1
|
Xie L, Wang Y, Tao Y, Chen L, Lin H, Qi Z, Li J. Genome-wide identification and analysis of anthocyanin synthesis-related R2R3-MYB genes in Fragaria pentaphylla. BMC Genomics 2024; 25:952. [PMID: 39396954 PMCID: PMC11472487 DOI: 10.1186/s12864-024-10882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND MYB transcription factors regulate anthocyanin biosynthesis across numerous plant species. However, comprehensive genome-wide investigations regarding the R2R3-MYB gene family and its involvement in regulating anthocyanin biosynthesis in the red and white fruit color morphs of Fragaria pentaphylla remain scarce. RESULTS A total of 101 FpR2R3-MYB genes were identified from the F. pentaphylla genome and were divided into 34 subgroups based on phylogenetic analysis. Gene structure (exon/intron) and protein motifs were particularly conserved among the FpR2R3-MYB genes, especially members within the same subgroup. The FpR2R3-MYB genes were distributed over seven F. pentaphylla chromosomes. Analysis of gene duplication events revealed five pairs of tandem duplication genes and 16 pairs of segmental duplication genes, suggesting that segmental duplications are the major pattern for expansion of the FpR2R3-MYB gene family expansion in F. pentaphylla. Cis-regulatory elements of the FpR2R3-MYB promoters were involved in cellular development, phytohormones, environmental stress and photoresponse. Based on the analysis of the FpR2R3-MYB gene family and transcriptome sequencing (RNA-seq) data, FpMYB9 was identified as a key transcription factor involved in the regulation of anthocyanin synthesis in F. pentaphylla fruits. The expression of FpMYB9 increases significantly during the ripening stage of red fruits, as confirmed by reverse transcription quantitative real-time PCR. In addition, subcellular localization experiments further confirmed the nuclear presence of FpMYB9, supporting its role as a transcription factor involved in anthocyanin biosynthesis. CONCLUSION Our results showed that the FpR2R3-MYB genes are highly conserved and play important roles in the anthocyanin biosynthesis in F. pentaphylla fruits. Our results also provide a compelling basis for further understanding of the regulatory mechanism underlying the role of FpMYB9 in anthocyanin formation in F. pentaphylla fruits.
Collapse
Affiliation(s)
- Liangmu Xie
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Yinuo Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Yutian Tao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Luxi Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Hanyang Lin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- School of Advanced Study, Taizhou University, Taizhou, 318000, China
| | - Zhechen Qi
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China.
- School of Advanced Study, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
2
|
Guo G, Wang Y, Zhang B, Yu H, Li L, Cao G, Chen B, Li C, Bu F, Teng S, Yu Q, Gao M, Jiang B, Yang K. Comparative transcriptomic and metabolomic analysis reveals mechanisms of selenium-regulated anthocyanin synthesis in waxy maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1466756. [PMID: 39421142 PMCID: PMC11484008 DOI: 10.3389/fpls.2024.1466756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024]
Abstract
Anthocyanins in maize (Zea mays L.) kernels determine the plant's color and can enhance its resistance. Selenium (Se) significantly impacts plant growth, development, and secondary metabolic regulation. However, the molecular mechanisms by which Se regulates anthocyanin synthesis in waxy corn remain unclear. This study employed integrated transcriptomic and metabolomic analyses to investigate the mechanisms through which selenium influences anthocyanin synthesis in yellow and purple waxy corn. The results showed that maize varieties with higher anthocyanin content had higher selenium enrichment capacity in their kernels. Under selenium stress, HN2025 exhibited 1,904 more differentially expressed genes (DEGs) and 140 more differential metabolites compared to HN5. The expression levels of anthocyanin synthesis-related genes and transcription factors such as phenylalanine ammonia-lyase, flavonoid 3-hydroxylase (F3H), dihydroflavonol reductase (DFR), chalcone synthase (CHS), cinnamate-4-hydroxylase (C4H), anthocyanin 5,3-O-glucosyltransferases, and anthocyanidin reductase, MYB, and bHLH were strongly induced in HN2025. Metabolomic analysis revealed significant enrichment in anthocyanin biosynthesis, flavonoid and flavonol biosynthesis, glutathione metabolism, phenylalanine biosynthesis, and phenylalanine metabolism under selenium treatment. Three up-regulated PAL genes and one C4H gene were significantly enriched with DAMs in phenylalanine metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis, and anthocyanin biosynthesis, resulting in significant differences between HN5 and HN2025 in selenium-induced anthocyanin metabolism-related pathways. These findings provide a theoretical basis for understanding the effects of selenium on the molecular regulatory mechanisms of anthocyanin biosynthesis in maize kernels.
