1
|
Wei L, Gan W, Cai M, Cai H, Zhang G, Cheng X. Development of a novel HPLC-CDCL method utilizing nitrogen-doped carbon dots for sensitive and selective detection of dithiocarbamate pesticides in tea. Food Chem 2024; 458:140237. [PMID: 38996488 DOI: 10.1016/j.foodchem.2024.140237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
In this study, S-methyl derivatives of dithiocarbamates (DTCs) were shown to significantly enhance chemiluminescence (CL) between Ce(IV) and efficient and environmentally friendly nitrogen-doped carbon dots (NCDs). Based on the elucidation of the CL mechanisms, an innovative approach involving high-performance liquid chromatography coupled with N-CDs and CL detection (HPLC-CDCL) was proposed. The developed method was successfully applied to the highly sensitive detection of three DTC fungicides (dimethyl dithiocarbamate, ethylene bisdithiocarbamate, and propylene bisdithiocarbamate) in tea. The recovery of the established method ranged 70.51-116.45%, with relative standard deviations (RSD) of <9.40%. The limit of detection (S/N = 3) was as low as 0.19 μg/L (as CS2), which is superior to the previous methods and comparable to UPLC-tandem mass spectrometry (MS/MS). Moreover, the proposed approach does not require solid-phase extraction and offers excellent selectivity. This study proposes a novel method for the detection of DTCs in the food safety and environmental fields.
Collapse
Affiliation(s)
- Lijun Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China.
| | - Weimin Gan
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Mengdie Cai
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Hongping Cai
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China.
| | - Xianglei Cheng
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
2
|
Sajwan RK, Kumar Himanshu J, Solanki PR. Polyvinyl alcohol-derived-carbon quantum dots based fluorometric "On-Off" probe for moxifloxacin detection in milk and egg samples. Food Chem 2024; 439:138038. [PMID: 38041884 DOI: 10.1016/j.foodchem.2023.138038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/04/2023]
Abstract
Unconditional use of antibiotics triggered the process of bacterial resistance and causes major health problems. Nowadays, antibiotics majorly used in animals not only for infection treatment but also as mass promotor. The excess amount of antibiotics residue in animal derived foods which accelerate antibiotic resistance (ABR). So, here, a simple and quick carbon quantum dots(CQDs) based fluorometric "On-Off" probe was developed for detection of moxifloxacin (MOXI) in milk and egg samples. The CQDs emits blue emission and are uniformly distributed with average particle size 5.9 ± 0.22 nm. With MOXI, fluorescence intensity of CQDs at 372 nm decreased due to inner filter effect (IFE) and a new peak appeared at 508 nm correspondence to MOXI. The probe shows linear response with MOXI concentration varies as 0.025 µM - 15.0 µM with lower detection limit (LOD) of 6.34 nM. The real sample applicability test proved that the sensors have excellent efficacy for food applications.
Collapse
Affiliation(s)
- Reena K Sajwan
- Nano-bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jayendra Kumar Himanshu
- Nano-bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India; Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Pratima R Solanki
- Nano-bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
Nethaji P, Revathi P, Senthil Kumar P, Logesh M, Rajabathar JR, Al-Lohedan HA, Arokiyaraj S, Rangasamy G. Fluorescence enhancing and quenching signal based on new approach for selective detection of multiple organochlorine pesticides using blue emissive-carbon dot. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123418. [PMID: 38307243 DOI: 10.1016/j.envpol.2024.123418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Measuring the concentration of organochlorine pesticides (OCPs) in agriculture has engaged significant awareness for healthcare investigation since OCPs are harmful to many physiological processes. Excessive usage of these compounds can result in major contamination of the environment and food supply chains. As a result, more accurate and rapid ways to detect pesticide residues in food are required. In this work, we have portrayed the surface-engineered fluorescent blue emissive-carbon dot (B-CD) with a high quantum yield (49.3 %) via the hydrothermal method for fluorescent sensing of OCPs on real samples. The amine group functionalities of carbon dots have supported the direct coordination with -Cl and -OH groups of HEP, ENS, CDF and 2,4-DPAC for the sensitive detection of OCPs, by switching in the fluorescent intensity of B-CD. The functional group of OCPs exhibits a variety of binding interactions with B-CD to contribute a complex formation, which leads to static quenching via an insubstantial restricted electron transfer process. The synthesized carbon dots exhibit individuality in binding nature towards different OCPs. Fluorescence studies help to distinguish the target OCPs and their low detection limits (LODs) were 0.002, 0.099, 0.16 and 0.082 μM for Heptachlor (HEP - turn "on"), Endosulfan (ENS), Chlordimeform (CDF) and 2,4-dichlorophenoxyacetic acid (2,4-DPAC - turn "off") OCPs respectively. The real water samples and agriculture food samples were effectively investigated and the OCP toxicity was noted. Thus, the design of the fluorescence sensor is established as an easy and proficient sensing method for detecting OCPs.
Collapse
Affiliation(s)
- P Nethaji
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamil Nadu, India
| | - P Revathi
- Department of Chemistry, Annamalai University, Chidambaram, 608 002, Tamil Nadu, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - M Logesh
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Jothi Ramalingam Rajabathar
- Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - H A Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - S Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Seoul, 05006, South Korea
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
4
|
Chaudhary M, Singh P, Singh GP, Rathi B. Structural Features of Carbon Dots and Their Agricultural Potential. ACS OMEGA 2024; 9:4166-4185. [PMID: 38313515 PMCID: PMC10831853 DOI: 10.1021/acsomega.3c04638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 02/06/2024]
Abstract
Carbon dots (CDs) have drawn attention due to their enticing physical, chemical, and surface properties. Besides, good conductivity, low toxicity, environmental friendliness, simple synthetic routes, and comparable optical properties are advantageous features of CDs. Further, recently, CDs have been explored for biological systems, including plants. Among biological systems, only plants form the basis for sustainability and life on Earth. In this Review, we reviewed suitable properties and applications of CDs, such as promoting the growth of agricultural plants, disease resistance, stress tolerance, and target transportation. Summing up the available studies, we believe that the applications of CDs are yet to be explored significantly for innovation and technology-based agriculture.
