1
|
Qiu D, Gan R, Feng Q, Shang W, He Y, Li C, Shen X, Li Y. Flavor formation of tilapia byproduct hydrolysates in Maillard reaction. J Food Sci 2024; 89:1554-1566. [PMID: 38317380 DOI: 10.1111/1750-3841.16956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
The Maillard reaction (MR) of tilapia byproduct protein hydrolysates was investigated for the use of byproduct protein as a food ingredient and to mask its fishy odor and bitter flavor. The flavor differences in tilapia byproduct hydrolysates before and after the MR were analyzed to explore the key flavor precursor peptides and amino acids involved in MR. The results suggested that eight key volatile substances, including 2,5-dimethylpyrazine, 2-pentylfuran, hexanal, octanal, nonanal, (E)-2-decenal, decanal, and 1-octen-3-ol contributed most to the MR products group (ROAV > 1). Ten volatile compounds, including 1-octen-3-ol, hexanal, 2-pentylfuran, 2,5-dimethylpyrazine, methyl decanoate, and 2-octylfuran, were the flavor markers that distinguished the different samples (VIP > 1). The four most consumed peptides were VAPEEHPTL, GPIGPRGPAG, KSADDIKKAF, and VWEGQNIVK. Umami peptides and bitter free amino acids (FAAs) were the key flavor precursor peptide and FAAs, respectively. Overall, the hydrolysates of tilapia byproducts with flavor improved by MR are a promising strategy for the production of flavorings.
Collapse
Affiliation(s)
- Dan Qiu
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Ruiqing Gan
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Qiaohui Feng
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Wenting Shang
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Yanfu He
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou, Hainan, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, Hainan, China
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou, Hainan, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, Hainan, China
| | - Xuanri Shen
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou, Hainan, China
| | - Yongcheng Li
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou, Hainan, China
| |
Collapse
|
2
|
Elomaa L, Almalla A, Keshi E, Hillebrandt KH, Sauer IM, Weinhart M. Rise of tissue- and species-specific 3D bioprinting based on decellularized extracellular matrix-derived bioinks and bioresins. BIOMATERIALS AND BIOSYSTEMS 2023; 12:100084. [PMID: 38035034 PMCID: PMC10685010 DOI: 10.1016/j.bbiosy.2023.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/26/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Thanks to its natural complexity and functionality, decellularized extracellular matrix (dECM) serves as an excellent foundation for creating highly cell-compatible bioinks and bioresins. This enables the bioprinted cells to thrive in an environment that closely mimics their native ECM composition and offers customizable biomechanical properties. To formulate dECM bioinks and bioresins, one must first pulverize and/or solubilize the dECM into non-crosslinked fragments, which can then be chemically modified as needed. In bioprinting, the solubilized dECM-derived material is typically deposited and/or crosslinked in a layer-by-layer fashion to build 3D hydrogel structures. Since the introduction of the first liver-derived dECM-based bioinks, a wide variety of decellularized tissue have been employed in bioprinting, including kidney, heart, cartilage, and adipose tissue among others. This review aims to summarize the critical steps involved in tissue-derived dECM bioprinting, starting from the decellularization of the ECM to the standardized formulation of bioinks and bioresins, ultimately leading to the reproducible bioprinting of tissue constructs. Notably, this discussion also covers photocrosslinkable dECM bioresins, which are particularly attractive due to their ability to provide precise spatiotemporal control over the gelation in bioprinting. Both in extrusion printing and vat photopolymerization, there is a need for more standardized protocols to fully harness the unique properties of dECM-derived materials. In addition to mammalian tissues, the most recent bioprinting approaches involve the use of microbial extracellular polymeric substances in bioprinting of bacteria. This presents similar challenges as those encountered in mammalian cell printing and represents a fascinating frontier in bioprinting technology.