Collapse
Affiliation(s)
- Guangyu Guo
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- Food and Cash Crops Branch, Harbin Academy of Agricultural Sciences, Harbin, China
| | - Yufeng Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Baoku Zhang
- Food and Cash Crops Branch, Harbin Academy of Agricultural Sciences, Harbin, China
| | - Haoran Yu
- Food and Cash Crops Branch, Harbin Academy of Agricultural Sciences, Harbin, China
| | - Liang Li
- Food and Cash Crops Branch, Harbin Academy of Agricultural Sciences, Harbin, China
| | - Guanglu Cao
- Food and Cash Crops Branch, Harbin Academy of Agricultural Sciences, Harbin, China
| | - Baicui Chen
- Food and Cash Crops Branch, Harbin Academy of Agricultural Sciences, Harbin, China
| | - Chengxin Li
- Food and Cash Crops Branch, Harbin Academy of Agricultural Sciences, Harbin, China
| | - Fanshan Bu
- Food and Cash Crops Branch, Harbin Academy of Agricultural Sciences, Harbin, China
| | - Song Teng
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Qingtao Yu
- Food and Cash Crops Branch, Harbin Academy of Agricultural Sciences, Harbin, China
| | - Mingbo Gao
- Food and Cash Crops Branch, Harbin Academy of Agricultural Sciences, Harbin, China
| | - Baiwen Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Kejun Yang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
3
|
Guo L, Liao Y, Deng S, Li J, Bu X, Zhu C, Zhang W, Cong X, Cheng S, Chen Q, Xu F. Genome-wide analysis of NAC transcription factors and exploration of candidate genes regulating selenium metabolism in Broussonetia papyrifera. PLANTA 2024; 260:1. [PMID: 38753175 DOI: 10.1007/s00425-024-04438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/09/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Genome-wide identification revealed 79 BpNAC genes belonging to 16 subfamilies, and their gene structures and evolutionary relationships were characterized. Expression analysis highlighted their importance in plant selenium stress responses. Paper mulberry (Broussonetia papyrifera), a deciduous arboreal plant of the Moraceae family, is distinguished by its leaves, which are abundant in proteins, polysaccharides, and flavonoids, positioning it as a novel feedstock. NAC transcription factors, exclusive to plant species, are crucial in regulating growth, development, and response to biotic and abiotic stress. However, extensive characterization of the NAC family within paper mulberry is lacking. In this study, 79 BpNAC genes were identified from the paper mulberry genome, with an uneven distribution across 13 chromosomes. A comprehensive, genome-wide analysis of BpNACs was performed, including investigating gene structures, promoter regions, and chromosomal locations. Phylogenetic tree analysis, alongside comparisons with Arabidopsis thaliana NACs, allowed for categorizing these genes into 16 subfamilies in alignment with gene structure and motif conservation. Collinearity analysis suggested a significant homologous relationship between the NAC genes of paper mulberry and those in Morus notabilis, Ficus hispida, Antiaris toxicaria, and Cannabis sativa. Integrating transcriptome data and Se content revealed that 12 BpNAC genes were associated with selenium biosynthesis. Subsequent RT-qPCR analysis corroborated the correlation between BpNAC59, BpNAC62 with sodium selenate, and BpNAC55 with sodium selenite. Subcellular localization experiments revealed the nuclear functions of BpNAC59 and BpNAC62. This study highlights the potential BpNAC transcription factors involved in selenium metabolism, providing a foundation for strategically breeding selenium-fortified paper mulberry.
Collapse
Affiliation(s)
- Longfei Guo
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Shiming Deng
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Jitao Li
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Xianchen Bu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Changye Zhu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, 445000, Hubei, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, China.