Collapse
Affiliation(s)
- Monika Chaudhary
- Department
of Chemistry, Hansraj College, University
of Delhi, Delhi 110007, India
| | - Priyamvada Singh
- Department
of Chemistry, Miranda House, University
of Delhi, Delhi 110007, India
| | - Gajendra Pratap Singh
- Disruptive
and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology
(SMART), 138602 Singapore
| | - Brijesh Rathi
- Department
of Chemistry, Hansraj College, University
of Delhi, Delhi 110007, India
| |
Collapse
|
5
|
Nguyen QK, Nguyen DT, Pham TMA, Pham B, Nguyen TAH, Pham TD, Sharma S, Pham DT, Gangavarapu RR, Pham TNM. A highly sensitive fluorescence nanosensor for determination of amikacin antibiotics using composites of carbon quantum dots and gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123466. [PMID: 37778174 DOI: 10.1016/j.saa.2023.123466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Amikacin is an aminoglycoside antibiotic widely used to treat various bacterial infections in humans. However, elevated concentrations of amikacin can damage the cochlear nerve. Thus, accurate and rapid amikacin detection is crucial. In this study, we developed an "on-off" fluorescence nanosensor for highly sensitive amikacin determination based on a composite of carbon quantum dots (CQDs) and gold nanoparticles (AuNPs). The method quenches CQD fluorescence (turn-off) when they bind to AuNPs but restores it (turn-on) when amikacin binds and releases the CQDs. Adding Cu2+ enhances sensitivity by cross-linking amikacin-coated AuNPs. Under optimal conditions (pH 4, 1 mM Na2SO4, 1 mM CuSO4), the method achieved a low detection limit of 3.5 × 10-11 M (0.02 ppb), a wide linear range (10-10 to 10-8 M), high precision (RSD < 5 %), and a rapid 2-minute response time. Exceptional selectivity was observed over other antibiotics. The CQDs/AuNPs-based sensor successfully detected amikacin in pharmaceutical and surface water samples. This approach offers a fast on-site analytical method for amikacin detection, with potential applications in clinical and environmental settings.
Collapse
Affiliation(s)
- Quang Khanh Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 11000, Vietnam; Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Dinh Thi Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 11000, Vietnam
| | - Thi Mai Anh Pham
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 11000, Vietnam
| | - Bach Pham
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 11000, Vietnam
| | - Thi Anh Huong Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 11000, Vietnam
| | - Tien Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 11000, Vietnam
| | - Shuchi Sharma
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Duc Thang Pham
- Phenikaa University Nano Institute, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam; Faculty of Materials Science and Engineering, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
| | - Ranga Rao Gangavarapu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Thi Ngoc Mai Pham
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 11000, Vietnam.
| |
Collapse
|
6
|
Sajwan RK, Solanki PR. Gold@Carbon Quantum Dots Nanocomposites Based Two-In-One Sensor: A Novel Approach for Sensitive Detection of Aminoglycosides Antibiotics in Food Samples. Food Chem 2023; 415:135590. [PMID: 36870212 DOI: 10.1016/j.foodchem.2023.135590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Antibiotics are life-saving drugs for humans, but their unwanted use leads to antibacterial resistance (ABR) and causes serious health problems. The excess of these antibiotics entered to the food chain and caused food contamination. Here, Au@CQDs nanocomposites (NCs) was used as a two-in-one sensor to detect two antibiotics. The color change of AuNCs and fluorescence resonance energy transfer are two distance-dependent phenomena used as sensing mechanisms. In the sensing process, Au@CQDs NCs change their color, enhancing the fluorescence intensity of NCs in the presence of Gentamicin (GENTA) and Kanamycin (KMC) antibiotics. The limit of detection of 116 nM and 133 nM for GENTA and 195 nM and 120 nM for KMC have been achieved with colorimetric and fluorimetric readout, respectively. The practicality of the reported sensor was evaluated in real spiked samples and showed excellent recovery efficiency. Therefore this two-in-one sensor can be used for the food monitoring system.
Collapse
Affiliation(s)
- Reena K Sajwan
- Nano-bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pratima R Solanki
- Nano-bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
7
|
Duan XH, Li HW, Wu Y. A smart ratiometric fluoresence and colorimetry dual-responsive sensor for morin determination based on the complex between carbon quantum dots and polyethyleneimine. Anal Chim Acta 2023; 1243:340814. [PMID: 36697177 DOI: 10.1016/j.aca.2023.340814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
As a representative flavonoid, morin exhibits multi-biological activities, but its abuse endangers human health. Developing advanced technology for morin determination is urgently needed. In this study, a dual-responsive approach was reported for morin based on the complexing of carbon quantum dots (CQDs) and polyethyleneimine (PEI). The CQDs were fabricated via an improved hydrothermal method employing tyrosine and malic acid. Binding with PEI induced an 8-fold emission enhancement and a slight red-shift to 445 nm of CQDs because of the complexing of PEI and CQDs. Further morin introduction led to the blue emission (445 nm) quenching of CQDs-PEI and a yellow emission (560 nm) generation, which contributed a ratiometric fluorescence approach for morin determination between 2.0 and 32 μM, with a limit of detection (LOD) of 45 nM. Meanwhile, under sunlight the color of CQDs-PEI became yellow upon morin addition, which developed a colorimetric method for morin determination in a wide range between 2.0 and 100 μM (LOD = 69 nM). The developed dual-responsive method either displayed accurate results for morin in diluted human and bovine serum, being potential for actual sample analysis. Finally, a visual detection based on the smartphone was constructed and applied for the real-time determination of morin.
