatas e da Terra, Avenida Valdon Varjão 6390, 78600-000 Barra do Garças, Mato Grosso, Brazil
| | - Mércia Aurélia Gonçalves Leite
- Universidade Federal de Mato Grosso, Engenharia de Alimentos, Instituto de Ciências Exatas e da Terra, Avenida Valdon Varjão 6390, 78600-000 Barra do Garças, Mato Grosso, Brazil
| | - Adenilda Cristina Honorio-França
- Universidade Federal de Mato Grosso, Programa de Pós-graduação em Imunologia e Parasitologia Básicas e Aplicadas, Instituto de Ciências Biológicas e da Saúde, Avenida Valdon Varjão 6390, 78600-000 Barra do Garças, Mato Grosso, Brazil.
| | - Eduardo Luzia França
- Universidade Federal de Mato Grosso, Programa de Pós-graduação em Imunologia e Parasitologia Básicas e Aplicadas, Instituto de Ciências Biológicas e da Saúde, Avenida Valdon Varjão 6390, 78600-000 Barra do Garças, Mato Grosso, Brazil.
| | - Paula Becker Pertuzatti
- Universidade Federal de Mato Grosso, Programa de Pós-graduação em Imunologia e Parasitologia Básicas e Aplicadas, Instituto de Ciências Biológicas e da Saúde, Avenida Valdon Varjão 6390, 78600-000 Barra do Garças, Mato Grosso, Brazil.
- Universidade Federal de Mato Grosso, Engenharia de Alimentos, Instituto de Ciências Exatas e da Terra, Avenida Valdon Varjão 6390, 78600-000 Barra do Garças, Mato Grosso, Brazil
| |
Collapse
|
2
|
Wang Y, Wang X, Huang Y, Liu C, Yue T, Cao W. Identification and biotransformation analysis of volatile markers during the early stage of Salmonella contamination in chicken. Food Chem 2024; 431:137130. [PMID: 37591139 DOI: 10.1016/j.foodchem.2023.137130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Salmonella is one of the most prevalent foodborne pathogens in poultry and its products. Its rapid detection based on volatile organic compounds (VOC) has been widely accepted. However, the variation in the VOCs of Salmonella-contaminated chicken during the early stage (48 h) remains uncertain. Headspace-SPME-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace-gas chromatography-ion migration spectroscopy (HS-GC-IMS) were used to identify VOCs and their variations after the chicken meat was contaminated with Salmonella. Chemometric and KEGG enrichment analyses were performed to identify VOC markers and their potential metabolic pathways. A total of 64 volatile compounds were detected using HS-GC-IMS, which showed a better differentiation than HS-SPME-GC-MS (45 volatile compounds) based on principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA). Fatty acid degradation was the main cause of VOC variation. 2-Propanol, hexadecane, 3-methylbutanol, acetic acid, propyl acetate, acetic acid methyl ester, and 3-butenenitrile were identified as VOC markers in the middle stage of decomposition, and 1-octen-3-ol was recognized as a VOC marker of Salmonella-contaminated chicken during the first 48 h of contamination. This provides a theoretical basis for the study of Salmonella contamination VOC markers in poultry meat.
Collapse
Affiliation(s)
- Yin Wang
- Department of Food Science, College of Food Science and Technology, Northwest University (China), Xi'an, Shaanxi 710069, China.