Collapse
Affiliation(s)
- Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Ahed Almalla
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Eriselda Keshi
- Experimental Surgery, Department of Surgery, CCM|CVK, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Karl H. Hillebrandt
- Experimental Surgery, Department of Surgery, CCM|CVK, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Charitéplatz 1, Berlin 10117, Germany
| | - Igor M. Sauer
- Experimental Surgery, Department of Surgery, CCM|CVK, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
- Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy – EXC 2025, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
- Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy – EXC 2025, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3A, Hannover 30167, Germany
| |
Collapse
|
3
|
Yin L, Liu L, Tang Y, Chen Q, Zhang D, Lin Z, Wang Y, Liu Y. The Implications in Meat Quality and Nutrition by Comparing the Metabolites of Pectoral Muscle between Adult Indigenous Chickens and Commercial Laying Hens. Metabolites 2023; 13:840. [PMID: 37512547 PMCID: PMC10384229 DOI: 10.3390/metabo13070840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Aged chickens are often a secondary dietary choice, owing to the poor organoleptic qualities of their meat. With regard to the meat quality of chickens, the metabolic profiles of pectoral muscle in Guangyuan grey chickens (group G) and Hy-Line grey hens (group H) aged 55 weeks were compared via ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). A total of 74 metabolites were identified with differential changes in the ion model. Lipids and lipid-like molecules comprised the largest proportion among the different metabolites. The content of myristic acid and palmitic acid were found to be higher in the pectoral muscle of group G, while group H showed significantly higher levels of glycerophospholipid molecules, such as LPC(18:2/0:0), Pi(38:5), Pc(16:0/16:0), and Pe(16:1e/14-hdohe). KEGG pathway analysis indicated that the abundant metabolites in group G were mainly involved in energy metabolism and fatty acid biosynthesis and metabolism, whereas those of group H were mainly attributed to the metabolism of unsaturated fatty acids and amino acids. Overall, the differences in lipid and amino acid metabolism in pectoral muscle appear to be responsible for the difference in meat quality between indigenous chickens and commercial laying hens.
Collapse
Affiliation(s)
- Lingqian Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Donghao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Roy BC, Bruce HL. Contribution of intramuscular connective tissue and its structural components on meat tenderness-revisited: a review. Crit Rev Food Sci Nutr 2023; 64:9280-9310. [PMID: 37194652 DOI: 10.1080/10408398.2023.2211671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The tenderness of meat influences consumers' perceptions of its quality. Meat tenderness is a key quality characteristic that influences consumer satisfaction, repeat purchases, and willingness to pay higher prices for meat. Muscle fibers, connective tissues, and adipocytes are the main structural components of meat that contribute to its tenderness and texture. In the present review, we have focused on the role of connective tissue and its components in meat tenderness, specifically perimysial intramuscular connective tissue (IMCT) and its concept as an immutable "background toughness." The collagen contribution to cooked meat toughness can be altered by animal diet, compensatory growth, slaughter age, aging, and cooking. As well, progressive thickening of the perimysium leads to a progressive increase in shear force values in beef, pork, chicken, and this may occur prior to adipocyte formation as cattle finish in feedlots. Conversely, adipocyte accumulation in the perimysium can decrease cooked meat shear force, suggesting that the contribution of IMCT to meat toughness is complex and driven by both collagen structure and content. This review provides a theoretical foundation of information to modify IMCT components to improve meat tenderness.
Collapse
Affiliation(s)
- Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Ahmed S, Moni MIZ, Begum M, Sultana MR, Kabir A, Eqbal MJ, Das SK, Ullah W, Haque TS. Poultry farmers' knowledge, attitude, and practices toward poultry waste management in Bangladesh. Vet World 2023; 16:554-563. [PMID: 37041846 PMCID: PMC10082732 DOI: 10.14202/vetworld.2023.554-563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/05/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim The improper handling of poultry litter and waste poses risks to humans and environment by introducing certain compounds, elements, and pathogenic microorganisms into the surrounding environment and food chain. However, understanding the farmers' knowledge, attitude, and practices (KAP) could provide insights into the constraints that hinder the appropriate adoption of waste management. Therefore, this study aimed to assess poultry farmers' KAP regarding waste management issues. Materials and Methods A cross-sectional KAP study was conducted with native poultry keepers and small-scale commercial poultry farmers in seven districts of Bangladesh. In the survey, 385 poultry producers were interviewed using validated structured questionnaires through face-to-face interviews to collect the quantitative data in their domiciles. Results The overall KAP of farmers regarding poultry waste management issues demonstrated a low level of KAP (p = 0.001). The analysis shows that roughly 5% of farmers have a high level of knowledge of poultry waste management issues, followed by around one-third of respondents having a moderate level of knowledge. Considering the attitude domain, more than one-fifth of native poultry keepers and nearly two-thirds of commercial producers demonstrated a low level of attitude toward poultry waste management. Considering the overall analysis, roughly half of the respondents found a high level of attitude, and over half of the farmers showed a moderate level of attitude toward poultry waste management issues. The analysis showed that the level of good practices for native and commercial poultry production systems is estimated at 77.3% versus 45.9%, respectively, despite the farmers' lesser knowledge and attitudes toward poultry waste management systems. Overall, analysis showed that nearly 60% and 40% of poultry producers had high and moderate levels, respectively, of good practices in poultry waste management issues. Conclusion Analysis of the KAP data shows that farmers had a low level of KAP toward poultry waste management. The result of this study will assist in formulating appropriate strategies and to adopt poultry waste management solutions by poultry farmers to reduce environmental degradation.