Collapse
Affiliation(s)
- Xin-He Duan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun, 130023, PR China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun, 130023, PR China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun, 130023, PR China.
| |
Collapse
|
8
|
A dual-mode ratiometric fluorescence and smartphone-assisted colorimetric sensing platform based on bifunctional Fe,Co-CQD for glucose analysis at physiological pH. Anal Chim Acta 2023; 1239:340701. [PMID: 36628711 DOI: 10.1016/j.aca.2022.340701] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/05/2022]
Abstract
Diabetes is a common and fatal chronic metabolic disease characterized by hyperglycemia, and thus monitoring blood glucose level is essential for early screening and timely control of disease. Herein, we have prepared the bifunctional iron and cobalt co-doped carbon quantum dot (Fe,Co-CQD) with good optical properties and peroxidase-mimetic catalytic activity toward specific substrate o-phenylenediamine (OPD) under alkaline condition. Glucose oxidase (GOx) specifically catalyzes the oxidation of glucose into H2O2, and Fe,Co-CQD subsequently triggers a reaction between H2O2 and OPD to form yellow product DAP with a distinct UV absorption peak at 420 nm. Simultaneously, the generated DAP also appears a well-defined fluorescence signal at 555 nm, which can suppress the intrinsic fluorescence peak of Fe,Co-CQD (439 nm) owing to the inner filter effect (IFE). Based on this principle, a dual-mode ratiometric fluorescence and colorimetric sensing platform has been constructed for glucose analysis at physiological pH, which reveals the advantages of excellent accuracy, high throughput, simple operation, and low cost. More importantly, a smartphone-assisted colorimetric sensing system based on a portable visual detection kit and a 3D printing smartphone-based device has been constructed, which enables on-site detection of glucose in complex serum samples without laboratory instruments, indicating its potential practical application prospect.
Collapse
|
9
|
Rasheed T. Carbon dots as robust class of sustainable and environment friendlier nano/optical sensors for pesticide recognition from wastewater. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Liu D, Zhao Y, Ji J, Liu X, Feng S, Chen X. Design of fluorescence system based on rutin functionalized gold nanoparticles: Sensitive detection of etimicin via a smartphone in the food and human samples. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
11
|
Hu A, Chen G, Yang T, Ma C, Li L, Gao H, Gu J, Zhu C, Wu Y, Li X, Wei Y, Huang A, Qiu X, Xu J, Shen J, Zhong L. A fluorescent probe based on FRET effect between carbon nanodots and gold nanoparticles for sensitive detection of thiourea. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121582. [PMID: 35835057 DOI: 10.1016/j.saa.2022.121582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Illegal abuse results in the presence of thiourea (TU) in soil, wastewater, and even fruits, which is harmful for the environment and human health. It has urgent practical significance to design an efficient and reliable probe for TU detection. Herein, a sensitive fluorescent probe with off-on response for harmful TU was reported. The probe was designed with fluorescent carbon nanodots (CNDs) and gold nanoparticles (AuNPs) based on fluorescence resonance energy transfer (FRET) effect. Firstly, the CNDs were pre-combined with AuNPs and the fluorescence of CNDs was quenched due to the FRET effect. Upon addition of TU, the fluorescence of CNDs recovered due to the unbinding of CNDs and AuNPs, since the coordination interaction between TU and AuNPs is stronger than the electrostatic interaction among CNDs and AuNPs. Under the optimum parameters, a linear relationship was found between the relative fluorescence intensity of the probe and the concentration of TU in the range of 5.00 × 10-8-1.00 × 10-6 M (R2 = 0.9958), with the limit of detection (LOD) calculated to be 3.62 × 10-8 M. This proposed method is easy to operate and has excellent selectivity and sensitivity for TU, which can be effectively applied in environmental water and compound fruit-vegetable juice.
Collapse
Affiliation(s)
- Anqi Hu
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Guoqing Chen
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China.
| | - Taiqun Yang
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Chaoqun Ma
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Lei Li
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Hui Gao
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Jiao Gu
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Chun Zhu
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Yamin Wu
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Xiaolin Li
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Yitao Wei
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Anlan Huang
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Xiaoqian Qiu
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Jinzeng Xu
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Jialu Shen
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Lvyuan Zhong
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| |
Collapse
|
12
|
Tian H, Hong J, Li C, Qiu Y, Li M, Qin Z, Ghiladi RA, Yin X. Electrospinning membranes with Au@carbon dots: Low toxicity and efficient antibacterial photothermal therapy. BIOMATERIALS ADVANCES 2022; 142:213155. [PMID: 36308860 DOI: 10.1016/j.bioadv.2022.213155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
As bacterial infections continue to pose a significant challenge to healthcare globally, new therapeutic strategies, interventions, and complementary approaches that address both infection prevention and treatment are needed. As one such strategy, photothermal therapy (PTT) as a non-chemotherapeutic approach is considered a safe and potentially efficient strategy to combat bacterial infections, particularly for antibiotic-resistant pathogens given that PTT operates via a temperature-dependent process against which the development of bacterial resistance is unlikely. Here, we prepared Au@CDs composite nanoparticles (Au@CD) comprised of gold nanoparticles (AuNPs) and carbon dots (N,S-CDs), and investigated their use as a photothermal agent in PTT. The presence of the CDs as surface decorations conferred improved photothermal conversion efficiency, photostability, and biocompatibility to the Au@CD when compared to the parent AuNPs. To investigate if the Au@CD could serve as a PTT wound dressing and accelerate tissue repair, they were embedded within a PVA membrane via electrospinning. The resultant Au@CD membrane exhibited excellent biocompatibility and photothermal antimicrobial activity. In vitro photothermal antibacterial inactivation studies confirmed their efficacy against S. aureus and E. coli (99 + % inactivation of both pathogens under NIR irradiation). Moreover, in vivo studies employing Kunming male mice with S. aureus-infected wounds on their backs were chosen as a trauma model, with the Au@CD membranes serving as wound dressings. The results showed that a local temperature increased up to 50 °C upon NIR irradiation could effectively eradicate bacteria at the wound site, reduce the risk of bacterial infection, suppress inflammation as well as improve collagen deposition and angiogenesis, all of which together facilitated wound closure and resulted in a better therapeutic effect than the controls. Taken together, this work confirms that NIR-irradiated Au@CD-based membranes and related materials are promising photothermal antimicrobial platforms for wound dressings and related healthcare applications.