| | - Xian Wang
- Department of Food Science, College of Food Science and Technology, Northwest University (China), Xi'an, Shaanxi 710069, China
| | - Yuanyuan Huang
- Department of Food Science, College of Food Science and Technology, Northwest University (China), Xi'an, Shaanxi 710069, China
| | - Cailing Liu
- Department of Food Science, College of Food Science and Technology, Northwest University (China), Xi'an, Shaanxi 710069, China
| | - Tianli Yue
- Department of Food Science, College of Food Science and Technology, Northwest University (China), Xi'an, Shaanxi 710069, China
| | - Wei Cao
- Department of Food Science, College of Food Science and Technology, Northwest University (China), Xi'an, Shaanxi 710069, China
| |
Collapse
|
3
|
Wang H, Li L, Lin X, Bai W, Xiao G, Liu G. Composition, functional properties and safety of honey: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6767-6779. [PMID: 37209396 DOI: 10.1002/jsfa.12720] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/22/2023]
Abstract
Honey has been used not only as a food source but also for medicinal purposes. Recent studies have indicated that honey exhibits antioxidant, hepatoprotective, hypolipidemic, hypoglycemic and anti-obesity properties, as well as anticancer, anti-atherosclerotic, hypotensive, neuroprotective and immunomodulatory activities. These health benefits of honey could be attributed to its wide range of nutritional components, including polysaccharides and polyphenols, which have been proven to possess various beneficial properties. It is notable that the composition of honey can also be affected by nectar, season, geography and storage condition. Moreover, the safety of honey requires caution to avoid any potential safety incidents. Therefore, this review aims to provide recent research regarding the chemical composition, biological activities and safety of honey, which might be attributed to comprehensive utilization of honey. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lantao Li
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaohui Lin
- School of Biosystems and Food Engineering, University College Dublin (UCD), Belfield, Ireland
| | - Weidong Bai
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gongliang Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
4
|
Guo J, Ding Q, Zhang Z, Zhang Y, He J, Yang Z, Zhou P, Gong X. Evaluation of the Antioxidant Activities and Phenolic Profile of Shennongjia Apis cerana Honey through a Comparison with Apis mellifera Honey in China. Molecules 2023; 28:molecules28073270. [PMID: 37050033 PMCID: PMC10097088 DOI: 10.3390/molecules28073270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
This study evaluates the phenolic profile as well as the antioxidant properties of Shennongjia Apis cerana honey through a comparison with Apis mellifera honey in China. The total phenolic content (TPC) ranges from 263 ± 2 to 681 ± 36 mg gallic acid/kg. The total flavonoids content (TFC) ranges from 35.9 ± 0.4 to 102.2 ± 0.8 mg epicatechin/kg. The correlations between TPC or TFC and the antioxidant results (FRAP, DPPH, and ABTS) were found to be statistically significant (p < 0.01). Furthermore, the phenolic compounds are quantified and qualified by high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS), and a total of 83 phenolic compounds were tentatively identified in this study. A metabolomics analysis based on the 83 polyphenols was carried out and subjected to principal component analysis and orthogonal partial least squares-discriminant analysis. The results showed that it was possible to distinguish Apis cerana honey from Apis mellifera honey based on the phenolic profile.
Collapse
Affiliation(s)
- Jingwen Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qiong Ding
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiwei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jianshe He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zong Yang
- AB Sciex Co., Ltd., Beijing 100102, China
| | - Ping Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Effect of Liquefaction of Honey on the Content of Phenolic Compounds. Molecules 2023; 28:molecules28020714. [PMID: 36677771 PMCID: PMC9861181 DOI: 10.3390/molecules28020714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Thermal liquefaction at low temperature is very time consuming and microwaves or an ultrasonic bath can be used to accelerate the process of dissolving sugar crystals. Phenolic compounds, such as phenolic acids or flavonoids, are an important group of secondary metabolites of plants and become honey from the nectar of blossoms. In this study, how the content of phenolic acids and flavones in honey were affected by liquefaction of honey using a microwave oven was studied. The concentration of tested compounds in untreated honey and in honey liquefied in a hot water bath, ultrasonic bath and microwave oven at four microwave power levels were determined by reversed phase liquid chromatography combined with multichannel electrochemical detection. A significant decrease in the content of all compounds was observed for all melting treatments. The phenolic compounds concentration decreased on average by 31.1-35.5% using microwave at intensities 270, 450 and 900 W and the time required for the sugar crystal melting was more than 20 times less than in the case of the 80 °C water bath. The temperature of samples after the end of microwave liquefaction was 76-89 °C. Significantly higher losses of phenolic compounds were observed during ultrasound treatment (48.5%), although the maximum temperature of honey was 45 °C, and at the lowest microwaves power (50.6%).