Collapse
Affiliation(s)
- Soshe Ahmed
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
- Corresponding author: Soshe Ahmed, e-mail: Co-authors: MIZM: , MB: , MRS: , AK: , MJE: , SKD: , WU: , TSH:
| | - Mst. I. Z. Moni
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Maksuda Begum
- Department of Poultry Science, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Mst. R. Sultana
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Aurangazeb Kabir
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. J. Eqbal
- Palli Karma Sahayak Foundation, Dhaka, Bangladesh
| | - Sunny K. Das
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Woli Ullah
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Tasmin S. Haque
- Department of Anthropology, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
6
|
Cheng JH, Zhao WX, Cao HY, Wang Z, Wang Y, Sheng Q, Chen Y, Wang P, Chen XL, Zhang YZ. Mechanistic Insight Into the Production of Collagen Oligopeptides by the S8 Family Protease A4095. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:603-614. [PMID: 36577515 DOI: 10.1021/acs.jafc.2c05402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Collagen oligopeptides have wide applications in foods, pharmaceuticals, cosmetics, and others due to their high bioactivities and bioavailability. The S8 family is the second-largest family of serine proteases. Several collagenolytic proteases from this family have been reported to have good potential in the preparation of collagen oligopeptides, however, the underlying mechanism remains unknown. A4095 was the most abundant S8 protease secreted by the protease-producing bacterium Anoxybacillus caldiproteolyticus 1A02591. Here, we characterized A4095 as an S8 collagenolytic protease and illustrated its structural basis to produce collagen oligopeptides. Protease A4095 preferentially hydrolyzed the Y-Gly peptide bonds in denatured bovine bone collagen, leading to high production (62.48% <1000 Da) of collagen oligopeptides. Structural and mutational analyses indicated that A4095 has a unique S1' substrate-binding pocket to preferentially bind Gly, which is the structural determinant for the high production of collagen oligopeptides. This study provides mechanistic insight into the advantage of the S8 collagenolytic proteases in preparing collagen oligopeptides.
Collapse
Affiliation(s)
- Jun-Hui Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Wen-Xiao Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Hai-Yan Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Zhen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Yan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Qi Sheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Yin Chen
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Peng Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao266237, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao266237, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao266237, China
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| |
Collapse
|
7
|
Peptides Isolated from Amphibian Skin Secretions with Emphasis on Antimicrobial Peptides. Toxins (Basel) 2022; 14:toxins14100722. [PMID: 36287990 PMCID: PMC9607450 DOI: 10.3390/toxins14100722] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022] Open
Abstract
The skin of amphibians is a tissue with biological functions, such as defense, respiration, and excretion. In recent years, researchers have discovered a large number of peptides in the skin secretions of amphibians, including antimicrobial peptides, antioxidant peptides, bradykinins, insulin-releasing peptides, and other peptides. This review focuses on the origin, primary structure, secondary structure, length, and functions of peptides secreted from amphibians' skin. We hope that this review will provide further information and promote the further study of amphibian skin secretions, in order to provide reference for expanding the research and application of amphibian bioactive peptides.
