1
|
Tang W, Wang R, Li M, Zhang Q, He J, Liu D, Feng Y, Liu W, Liu J. High-pressure microfluidization enhanced the stability of sodium caseinate-EGCG complex-stabilized fish oil emulsion. Food Chem 2024; 444:138669. [PMID: 38341915 DOI: 10.1016/j.foodchem.2024.138669] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Improving the emulsion-stabilizing effect of protein by chemical or physical modification has been paid much attention recently. Here, sodium caseinate (CS) was treated by high-pressure-microfluidization (HPM) under 0-100 MPa, and was further complexed with (-)-epigallocatechin-3-gallate (EGCG) to form an excellent emulsifier that stabilized fish oil emulsions. Results showed that HPM treatment (especially 80 MPa) significantly changed the secondary structure of CS, and 80 MPa-PCS-EGCG had the best emulsifying and antioxidant activities. In addition, after HPM treatment and EGCG bonding, CS formed a thicker interface layer on the surface of oil droplets, which could better protect the fish oil from the influence by oxygen, temperature and ion concentration. Moreover, the fish oil emulsion stabilized by PCS-EGCG complex significantly delayed the release of free fatty acids subjected to in vitro digestion. Conclusively, HPM-treated CS-EGCG complex could be a potential emulsifier to improve the stability of fish oil emulsions.
Collapse
Affiliation(s)
- Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Rui Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Minghui Li
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qingchun Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jianfei He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Yuqi Feng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
2
|
Li Y, Zhao Y, Sun F, Chen Q, Liu Q, Wang H, Kong B. Investigating the effect of catechin on the emulsification and oxidation stability of myofibrillar protein-diacylglycerol emulsions. Meat Sci 2024; 210:109434. [PMID: 38244289 DOI: 10.1016/j.meatsci.2024.109434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
The effects of catechin on the emulsification and oxidation stability of myofibrillar protein-diacylglycerol (MP-DAG) emulsions were investigated. Lard samples, namely, lard, unpurified glycerolytic lard (UGL), and purified glycerolytic lard (PGL), were used as oil phases. The emulsifying effects of UGL- and PGL-based emulsions were superior to those of lard-based emulsions (P < 0.05). The emulsifying properties of MP-DAG emulsions increased initially and then decreased with a rise in the catechin concentration, with 20-μmol/g catechin exhibiting optimal emulsification activity and stability (P < 0.05). The droplets were tinier and evenly distributed, and the absolute ξ-potential values and rheological characteristics reached their maximum at a catechin concentration of 20 μmol/g. The formation of thiobarbituric acid-reactive substances and carbonyls declined significantly with the growth of catechin levels (P < 0.05), which confirmed that the oxidation of MPs and lipids was reduced efficiently by catechin. This study provides an idea for improving the emulsification and oxidation stability of MP-DAG emulsions, which offers a theoretical basis for the application of MP-DAG emulsions in meat products.
Collapse
Affiliation(s)
- Yuexin Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yubo Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
3
|
Rahim M, Imran M, Khan FA, Al-Asmari F, Mosa OF, Almalki RS, Zongo E. Omega-3-Enriched and Oxidative Stable Mayonnaise Formulated with Spray-Dried Microcapsules of Chia and Fish Oil Blends. ACS OMEGA 2024; 9:8221-8228. [PMID: 38405494 PMCID: PMC10882700 DOI: 10.1021/acsomega.3c08807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
There is a growing demand for nutritious food products that contain specific ingredients, such as long-chain polyunsaturated fatty acids (LCPUFAs). In the case of LCPUFAs, protection against lipid peroxidation is difficult, and microencapsulation emerges as an alternative. The aim of this research work is to develop mayonnaise containing spray-dried microcapsules (SDM). Fortified mayonnaise was developed using various treatments such as (T1) incorporating chia seed oil (CSO), (T2) incorporating fish oil (FO), (T3) incorporating blend of chia and fish oil, (T4) incorporating the SDM of CSO, (T5) incorporating the SDM of FO, and (T6) incorporating the SDM of chia and fish oil blend as well as controls. Thereafter, during the 15-day storage period, the fatty acids (FAs) composition, free fatty acids (FFAs), peroxide value (PV), and sensory properties of fortified mayonnaise were examined every 5 days. The overall results showed that the oxidative stability of mayonnaise formulated with SDM has been improved, and it can be used as a fortifying agent in the processing of many food products. Treatments containing SDM of up to 4% did not differ from the control in sensory analysis. Sensory scores of SDM samples showed a slight decrease in off-flavor scores and were in an acceptable range. Therefore, SDM developed from CSO and FO blends can be recommended for supplementation in different food products for long-time storage.