Collapse
|
6
|
Lin T, Huang L, Cheng N, Wang Y, Ning Z, Huang S, Wu Y, Chen T, Su S, Lin Y. The in vitro and in vivo antibacterial activities of uniflorous honey from a medicinal plant, Scrophularia ningpoensis Hemsl., and characterization of its chemical profile with UPLC-MS/MS. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115499. [PMID: 35752262 DOI: 10.1016/j.jep.2022.115499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Compendium of Materia Medica, honey has been used as a traditional medicine in treatment against mucositis, tinea, hemorrhoids and psoriasis. In complementary medicine, due to its significant antimicrobial activity, honey has been widely used as a remedy for skin wounds and gastrohelcosis for thousands of years. AIM OF THE STUDY This study is aimed at exploring the antimicrobial activity and mechanisms of honey sourced from medicinal plants, and revealing the composition-activity relationship, to facilitate their complementary and alternative application in the therapy of bacterial infectious diseases. MATERIALS AND METHODS Eight kinds of medicinal plant-derived uniflorous honey, native to China, were gathered. Their antimicrobial activities were evaluated in vitro, and then in vivo with the systemically infected mouse model and the acute skin infection model. SYTOX uptake assay, scanning electron microscopy, DNA binding assay, and quantitative real-time PCR, were carried out to elucidate the antibacterial mechanisms. This was followed by an investigation of the componential profile with the UPLC-MS/MS technique. RESULTS It was found that Scrophularia ningpoensis Hemsl. (figwort) honey (S. ningpoensis honey) exhibited broad-spectrum and the strongest antibacterial potency (MICs of 7.81-125.00%, w/v), comparable to manuka honey. In the in vivo assays, S. ningpoensis honey significantly decreased the bacterial load of the muscles under the acute MRSA-infected skin wounds; the sera level of TNF-α in the S. aureus and P. aeruginosa-infected mice decreased by 45.38% and 51.75%, respectively, after the treatment of S. ningpoensis honey (125 mg/10 g). It was capable of killing bacteria through disrupting the cell membranes and the genomic DNA, as well as down-regulating the expression of genes associated with virulence, biofilm formation and invasion, including icaA, icaD, eno, sarA, agrA, sigB, fib and ebps in S. aureus, and lasI, lasR, rhlI, rhlR and algC in P. aeruginosa. Apart from H2O2, some other nonperoxide compounds such as adenosine, chavicol, 4-methylcatechol, trehalose, palmitoleic acid and salidroside, might play a vital role in the antibacterial properties of S. ningpoensis honey. CONCLUSIONS This is the first study to thoroughly investigate the antibacterial activity, mode of action, and componential profile of S. ningpoensis honey. It suggested that S. ningpoensis honey might be a potential supplement or substitute for manuka honey, for the prevention or treatment of bacterial infections. It will facilitate the precise application of medicinal plant-sourced honey, provide a new thread for the development of antibacterial drugs, and assist in the distinction of different kinds of honey.