Collapse
|
8
|
Fan H, Liao W, Davidge ST, Wu J. Chicken Muscle-Derived ACE2 Upregulating Peptide VVHPKESF Inhibits Angiotensin II-Stimulated Inflammation in Vascular Smooth Muscle Cells via the ACE2/Ang (1-7)/MasR Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6397-6406. [PMID: 35584253 DOI: 10.1021/acs.jafc.1c07161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to evaluate the modulatory effects of four chicken muscle-derived peptides [VRP, LKY, VRY, and VVHPKESF (V-F)] on angiotensin II (Ang II)-induced inflammation in rat vascular smooth muscle A7r5 cells. Only V-F could significantly attenuate Ang II-stimulated inflammation via the inhibition of NF-κB and p38 MAPK signaling, being dependent on the Mas receptor (MasR) not on the Ang II type 1 or type 2 receptor (AT1R or AT2R). V-F accelerated Ang II degradation by enhancing cellular ACE2 activity, which was due to ACE2 upregulation other than a direct ACE2 activation. These findings demonstrated that V-F ameliorated Ang II-induced inflammation in A7r5 cells via the ACE2/Ang (1-7)/MasR axis. Three peptide metabolites of V-F─VHPKESF, PKESF, and SF─were identified but were not considered major contributors to V-F's bioactivity. The regulation of peptide V-F on vascular inflammation supported its functional food or nutraceutical application in the prevention and treatment of hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Wang Liao
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Sandra T Davidge
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
9
|
Fan H, Wu J. Conventional use and sustainable valorization of spent egg-laying hens as functional foods and biomaterials: A review. BIORESOUR BIOPROCESS 2022; 9:43. [PMID: 35463462 PMCID: PMC9015908 DOI: 10.1186/s40643-022-00529-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/20/2022] [Indexed: 11/29/2022] Open
Abstract
Spent hen are egg-laying hens reaching the end of their laying cycles; billions of spent hens are produced globally each year. Differences in people's attitudes towards spent hen as foods lead to their different fates among countries. While spent hens are consumed as raw or processed meat products in Asian countries such as China, India, Korea, and Thailand, they are treated as a byproduct or waste, not a food product, in the western society; they are instead disposed by burial, incineration, composting (as fertilizers), or rendering into animal feed and pet food, which either create little market value or cause animal welfare and environmental concerns. Despite being a waste, spent hen is a rich source of animal proteins and lipids, which are suitable starting materials for developing valorized products. This review discussed the conventional uses of spent hens, including food, animal feed, pet food, and compost, and the emerging uses, including biomaterials and functional food ingredients. These recent advances enable more sustainable utilization of spent hen, contributing to alternative solutions to its disposal while yielding residual value to the egg industry. Future research will continue to focus on the conversion of spent hen biomass into value-added products. Graphical abstract
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, AB T6G 2P5 Canada
| |
Collapse
|
10
|
Tang C, Zhou K, Zhu Y, Zhang W, Xie Y, Wang Z, Zhou H, Yang T, Zhang Q, Xu B. Collagen and its derivatives: From structure and properties to their applications in food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Davari N, Bakhtiary N, Khajehmohammadi M, Sarkari S, Tolabi H, Ghorbani F, Ghalandari B. Protein-Based Hydrogels: Promising Materials for Tissue Engineering. Polymers (Basel) 2022; 14:986. [PMID: 35267809 PMCID: PMC8914701 DOI: 10.3390/polym14050986] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The successful design of a hydrogel for tissue engineering requires a profound understanding of its constituents' structural and molecular properties, as well as the proper selection of components. If the engineered processes are in line with the procedures that natural materials undergo to achieve the best network structure necessary for the formation of the hydrogel with desired properties, the failure rate of tissue engineering projects will be significantly reduced. In this review, we examine the behavior of proteins as an essential and effective component of hydrogels, and describe the factors that can enhance the protein-based hydrogels' structure. Furthermore, we outline the fabrication route of protein-based hydrogels from protein microstructure and the selection of appropriate materials according to recent research to growth factors, crucial members of the protein family, and their delivery approaches. Finally, the unmet needs and current challenges in developing the ideal biomaterials for protein-based hydrogels are discussed, and emerging strategies in this area are highlighted.