Collapse
Affiliation(s)
- Hua Tian
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China
| | - Jixuan Hong
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China
| | - Changgui Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China
| | - Yuheng Qiu
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China
| | - Mengting Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China.
| | - Ziyu Qin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China.
| |
Collapse
|
13
|
Liu ZA, Zuo YN, Xia Y, Sun J, Zhu S. Enhanced detection of ascorbic acid with cascaded fluorescence recovery of a dual-nanoquencher system. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3632-3637. [PMID: 36052693 DOI: 10.1039/d2ay01019d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An innovative strategy with target-triggered cascade fluorescence recovery of a dual-nanoquencher system was developed to detect ascorbic acid (AA). Herein, manganese dioxide (MnO2) nanosheets and gold nanoparticles (AuNPs) were used as nanoquenchers simultaneously. Owing to their synergistic effects, the fluorescence of 2,3-diaminophenazine (DAP) was decreased efficiently, thus minimizing the background fluorescence. The introduction of AA triggered the decomposition of MnO2 into Mn2+, which induced the aggregation of AuNPs. Both the decomposed MnO2 and aggregated AuNPs possess weak quenching abilities towards DAP. Such a cascade amplification strategy enhanced the detection sensitivity for AA with a LOD as low as 6.7 nM, which was two orders of magnitude lower than that of MnO2-based fluorescence assay. Furthermore, this amplification strategy was successfully applied to detect AA in food samples.
Collapse
Affiliation(s)
- Zhi-Ang Liu
- TEM Laboratory, Experimental Teaching and Equipment Management Center, Qufu Normal University, Qufu City, 273165, Shandong, China
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| | - Ya-Nan Zuo
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| | - Yinghui Xia
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining City, 810001, Qinghai, China
| | - Shuyun Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| |
Collapse
|
14
|
Shen H, Wan Y, Wu X, Zhang Y, Li J, Cui T, Sun H, Cui H, He K, Hui G, Chen X, Liu G, Du M. Hapten designs based on aldicarb for the development of a colloidal gold immunochromatographic quantitative test strip. Front Nutr 2022; 9:976284. [PMID: 36082035 PMCID: PMC9446148 DOI: 10.3389/fnut.2022.976284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 12/01/2022] Open
Abstract
The common carbamate insecticide aldicarb is considered one of the most acutely toxic pesticides. Herein, rational design was used to synthesize two haptens with spacers of different carbon chain lengths. The haptens were then used to immunize mice. The antibodies obtained were evaluated systematically, and a colloidal gold immunochromatographic strip was developed based on an anti-aldicarb monoclonal antibody. The 50% inhibition concentration and linear range of anti-aldicarb monoclonal antibody immunized with Hapten 1 were 0.432 ng/mL and 0.106–1.757 ng/mL, respectively. The cross-reactivities for analogs of aldicarb were all <1%. The limit of detection of the colloidal gold immunochromatographic strip was 30 μg/kg, and the average recoveries of aldicarb ranged from 80.4 to 110.5% in spiked samples. In the analysis of spiked samples, the test strip could accurately identify positive samples detected by the instrumental method in the GB 23200.112-2018 standard but produced some false positives for negative samples. This assay provides a rapid and accurate preliminary screening method for the determination of aldicarb in agricultural products and environments.
Collapse
Affiliation(s)
- Hong Shen
- Biological Inspection Department, Zhejiang Institute for Food and Drug Control, Hangzhou, China
| | - Yuping Wan
- Beijing Kwinbon Biotechnology Co., Ltd., Beijing, China
- Beijing Engineering Research Centre of Food Safety Immunodetection, Beijing, China
| | - Xiaosheng Wu
- Beijing Kwinbon Biotechnology Co., Ltd., Beijing, China
- Beijing Engineering Research Centre of Food Safety Immunodetection, Beijing, China
| | - Yu Zhang
- Beijing Kwinbon Biotechnology Co., Ltd., Beijing, China
- Beijing Engineering Research Centre of Food Safety Immunodetection, Beijing, China
| | - Jingwen Li
- Beijing Center for Physical and Chemical Analysis, Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, China
| | - Tingting Cui
- Beijing Kwinbon Biotechnology Co., Ltd., Beijing, China
- Beijing Engineering Research Centre of Food Safety Immunodetection, Beijing, China
| | - Han Sun
- Biological Inspection Department, Zhejiang Institute for Food and Drug Control, Hangzhou, China
| | - Haifeng Cui
- Beijing Kwinbon Biotechnology Co., Ltd., Beijing, China
- Beijing Engineering Research Centre of Food Safety Immunodetection, Beijing, China
| | - Kailun He
- Biological Inspection Department, Zhejiang Institute for Food and Drug Control, Hangzhou, China
| | - Guangpeng Hui
- Beijing Kwinbon Biotechnology Co., Ltd., Beijing, China
- Beijing Engineering Research Centre of Food Safety Immunodetection, Beijing, China
| | - Xu Chen
- Beijing Kwinbon Biotechnology Co., Ltd., Beijing, China
- Beijing Engineering Research Centre of Food Safety Immunodetection, Beijing, China
| | - Guoqiang Liu
- Beijing Kwinbon Biotechnology Co., Ltd., Beijing, China
- Beijing Engineering Research Centre of Food Safety Immunodetection, Beijing, China
| | - Meihong Du
- Beijing Center for Physical and Chemical Analysis, Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, China
- *Correspondence: Meihong Du,
| |
Collapse
|
15
|
Colorimetric and fluorescent probes for the rapid detection of profenofos in farmland system. Food Chem 2022; 393:133321. [PMID: 35653988 DOI: 10.1016/j.foodchem.2022.133321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022]
Abstract
Colorimetric and fluorescent sensors were developed for the detection of profenofos. The colorimetric assay relied on the aggregation of cysteine modified gold nanoparticles (Au-cys) composite caused by the hydrogen bond and Au-S bond between profenofos and Au-cys. The further addition of S, N-doped carbon quantum dots (CDs) (fluorescence quantum yield up to 98%) into the Au-cys system depended on the change of fluorescence intensity of Au-cys-CDs owing to the inner filter effect between Au-cys and CDs. Under the optimal conditions, the sensor exhibits good linearity within 0.2-1.2 mg L-1 and 20-320 μg L-1, and limit of detection of 21.7 μg L-1 and 5.5 μg L-1 in colorimetry and fluorescence mode, respectively. The developed sensor did not only possess favorable selectivity and sensitivity, but also feasibility of usage in the actual detection of profenofos in farmland system samples.