Collapse
Affiliation(s)
- Tianxing Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lei Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ningna Cheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuzhen Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhen Ning
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaokang Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanhua Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
7
|
Valverde S, Ares AM, Stephen Elmore J, Bernal J. Recent trends in the analysis of honey constituents. Food Chem 2022; 387:132920. [DOI: 10.1016/j.foodchem.2022.132920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/19/2022]
|
8
|
Xing M, Yao J, Guo Y, Xin R, Yu Y, Shi E, Hao M, Fei P, Kang H, Chen J. Antibacterial Effect of Chrysanthemum Buds' Crude Extract Against Salmonella Typhimurium and Potential Application in Cooked Chicken. Foodborne Pathog Dis 2022; 19:297-303. [PMID: 35363059 DOI: 10.1089/fpd.2021.0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to clarify the antibacterial activity and mechanism of Chrysanthemum buds' crude extract (CBCE) against Salmonella Typhimurium, and explore the potential application in cooked chicken. The zone of inhibition (ZI), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) were used to assess the in vitro antibacterial activity of CBCE against Salmonella Typhimurium. The antibacterial mechanism was elucidated by revealing the changes in intracellular adenosine 5'-triphosphate (ATP) concentration, membrane potential, content of biomacromolecule, and cell morphology. Furthermore, the effect of CBCE on the counts of Salmonella Typhimurium and color of cooked chicken during storage was studied. The results showed that the ZI, MIC, and MBC of CBCE against Salmonella Typhimurium were 12.9 ± 0.53-13.6 ± 0.14 mm, 40, and 80 mg/mL, respectively. In the process of inhibiting Salmonella Typhimurium by CBCE, the reduction of intracellular ATP concentration, cell membrane depolarization, leakage of protein and nucleic acid, and destruction of cell morphology were observed. Moreover, after treatments with CBCE, the growth of Salmonella Typhimurium in cooked chicken was significantly inhibited (p < 0.05) compared with the control group. No significant differences (p > 0.05) in lightness (L*), redness (a*), and yellowness (b*) values of cooked chicken were found between untreated and treated samples, as well as the color of cooked chicken treated with CBCE did not change significantly (p > 0.05) during the six days of storage. Overall, our findings suggested that CBCE exhibited the antibacterial effect against Salmonella Typhimurium, and had the potential to be used as a natural food preservative for the control of Salmonella Typhimurium in chicken products.
Collapse
Affiliation(s)
- Min Xing
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Jiyun Yao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yiming Guo
- School of Public Health, University of Washington, Seattle, Washington, USA
| | - Ru Xin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yaping Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Encong Shi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Mengdi Hao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Peng Fei
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Huaibin Kang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Junliang Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
9
|
Saltatory Rolling Circle Amplification-Based Ratiometric Electrochemical Biosensor for Rapid Detection of Salmonella enterica serovar Typhimurium in Food. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Gu S, Zhang J, Wang J, Wang X, Du D. Recent development of HS-GC-IMS technology in rapid and non-destructive detection of quality and contamination in agri-food products. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Feng D, Wang J, He Y, Ji X, Tang H, Dong Y, Yan W. HS-GC-IMS detection of volatile organic compounds in Acacia honey powders under vacuum belt drying at different temperatures. Food Sci Nutr 2021; 9:4085-4093. [PMID: 34401060 PMCID: PMC8358364 DOI: 10.1002/fsn3.2364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 11/12/2022] Open
Abstract
Honey is a commodity of great nutritional value, but deep-processed honey products are uncommon. Herein, we used vacuum belt dryer to dry Acacia honey at 60°C, 70°C, and 80°C, prepared it into powder, and analyzed its volatile compound differences. We established HS-GC-IMS method to detect the volatile organic compounds (VOCs) of these three Acacia honey powders (AHPs). In total, 77 peaks were detected, and 23 volatile compounds were identified, including eight aldehydes, six ketones, three furans, one alcohol, one phenol, one lactone, one ester, one acid, and one nitrile. Moreover, principal component analysis (PCA) and fingerprint similarity analysis based on the Euclidean distance distinguished the three heating temperature treatments. Clearly, it was concluded that there are significant differences in volatile substances at different tested temperatures, and when the AHP was incubated at 80°C, more volatile compounds were detected.
Collapse
Affiliation(s)
- Duo Feng
- College of Biochemical EngineeringBeijing Union UniversityBeijingChina
| | - Jing Wang
- Institute of Food and Nutrition DevelopmentMinistry of Agriculture and Rural AffairsBeijingChina
| | - Yue He
- College of Biochemical EngineeringBeijing Union UniversityBeijingChina
| | - Xiao‐jiao Ji
- College of Biochemical EngineeringBeijing Union UniversityBeijingChina
| | - Hui Tang
- Beijing Tongrentang bee products (Jiangshan) Co., LtdJiangshanChina
| | - Yong‐mei Dong
- Beijing Tongrentang bee products (Jiangshan) Co., LtdJiangshanChina
| | - Wen‐jie Yan
- College of Biochemical EngineeringBeijing Union UniversityBeijingChina
| |
Collapse
|
12
|
The botanical sources, entomological proteome and antibiotic properties of wild honey. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|