Collapse
Affiliation(s)
- Muhammad
Abdul Rahim
- Department
of Food Science & Nutrition, Faculty of Medicine and Allied Health
Sciences, Times Institute, Multan 60700, Pakistan
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Faima Atta Khan
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
- University
Institute of Diet & Nutritional Sciences, The University of Lahore, Sargodha Campus, Punjab 40100, Pakistan
| | - Fahad Al-Asmari
- Department
of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Osama F. Mosa
- Public
Health Department, Health Sciences College at Lieth, Umm Al-Qura University, Makkah 24231, Saudi Arabia
| | - Riyadh S. Almalki
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Umm AL-Qura University, KSA, Makkah 21421, Saudi Arabia
| | - Eliasse Zongo
- Laboratoire
de Recherche et d’Enseignement en Santé et Biotechnologies
Animales, Université Nazi BONI, Bobo Dioulasso 01 BP 1091, Burkina Faso
| |
Collapse
|
4
|
Varona E, García-Moreno PJ, Gregersen Echers S, Olsen TH, Marcatili P, Guardiola F, Overgaard MT, Hansen EB, Jacobsen C, Yesiltas B. Antioxidant peptides from alternative sources reduce lipid oxidation in 5% fish oil-in-water emulsions (pH 4) and fish oil-enriched mayonnaise. Food Chem 2023; 426:136498. [PMID: 37295051 DOI: 10.1016/j.foodchem.2023.136498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Bioinformatics tools were used to predict radical scavenging and metal chelating activities of peptides derived from abundant potato, seaweed, microbial, and spinach proteins. The antioxidant activity was evaluated in 5% oil-in-water emulsions (pH4) and best-performing peptides were tested in mayonnaise and compared with EDTA. Emulsion physical stability was intact. The peptide DDDNLVLPEVYDQD showed the highest protection against oxidation in both emulsions by retarding the formation of oxidation products and depletion of tocopherols during storage, but it was less efficient than EDTA when evaluated in mayonnaise. In low-fat emulsions, formation of hydroperoxides was reduced 4-folds after 5 days compared to control. The concentration effect of the peptide was confirmed in mayonnaise at the EDTA equimolar concentration. The second-best performing peptides were NNKWVPCLEFETEHGFVYREHH in emulsion and AGDWLIGDR in mayonnaise. In general, the peptide efficacy was higher in low-fat emulsions. Results demonstrated that peptide negative net charge was important for chelating activity.
Collapse
Affiliation(s)
- Elisa Varona
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark; Faculty of Pharmacy and Food Science, Torribera Food Science Campus, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Pedro J García-Moreno
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark; Department of Chemical Engineering, University of Granada, Spain
| | | | - Tobias H Olsen
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Paolo Marcatili
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Francesc Guardiola
- Faculty of Pharmacy and Food Science, Torribera Food Science Campus, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Michael T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Egon B Hansen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Delfanian M, Yesiltas B, Moltke Sørensen AD, Ali Sahari M, Barzegar M, Ahmadi Gavlighi H, Jacobsen C. Interfacial effects of gallate alkyl esters on physical and oxidative stability of high fat fish oil-in-water emulsions stabilized with sodium caseinate and OSA-modified starch. Food Chem 2023; 417:135923. [PMID: 36933428 DOI: 10.1016/j.foodchem.2023.135923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Effects of sodium caseinate (SC) and its combination with OSA-modified starch (SC-OS; 1:1) alone and with n-alkyl gallates (C0-C18) on the physical and oxidative stability of high-fat fish oil-in-water emulsion were evaluated. SC emulsion contained the smallest droplets and highest viscosity due to the fast adsorption at droplet surfaces. Both emulsions had non-Newtonian and shear-thinning behavior. A lower accumulation of lipid hydroperoxides and volatile compounds was found in SC emulsion due to its better Fe2+ chelating activity. The incorporated short-chain gallates (G1 > G0 ∼ G3) in SC emulsion had a strong synergistic effect against lipid oxidation compared to that of SC-OS emulsion. The better antioxidant efficiency of G1 can be related to its higher partition at the oil-water interface, while G0 and G3 had a higher partition into the aqueous phase. In contrast, G8, G12, and G16 added emulsions indicated higher lipid oxidation due to their internalization inside the oil droplets.