Collapse
|
16
|
Fu Y, Wei J, Yao S, Zhang L, Zhang M, Zhuang X, Zhao C, Li J, Pang B. Rapid qualitative and quantitative detection of Salmonella typhimurium using a single-step dual photometric/fluorometric assay. Mikrochim Acta 2022; 189:218. [PMID: 35546375 DOI: 10.1007/s00604-022-05312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
A dual-signal photometric/fluorometric assay was established for rapid, qualitative, and quantitative detection of Salmonella typhimurium (S. typhimurium). This method was composed of two parts: (1) a single-step photometric (SSC) assay containing gold nanoparticles (AuNPs), poly-diallyldimethylammonium chloride (PDDA), and S. typhimurium-specific aptamer, and (2) a fluorescence (FL) assay containing carboxyl-modified CdSe/ZnS quantum dots (QDs-COOH). Users just need to drop samples contaminated with S. typhimurium into SSC assay; the apparent color change from red to blue can be observed in a short time (20 min). A smartphone app was developed to read the semiquantitative result. By subsequently adding one drop of FL assay into the reaction mixture, the generated fluorescence intensity reflected the concentration of S. typhimurium. The naked eye limit of detection (LOD) and fluorescent LOD were 103 cfu/mL and 10 cfu/mL, respectively. This method exhibited good selectivity. The reliability and practicability were verified by testing contaminated food, drinking water, and pets' urine.
Collapse
Affiliation(s)
- Yanli Fu
- School of Public Health, Jilin University, Changchun, 130021, People's Republic of China
| | - Jia Wei
- Department of Thyroid Surgery, the First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Shuo Yao
- School of Public Health, Jilin University, Changchun, 130021, People's Republic of China
| | - Liang Zhang
- School of Public Health, Jilin University, Changchun, 130021, People's Republic of China
| | - Mingrui Zhang
- Department of Dermatology, the Second Hospital of Jilin University, Changchun, 130000, People's Republic of China
| | - Xiangyang Zhuang
- School of Public Health, Jilin University, Changchun, 130021, People's Republic of China
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun, 130021, People's Republic of China.
| | - Juan Li
- School of Public Health, Jilin University, Changchun, 130021, People's Republic of China.
| | - Bo Pang
- School of Public Health, Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
17
|
Dong X, Wang M, Tang Y. Green synthesis of fluorescent carbon nanospheres from chrysanthemum as a multifunctional sensor for permanganate, Hg(II), and captopril. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120886. [PMID: 35063823 DOI: 10.1016/j.saa.2022.120886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/11/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
A simple and green method for the synthesis of fluorescent carbon nanospheres (CNs) was proposed using chrysanthemum as a natural precursor and ethylenediamine as the co-reagent. The prepared CNs show strong blue fluorescence in water with quantum yield of 13.7 %, and distinguished fluorescent stability against photobleaching and ion strength. Meanwhile, the fluorescence signal of CNs is reversible and sensitive to temperature in the range of 20-80 °C, which makes CNs useful as a temperature sensor. More importantly, the CNs can serve as excellent fluorescent sensors for detecting MnO4- and Hg2+ with the detection limit of 0.72 and 0.26 μM, respectively. MnO4- quenches the fluorescence of CNs through inner filter effect and static quenching mechanism, while Hg2+ forms a stable complex with the amino group on the surface of CNs, resulting in the fluorescence quenching of CNs. However, the stronger affinity between Hg2+ and captopril (Cap) results in the fluorescence quenched by Hg2+ recovery after the addition of Cap. Thus, the CNs-Hg2+ system is employed as a novel sensitive and selective fluorescence "turn-on" sensor for Cap in the range of 0-75 μM. Inspired by the sensing results, the developed sensors were successfully used for the determination of MnO4-, Hg2+ in river water samples and Cap in the pharmaceutical and urine samples.