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, 445000, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
4
|
García-Locascio E, Valenzuela EI, Cervantes-Avilés P. Impact of seed priming with Selenium nanoparticles on germination and seedlings growth of tomato. Sci Rep 2024; 14:6726. [PMID: 38509209 PMCID: PMC10954673 DOI: 10.1038/s41598-024-57049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
Poor germination and seedlings growth can lead to significant economic losses for farmers, therefore, sustainable agricultural strategies to improve germination and early growth of crops are urgently needed. The objective of this work was to evaluate selenium nanoparticles (Se NPs) as nanopriming agents for tomato (Solanum lycopersicum) seeds germinated without stress conditions in both trays and Petri dishes. Germination quality, seedlings growth, synergism-antagonism of Se with other elements, and fate of Se NPs, were determined as function of different Se NPs concentrations (1, 10 and 50 ppm). Results indicated that the germination rate in Petri dishes improved with 10 ppm, while germination trays presented the best results at 1 ppm, increasing by 10 and 32.5%, respectively. Therefore, seedlings growth was measured only in germination trays. Proline content decreased up to 22.19% with 10 ppm, while for same treatment, the total antioxidant capacity (TAC) and total chlorophyll content increased up to 38.97% and 21.28%, respectively. Antagonisms between Se with Mg, K, Mn, Zn, Fe, Cu and Mo in the seed were confirmed. In the case of seedlings, the N content decreased as the Se content increased. Transmission Electron Microscopy (TEM) imaging confirmed that Se NPs surrounded the plastids of the seed cells. By this finding, it can be inferred that Se NPs can reach the embryo, which is supported by the antagonism of Se with important nutrients involved in embryogenesis, such as K, Mg and Fe, and resulted in a better germination quality. Moreover, the positive effect of Se NPs on total chlorophyll and TAC, and the negative correlation with proline content with Se content in the seed, can be explained by Se NPs interactions with proplastids and other organelles within the cells, resulting with the highest length and fresh weight when seeds were exposed to 1 ppm.
Collapse
Affiliation(s)
- Ezequiel García-Locascio
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, CP 72453, Puebla, Pue, México
| | - Edgardo I Valenzuela
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, CP 72453, Puebla, Pue, México
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, CP 72453, Puebla, Pue, México.
| |
Collapse
|
5
|
Wen Y, Cheng L, Zhao Z, An M, Zhou S, Zhao J, Dong S, Yuan X, Yin M. Transcriptome and co-expression network revealed molecular mechanism underlying selenium response of foxtail millet ( Setaria italica). FRONTIERS IN PLANT SCIENCE 2024; 15:1355518. [PMID: 38529063 PMCID: PMC10962390 DOI: 10.3389/fpls.2024.1355518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024]
Abstract
Introduction Selenium-enriched foxtail millet (Setaria italica) represents a functional cereal with significant health benefits for humans. This study endeavors to examine the impact of foliar application of sodium selenite (Na2SeO4) on foxtail millet, specifically focusing on selenium (Se) accumulation and transportation within various plant tissues. Methods To unravel the molecular mechanisms governing selenium accumulation and transportation in foxtail millet, we conducted a comprehensive analysis of selenium content and transcriptome responses in foxtail millet spikelets across different days (3, 5, 7, and 12) under Na2SeO4 treatment (200 μmol/L). Results Foxtail millet subjected to selenium fertilizer exhibited significantly elevated selenium levels in each tissue compared to the untreated control. Selenate was observed to be transported and accumulated sequentially in the leaf, stem, and spikes. Transcriptome analysis unveiled a substantial upregulation in the transcription levels of genes associated with selenium metabolism and transport, including sulfate, phosphate, and nitrate transporters, ABC transporters, antioxidants, phytohormone signaling, and transcription factors. These genes demonstrated intricate interactions, both synergistic and antagonistic, forming a complex network that regulated selenate transport mechanisms. Gene co-expression network analysis highlighted three transcription factors in the tan module and three transporters in the turquoise module that significantly correlated with selenium accumulation and transportation. Expression of sulfate transporters (SiSULTR1.2b and SiSULTR3.1a), phosphate transporter (PHT1.3), nitrate transporter 1 (NRT1.1B), glutathione S-transferase genes (GSTs), and ABC transporter (ABCC13) increased with SeO4 2- accumulation. Transcription factors MYB, WRKY, and bHLH were also identified as players in selenium accumulation. Conclusion This study provides preliminary insights into the mechanisms of selenium accumulation and transportation in foxtail millet. The findings hold theoretical significance for the cultivation of selenium-enriched foxtail millet.