Collapse
Affiliation(s)
- Mojtaba Delfanian
- National Food Institute, Technical University of Denmark, Lyngby, Denmark; Department of Food Science and Technology, College of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | - Mohammad Ali Sahari
- Department of Food Science and Technology, College of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Barzegar
- Department of Food Science and Technology, College of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and Technology, College of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
6
|
Keramat M, Ehsandoost E, Golmakani MT. Recent Trends in Improving the Oxidative Stability of Oil-Based Food Products by Inhibiting Oxidation at the Interfacial Region. Foods 2023; 12:foods12061191. [PMID: 36981117 PMCID: PMC10048451 DOI: 10.3390/foods12061191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, new approaches have been developed to limit the oxidation of oil-based food products by inhibiting peroxidation at the interfacial region. This review article describes and discusses these particular approaches. In bulk oils, modifying the polarity of antioxidants by chemical methods (e.g., esterifying antioxidants with fatty alcohol or fatty acids) and combining antioxidants with surfactants with low hydrophilic–lipophilic balance value (e.g., lecithin and polyglycerol polyricinoleate) can be effective strategies for inhibiting peroxidation. Compared to monolayer emulsions, a thick interfacial layer in multilayer emulsions and Pickering emulsions can act as a physical barrier. Meanwhile, high viscosity of the water phase in emulsion gels tends to hinder the diffusion of pro-oxidants into the interfacial region. Furthermore, applying surface-active substances with antioxidant properties (such as proteins, peptides, polysaccharides, and complexes of protein-polysaccharide, protein-polyphenol, protein-saponin, and protein-polysaccharide-polyphenol) that adsorb at the interfacial area is another novel method for enhancing oil-in-water emulsion oxidative stability. Furthermore, localizing antioxidants at the interfacial region through lipophilization of hydrophilic antioxidants, conjugating antioxidants with surfactants, or entrapping antioxidants into Pickering particles can be considered new strategies for reducing the emulsion peroxidation.
Collapse
|
7
|
Osheter T, Linder C, Wiesman Z. Time Domain (TD) Proton NMR Analysis of the Oxidative Safety and Quality of Lipid-Rich Foods. BIOSENSORS 2022; 12:bios12040230. [PMID: 35448290 PMCID: PMC9031308 DOI: 10.3390/bios12040230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 05/17/2023]
Abstract
Food safety monitoring is highly important due to the generation of unhealthy components within many food products during harvesting, processing, storage, transportation and cooking. Current technologies for food safety analysis often require sample extraction and the modification of the complex chemical and morphological structures of foods, and are either time consuming, have insufficient component resolution or require costly and complex instrumentation. In addition to the detection of unhealthy chemical toxins and microbes, food safety needs further developments in (a) monitoring the optimal nutritional compositions in many different food categories and (b) minimizing the potential chemical changes of food components into unhealthy products at different stages from food production until digestion. Here, we review an efficient methodology for overcoming the present analytical limitations of monitoring a food's composition, with an emphasis on oxidized food components, such as polyunsaturated fatty acids, in complex structures, including food emulsions, using compact instruments for simple real-time analysis. An intelligent low-field proton NMR as a time domain (TD) NMR relaxation sensor technology for the monitoring of T2 (spin-spin) and T1 (spin-lattice) energy relaxation times is reviewed to support decision-making by producers, retailers and consumers in regard to food safety and nutritional value during production, shipping, storage and consumption.