Collapse
Affiliation(s)
- Xuemei Dong
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Minhui Wang
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Yecang Tang
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China.
| |
Collapse
|
18
|
Zhuang J, Li G, Wang M, Li G, Li Y, Jia L. Biomass‐derived carbon quantum dots induced self‐assembly of 3D networks of nickel–cobalt double hydroxide nanorods as high‐performance electrode materials for supercapacitor. ChemElectroChem 2022. [DOI: 10.1002/celc.202200296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiayuan Zhuang
- Xiamen University Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering CHINA
| | - Gang Li
- Xiamen University Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering CHINA
| | - Minghe Wang
- Xiamen University Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering CHINA
| | - Guifang Li
- Xiamen University Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering CHINA
| | - Yawen Li
- Xiamen University Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering CHINA
| | - Lishan Jia
- Xiamen University Department of Chemical Engineering and Biochemical Engineering Daxue road 361005 Xiamen CHINA
| |
Collapse
|
19
|
Wu J, Chen X, Zhang Z, Zhang J. "Off-on" fluorescence probe based on green emissive carbon dots for the determination of Cu 2+ ions and glyphosate and development of a smart sensing film for vegetable packaging. Mikrochim Acta 2022; 189:131. [PMID: 35239060 PMCID: PMC8893061 DOI: 10.1007/s00604-022-05241-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/21/2022] [Indexed: 12/25/2022]
Abstract
An ultra-sensitive glyphosate nanosensor, based on carbon dots (CDs), was successfully developed with excellent long-wavelength emission (530 nm), a high quantum yield (41.3%), and an impressive detection limit (0.8 ng·mL-1). This is the lowest value for glyphosate detection achieved by CD-based fluorescence analysis. The sensor was derived from a separate precursor, 1,4-dihydroxyanthraquinone, and was based on the "off-on" fluorescence analysis, where Cu2+ acts as a dynamic quencher and glyphosate as a fluorescence restorer (excitation wavelength 460 nm). Trace detection of glyphosate is possible with a wide detection range of 50-1300 ng·mL-1 and spiked recoveries between 93.3 and 110.0%. Exploration in depth confirmed that (1) the fluorescence of CDs was derived from the carbon core, (2) the large sp2 conjugated domain consisting of graphitic carbon and nitrogen contributed to the long-wavelength emission, and (3) CDs had an impressive binding interaction with Cu2+, which endow high sensitivity to glyphosate detection. The nanosensor has also be used as a dual-mode visual sensor and a smart sensing membrane that can identify glyphosate on the surface of vegetables, thus showing good practical applicability. Synthetic methods of G-CDs and its detection mechanisms for glyphosate.
Collapse
Affiliation(s)
- Jiajie Wu
- The School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Xiaoyong Chen
- The School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China.
- The Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan, 030051, China.
| | - Zeyu Zhang
- The School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Jiamin Zhang
- The School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| |
Collapse
|
20
|
Sun L, Wei W, Zhang H, Xu J, Zhao X. A simple colorimetric and fluorescent “on-off-on” dual-mode sensor based on cyan fluorescent carbon dots/AuNPs for the detection of L-cysteine and Zinc thiazole. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Chen G, Zhai R, Liu G, Huang X, Zhang K, Xu X, Li L, Zhang Y, Wang J, Jin M, Xu D, Abd El-Aty AM. A Competitive Assay Based on Dual-Mode Au@Pt-DNA Biosensors for On-Site Sensitive Determination of Carbendazim Fungicide in Agricultural Products. Front Nutr 2022; 9:820150. [PMID: 35198589 PMCID: PMC8860170 DOI: 10.3389/fnut.2022.820150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/03/2022] [Indexed: 11/20/2022] Open
Abstract
Carbendazim (CBZ), a systemic, broad-spectrum benzimidazole fungicide, is widely used to control fungal diseases in agricultural products. Its residues might pose risks to human health and the environment. Therefore, it is warranted to establish a rapid and reliable method for its residual quantification. Herein, we proposed a competitive assay that combined aptamer (DNA) specific recognition and bimetallic nanozyme gold@platinum (Au@Pt) catalysis to trace the CBZ residue. The DNA was labeled onto bimetallic nanozyme Au@Pt surface to produce Au@Pt probes (Au@Pt-DNA). The magnetic Fe3O4 was functionalized with a complementary strand of DNA (C-DNA) to form Fe3O4 probes (Fe3O4-C-DNA). Subsequently, the CBZ and the Fe3O4 probes competitively react with Au@Pt probes to form two Au@Pt-DNA biosensors (Au@Pt-ssDNA-CBZ and Au@Pt-dsDNA-Fe3O4). The Au@Pt-ssDNA-CBZ biosensor was designed for qualitative analysis through a naked-eye visualization strategy in the presence of CBZ. Meanwhile, Au@Pt-dsDNA-Fe3O4 biosensor was developed to quantitatively analyze CBZ using a multifunctional microplate reader. A competitive assay based on the dual-mode Au@Pt-DNA biosensors was established for onsite sensitive determination of CBZ. The limit of detection (LOD) and recoveries of the developed assay were 0.038 ng/mg and 71.88-110.11%, with relative standard deviations (RSDs) ranging between 3.15 and 10.91%. The assay demonstrated a good correlation with data acquired from liquid chromatography coupled with mass spectrometry/mass spectrometry analysis. In summary, the proposed competitive assay based on dual-mode Au@Pt-DNA biosensors might have a great potential for onsite sensitive detection of pesticides in agro-products.
Collapse
Affiliation(s)
- Ge Chen
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rongqi Zhai
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangyang Liu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaodong Huang
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kaige Zhang
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaomin Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyun Li
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanguo Zhang
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maojun Jin
- Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Donghui Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
22
|
Singh AK, Sri S, Garimella LBVS, Dhiman TK, Sen S, Solanki PR. Graphene Quantum Dot-Based Optical Sensing Platform for Aflatoxin B1 Detection via the Resonance Energy Transfer Phenomenon. ACS APPLIED BIO MATERIALS 2022; 5:1179-1186. [PMID: 35179346 DOI: 10.1021/acsabm.1c01224] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An optical sensing platform for the detection of an important mycotoxin, aflatoxin B1 (AFB1), in the absence of a bioactive environment is explored. In this work, a fluorescence-based sensing technique was designed by combining graphene quantum dots (GQDs) and AFB1 via fluorescence quenching, where AFB1 acts as the quencher of GQD fluorescence. GQDs were synthesized through a single-step hydrothermal reaction from the leaves of "curry tree" (Murraya Koenigii) at 200 °C. The fluorescent GQDs were quenched by AFB1 (quencher), which itself is detecting the analyte. Hence, this study reports the direct sensing of the mycotoxin AFB1 without the involvement of inhibitors or biological entities. The possible mode of quenching is the nonradiative resonance energy transfer between the GQDs and the AFB1 molecules. This innovative sensor could detect AFB1 in the range from 5 to 800 ng mL-1 with a detection limit of 0.158 ng mL-1. The interferent study was also carried out in the presence of different mycotoxins and carbohydrates (d-fructose, cellulose, and starch), which demonstrated the high selectivity and robustness of the sensor in the complex sample matrix. The recovery percentage of the spiked samples was also calculated to be up to 106.8%. Thus, this study reports the first GQD based optical sensor for AFB1.