Collapse
Affiliation(s)
- Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran;
| | - Negar Bakhtiary
- Burn Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran 14115114, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd 8174848351, Iran;
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Soulmaz Sarkari
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Hamidreza Tolabi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran 158754413, Iran;
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 158754413, Iran
| | - Farnaz Ghorbani
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
12
|
Fan H, Liao W, Spaans F, Pasha M, Davidge ST, Wu J. Chicken muscle hydrolysate reduces blood pressure in spontaneously hypertensive rats, upregulates ACE2, and ameliorates vascular inflammation, fibrosis, and oxidative stress. J Food Sci 2022; 87:1292-1305. [PMID: 35166385 DOI: 10.1111/1750-3841.16077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
Spent hens are egg-laying chicken reaching the end of their egg-laying cycle and are seen as a by-product to the egg industry. A spent hen muscle protein hydrolysate prepared by food-grade thermoase PC10F (SPH-T) has previously shown antihypertensive potential. In the present work, we further investigated its antihypertensive effect and underlying mechanisms in spontaneously hypertensive rats. There are three groups: untreated, low dose (250 mg SPH-T/kg/day body weight), and high dose (1,000 mg SPH-T/kg/day body weight). Oral administration of SPH-T over a period of 20 days reduced systolic blood pressure by 25.7 mm Hg (p < 0.001) and 11.9 mm Hg (p < 0.05), respectively, for the high- and low-dose groups. The high-dose treatment decreased the circulating level of angiotensin II (from 25.0 to 5.7 pg/ml) while increased angiotensin-converting enzyme 2 (ACE2) (from 1.3 to 3.3 IU/ml) and angiotensin (1-7) (from 37.0 to 70.1 pg/ml) significantly (p < 0.05). Furthermore, the high-dose group doubled the aortic expression of ACE2 while reduced the expression of angiotensin (Ang) II type 1 receptor (by 35%). Circulating inflammatory cytokines including tumor necrosis factor alpha and monocyte chemoattractant protein-1 as well as vascular inflammatory proteins including inducible nitric oxide synthase and vascular cell adhesion molecule-1 were attenuated by ∼15%-50% by the treatment; nitrosative stress (35%) and type I collagen synthesis (50%) in the aorta were also attenuated significantly (p < 0.05). Moreover, SPH-T possessed an umami taste (no obvious bitter taste) as analyzed by electronic tongue. PRACTICAL APPLICATION: Hypertension is a global health concern, afflicting more than 20% of adults worldwide. Uncovering the antihypertensive effect of spent hen protein hydrolysate underpinned its functional food nutraceutical applications for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Wang Liao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mazhar Pasha
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra T Davidge
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.,Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Chen J, Wang G, Li Y. Preparation and Characterization of Thermally Stable Collagens from the Scales of Lizardfish ( Synodus macrops). Mar Drugs 2021; 19:md19110597. [PMID: 34822468 PMCID: PMC8620309 DOI: 10.3390/md19110597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Marine collagen is gaining vast interest because of its high biocompatibility and lack of religious and social restrictions compared with collagen from terrestrial sources. In this study, lizardfish (Synodus macrops) scales were used to isolate acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC). Both ASC and PSC were identified as type I collagen with intact triple-helix structures by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and spectroscopy. The ASC and PSC had high amino acids of 237 residues/1000 residues and 236 residues/1000 residues, respectively. Thus, the maximum transition temperature (Tmax) of ASC (43.2 °C) was higher than that of PSC (42.5 °C). Interestingly, the Tmax of both ASC and PSC was higher than that of rat tail collagen (39.4 °C) and calf skin collagen (35.0 °C), the terrestrial collagen. Solubility tests showed that both ASC and PSC exhibited high solubility in the acidic pH ranges. ASC was less susceptible to the “salting out” effect compared with PSC. Both collagen types were nontoxic to HaCaT and MC3T3-E1 cells, and ASC was associated with a higher cell viability than PSC. These results indicated that ASC from lizardfish scales could be an alternative to terrestrial sources of collagen, with potential for biomedical applications.
Collapse
Affiliation(s)
- Junde Chen
- Correspondence: ; Tel./Fax: +86-0592-215527
| | | | | |
Collapse
|