Collapse
|
8
|
Role of Flaxseed Gum and Whey Protein Microparticles in Formulating Low-Fat Model Mayonnaises. Foods 2022; 11:foods11030282. [PMID: 35159434 PMCID: PMC8834398 DOI: 10.3390/foods11030282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 12/19/2022] Open
Abstract
Flaxseed gum (FG) and whey protein microparticles (WPMs) were used to substitute fats in model mayonnaises. WPMs were prepared by grinding the heat-set whey protein gel containing 10 mM CaCl2 into small particles (10–20 µm). Then, 3 × 4 low-fat model mayonnaises were prepared by varying FG (0.3, 0.6, 0.9 wt%) and WPM (0, 8, 16, 24 wt%) concentrations. The effect of the addition of FG and WPMs on rheology, instrumental texture and sensory texture and their correlations were investigated. The results showed that all samples exhibited shear thinning behavior and ‘weak gel’ properties. Although both FG and WPMs enhanced rheological (e.g., viscosity and storage modulus) and textural properties (e.g., hardness, consistency, adhesiveness, cohesiveness) and kinetic stability, this enhancement was dominated by FG. FG and WPMs affected bulk properties through different mechanisms, (i.e., active filler and entangled polysaccharide networks). Panellists evaluated sensory texture in three stages: extra-oral, intra-oral and after-feel. Likewise, FG dominated sensory texture of model mayonnaises. With increasing FG concentration, sensory scores for creaminess and mouth-coating increased, whereas those of firmness, fluidity and spreadability decreased. Creaminess had a linear negative correlation with firmness, fluidity and spreadability (R2 > 0.985), while it had a linear positive correlation with mouth-coating (R2 > 0.97). A linear positive correlation (R2 > 0.975) was established between creaminess and viscosity at different shear rates/instrumental texture parameters. This study highlights the synergistic role of FG and WPMs in developing low-fat mayonnaises.
Collapse
|
9
|
Queiroz LS, Casanova F, Feyissa AH, Jessen F, Ajalloueian F, Perrone IT, de Carvalho AF, Mohammadifar MA, Jacobsen C, Yesiltas B. Physical and Oxidative Stability of Low-Fat Fish Oil-in-Water Emulsions Stabilized with Black Soldier Fly ( Hermetia illucens) Larvae Protein Concentrate. Foods 2021; 10:foods10122977. [PMID: 34945527 PMCID: PMC8701752 DOI: 10.3390/foods10122977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023] Open
Abstract
The physical and oxidative stability of fish oil-in-water (O/W) emulsions were investigated using black soldier fly larvae (BSFL) (Hermetia illucens) protein concentrate as an emulsifier. To improve the protein extraction and the techno-functionality, defatted BSFL powder was treated with ohmic heating (BSFL-OH) and a combination of ohmic heating and ultrasound (BSFL-UOH). Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were performed in order to characterize the secondary structure and thermal stability of all protein concentrate samples. The interfacial properties were evaluated by the pendant drop technique. The lowest interfacial tension (12.95 mN/m) after 30 min was observed for BSFL-OH. Dynamic light scattering, ζ-potential and turbiscan stability index (TSI) were used to evaluate the physical stability of emulsions. BSFL-OH showed the smallest droplet size (0.68 μm) and the best emulsion stability (TSI = 8.89). The formation of primary and secondary volatile oxidation products and consumption of tocopherols were evaluated for all emulsions, revealing that OH and ultrasound treatment did not improve oxidative stability compared to the emulsion with untreated BSFL. The results revealed the promising application of BSFL proteins as emulsifiers and the ability of ohmic heating to improve the emulsifying properties of BSFL proteins.
Collapse
Affiliation(s)
- Lucas Sales Queiroz
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, Brazil
| | - Federico Casanova
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Aberham Hailu Feyissa
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Flemming Jessen
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Fatemeh Ajalloueian
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Italo Tuler Perrone
- Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora (UFJF), Rua José Lourenço Kelmer, São Pedro, Juiz de Fora 36036-900, Brazil;
| | - Antonio Fernandes de Carvalho
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, Brazil
- Correspondence: (A.F.d.C.); (B.Y.)
| | - Mohammad Amin Mohammadifar
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
- Correspondence: (A.F.d.C.); (B.Y.)
| |
Collapse
|
10
|
Wang J, Han L, Wang D, Sun Y, Huang J, Shahidi F. Stability and stabilization of omega-3 oils: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|