Collapse
Affiliation(s)
- Avinash Kumar Singh
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi 110067, India.,School of Physical Sciences, JNU, New Delhi 110067, India
| | - Smriti Sri
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi 110067, India
| | | | - Tarun Kumar Dhiman
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi 110067, India
| | - Sobhan Sen
- School of Physical Sciences, JNU, New Delhi 110067, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi 110067, India
| |
Collapse
|
23
|
Zhang X, Liao X, Hou Y, Jia B, Fu L, Jia M, Zhou L, Lu J, Kong W. Recent advances in synthesis and modification of carbon dots for optical sensing of pesticides. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126881. [PMID: 34449329 DOI: 10.1016/j.jhazmat.2021.126881] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Serious threat from pesticide residues to the ecosystem and human health has become a global concern. Developing reliable methods for monitoring pesticides is a world-wide research hotspot. Carbon dots (CDs) with excellent photostability, low toxicity, and good biocompatibility have been regarded as the potential substitutes in fabricating various optical sensors for pesticide detection. Based on the relevant high-quality publications, this paper first summarizes the current state-of-the-art of the synthetic and modification approaches of CDs. Then, a comprehensive overview is given on the recent advances of CDs-based optical sensors for pesticides over the past five years, with a particular focus on photoluminescent, electrochemiluminescent and colorimetric sensors regarding the sensing mechanisms and design principles by integrating with various recognition elements including antibodies, aptamers, enzymes, molecularly imprinted polymers, and some nanoparticles. Novel functions and extended applications of CDs as signal indicators, catalyst, co-reactants, and electrode surface modifiers, in constructing optical sensors are specially highlighted. Beyond an assessment of the performances of the real-world application of these proposed optical sensors, the existing inadequacies and current challenges, as well as future perspectives for pesticide monitoring are discussed in detail. It is hoped to provide powerful insights for the development of novel CDs-based sensing strategies with their wide application in different fields for pesticide supervision.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yujiao Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Xinjiang Agricultural Vocational Technical College, Changji 831100, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Lizhu Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mingxuan Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jinghua Lu
- Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
24
|
“Turn on” Fluorescence Sensor of Glutathione Based on Inner Filter Effect of Co-Doped Carbon Dot/Gold Nanoparticle Composites. Int J Mol Sci 2021; 23:ijms23010190. [PMID: 35008614 PMCID: PMC8745766 DOI: 10.3390/ijms23010190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
Glutathione (GSH) is a thiol that plays a significant role in nutrient metabolism, antioxidant defense and the regulation of cellular events. GSH deficiency is related to variety of diseases, so it is useful to develop novel approaches for GSH evaluation and detection. In this study we used nitrogen and phosphorus co-doped carbon dot-gold nanoparticle (NPCD–AuNP) composites to fabricate a simple and selective fluorescence sensor for GSH detection. We employed the reductant potential of the nitrogen and phosphorus co-doped carbon dots (NPCDs) themselves to form AuNPs, and subsequently NPCD–AuNP composites from Au3+. The composites were characterized by using a range of spectroscopic and electron microscopic techniques, including electrophoretic light scattering and X-ray diffraction. The overlap of the fluorescence emission spectrum of NPCDs and the absorption spectrum of AuNPs resulted in an effective inner filter effect (IFE) in the composite material, leading to a quenching of the fluorescence intensity. In the presence of GSH, the fluorescence intensity of the composite was recovered, which increased proportionally to increasing the GSH concentration. In addition, our GSH sensing method showed good selectivity and sensing potential in human serum with a limit of detection of 0.1 µM and acceptable results.
Collapse
|
25
|
Su B, Liao S, Zhu H, Ge S, Liu Y, Wang J, Chen H, Wang L. Fabrication of a 2D metal-organic framework (MOF) nanosheet colloidal system and investigation of its fluorescence response to pesticide molecules. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5700-5710. [PMID: 34825672 DOI: 10.1039/d1ay01837j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pesticides, as a type of toxic chemicals widely used for a long time, not only pollute the environment but also affect people's health and cause serious harm to the human body, soil and environment. Therefore, it is very necessary to exploit a portable and environmentally friendly method to detect pesticides with high sensitivity. Herein, a new luminescent metal-organic framework ([Zn(TPYBDC)·H2O]n, TPYBDC2- = 4'-(pyridin-4-yl)-[2,2':6',2''-terpyridine]-4,4''-dicarboxylate) with 2D coordination layers has been designed and assembled using 4'-(pyridin-4-yl)-[2,2':6',2''-terpyridine]-4,4''-dicarboxylic acid as the ligand. The as-synthesized Zn-LMOF was exfoliated to ultrathin 2D nanosheets (4-5 nm) to form a luminescence colloidal sensor by destroying the weak interaction between the coordination layers such as H-bonding between the matrix H2O and the coordination carboxyl oxygen, and the π-π interactions among the interlayer conjugated aromatic rings. Investigation of its recognition and detection ability towards chemical pesticides shows that it can sensitively detect pesticides such as imidacloprid, nitenpyram and dinotefuran via fluorescence quenching effect with very low detection limit (LOD). Using imidacloprid as a typical case, a LOD value of 0.562 μM and recoveries for the simulated agricultural environmental samples in the range of 94-115% suggests that the as-fabricated 2D Zn-MOF nanosheet colloidal sensor (Zn-LMOF probe) is a most promising candidate for sensing chemical pesticides.
Collapse
Affiliation(s)
- Boya Su
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China.
| | - Shengyun Liao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Haitao Zhu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China.
| | - Shuxian Ge
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China.
| | - Yan Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China.
| | - Jingyao Wang
- Safety and Technical of Industrial Products Center, Tianjin Customs District, Tianjin, 300308, China
| | - Hui Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China.
| | - Lidong Wang
- Rotam CropScience Limited Company, No. 16 Huangshan Road, Modern Industrial Park, Hangu of TEDA, Tianjin, 300457, China.
| |
Collapse
|
26
|
Wang Z, Liu Q, Leng J, Liu H, Zhang Y, Wang C, An W, Bao C, Lei H. The green synthesis of carbon quantum dots and applications for sulcotrione detection and anti-pathogen activities. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Mukherjee A, Sarkar D, Sasmal S. A Review of Green Synthesis of Metal Nanoparticles Using Algae. Front Microbiol 2021; 12:693899. [PMID: 34512571 PMCID: PMC8427820 DOI: 10.3389/fmicb.2021.693899] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
The ability of algae to accumulate metals and reduce metal ions make them a superior contender for the biosynthesis of nanoparticles and hence they are called bio-nano factories as both the live and dead dried biomass are used for the synthesis of metallic nanoparticles. Microalgae, forming a substantial part of the planet's biodiversity, are usually single-celled colony-forming or filamentous photosynthetic microorganisms, including several legal divisions like Chlorophyta, Charophyta, and Bacillariophyta. Whole cells of Plectonema boryanum (filamentous cyanobacteria) proved efficient in promoting the production of Au, Ag, and Pt nanoparticles. The cyanobacterial strains of Anabaena flos-aquae and Calothrix pulvinate were used to implement the biosynthesis of Au, Ag, and Pt nanoparticles. Once synthesized within the cells, the nanoparticles were released into the culture media where they formed stable colloids easing their recovery. Lyngbya majuscule and Chlorella vulgaris have been reported to be used as a cost-effective method for Ag nanoparticle synthesis. Dried edible algae (Spirulina platensis) was reported to be used for the extracellular synthesis of Au, Ag, and Au/Ag bimetallic nanoparticles. Synthesis of extracellular metal bio-nanoparticles using Sargassum wightii and Kappaphycus alvarezi has also been reported. Bioreduction of Au (III)-Au (0) using the biomass of brown alga, Fucus vesiculosus, and biosynthesis of Au nanoparticles using red algal (Chondrus crispus) and green algal (Spyrogira insignis) biomass have also been reported. Algae are relatively convenient to handle, less toxic, and less harmful to the environment; synthesis can be carried out at ambient temperature and pressure and in simple aqueous media at a normal pH value. Therefore, the study of algae-mediated biosynthesis of metallic nanoparticles can be taken toward a new branch, termed phyco-nanotechnology.
Collapse
Affiliation(s)
- Abhishek Mukherjee
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, India
| | - Dhruba Sarkar
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Soumya Sasmal
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| |
Collapse
|
28
|
Wu A, Ding H, Zhang W, Rao H, Wang L, Chen Y, Lu C, Wang X. A colorimetric and fluorescence turn-on probe for the detection of ascorbic acid in living cells and beverages. Food Chem 2021; 363:130325. [PMID: 34139516 DOI: 10.1016/j.foodchem.2021.130325] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/22/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
A colorimetric and fluorescence turn-on dual-signal assay was developed for the determination of ascorbic acid (AA). Because the ultraviolet absorption of the oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB) overlapped with the fluorescence emission of glutathione stabilized Au nanoclusters (AuNCs), the fluorescence of AuNCs can be quenched by oxTMB. When AA was added, the blue oxTMB was reduced to colorless TMB, and the fluorescence of AuNCs was restored simultaneously. The decrease in absorbance and increase in fluorescence signal depended on the concentration of AA. In the determination range of 0.5 to 200 μM, the detection limits (LOD) for AA were as low as 0.15 µM and 0.22 µM for fluorometric and colorimetric, respectively. The established probe was used successfully for AA detection in living cells and beverages.
Collapse
Affiliation(s)
- Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hao Ding
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lizhi Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yinyin Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Changfang Lu
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
29
|
Liu Z, Zhang Z, Li Y. Highly Sensitive and Selective Detection Toward Melamine in Dairy Product by Turn-On Fluorescence of Ultrathin Graphitic Carbon Nitride Nanosheet. LUMINESCENCE 2021; 36:1885-1890. [PMID: 34032371 DOI: 10.1002/bio.4094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 05/20/2021] [Indexed: 11/06/2022]
Abstract
It is meaningful and promising to develop a practical sensor toward melamine in dairy products with high sensitivity and selectivity. However, complicated composition and environment in milk necessitate stable luminophore as sensor with excellent photophysical properties. Herein, ultrathin graphitic carbon nitride nanosheet (CNNS) is prepared via successive thermal polymerization and acid exfoliation. The photophysical property of CNNS states its strong ultraviolet absorption and intense blue-light emission. Noteworthily, the CNNS could act as a chemo-sensor to detect trace melamine in dairy products. The high stability, eminent sensitivity, powerful selectivity and competitiveness substantiates that this CNNS luminophore is a promising sensor for melamine in dairy products, being of potentially practical value on monitoring milk quality.
Collapse
Affiliation(s)
- Zixuan Liu
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, P. R. China
| | - Zijun Zhang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, P. R. China
| | - Yuxin Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, P. R. China
| |
Collapse
|