Collapse
Affiliation(s)
- Yinyuan Wen
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Liuna Cheng
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Jinzhong, China
| | - Zeya Zhao
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Jinzhong, China
| | - Mengyao An
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Shixue Zhou
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Juan Zhao
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Shuqi Dong
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Meiqiang Yin
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Jinzhong, China
| |
Collapse
|
6
|
Kong W, Huo R, Lu Y, Fan Z, Yue R, Ren A, Li L, Ding P, Ren Y, Gao Z, Sun M. Nitrogen Application Can Optimize Form of Selenium in Soil in Selenium-Rich Areas to Affect Selenium Absorption and Accumulation in Black Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:4160. [PMID: 38140488 PMCID: PMC10747177 DOI: 10.3390/plants12244160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
The composition and form of selenium in the soil have significant effects on the selenium content of crops. In this study, we investigated the selenium absorption pathway in plants by studying the interaction between nitrogen fertilizer and soil selenium. Our results showed that the selenium concentration enrichment factors (CEF) varied within the same region due to nitrogen fertilizer application, where they ranged from 1.33 to 5.02. The soil selenium flow coefficient (mobility factor, MF) increased with higher nitrogen application rates. The sum of the MF values for each soil layer treated with nitrogen application rates of 192 kg hm-2 and 240 kg hm-2 was 0.70, which was 64% higher than that for the control group with no nitrogen application. In the 0-20 cm soil layer, the highest summed water-soluble and exchangeable selenium and relative percentage of total selenium (12.45%) was observed at a nitrogen application rate of 240 kg hm-2. In the 20-40 cm soil layer, the highest relative percentage content of water-soluble and exchangeable selenium and total selenium (12.66%) was observed at a nitrogen application rate of 192 kg hm-2. Experimental treatment of black wheat with various concentrations of sodium selenite showed that selenium treatment at 50 μmol L-1 significantly increased the reduced glutathione (GSH) levels in the leaves and roots of seedlings, where the GSH contents increased by 155.4% in the leaves and by 91.5% in the roots. Further analysis of the soil-black wheat system showed that nitrogen application in selenium-rich areas affected the soil selenium flow coefficient and morphological composition, thereby changing the enrichment coefficient for leaves (0.823), transport capacity from leaves to grains (-0.530), and enrichment coefficient for roots (0.38). These changes ultimately affected the selenium concentration in the grains of black wheat.
Collapse
Affiliation(s)
- Weilin Kong
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Ruiwen Huo
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Yu Lu
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Zhenjie Fan
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Runqing Yue
- Yangquan Agricultural Technical Service Center, Yangquan 045000, China
| | - Aixia Ren
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Linghong Li
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Pengcheng Ding
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Yongkang Ren
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Min Sun
- College of Agriculture, Shanxi Agriculture University, Taigu, Jinzhong 030801, China
- Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau Jointly Built by Provinces and Ministries, Taigu, Jinzhong 030801, China
- Key Laboratory of Functional Agriculture of Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| |
Collapse
|
7
|
Xia Q, Shui Y, Zhi H, Ali A, Yang Z, Gao Z. Exogeneous selenium enhances anthocyanin synthesis during grain development of colored-grain wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107742. [PMID: 37207492 DOI: 10.1016/j.plaphy.2023.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023]
Abstract
Anthocyanins and selenium (Se) play critical roles in antioxidant, anticancer, antibacterial, and antiviral treatments. Previous studies indicate that colored-grain wheat accumulates more Se than regular wheat, and Se synergistically promotes anthocyanin synthesis. However, the mechanism through which Se regulates anthocyanin synthesis remains unclear. We studied anthocyanin accumulation during the grain-filling stage of colored-grain wheat development by employing transcriptomics and metabolomics. We show that Se biofortification increased the concentrations of Se, anthocyanin, chlorophyll a and b, and carotenoids in colored-grain wheat. Genes related to biosynthesis of anthocyanins, phenylpropanoids biosynthesis, and flavonoids biosynthesis were significantly upregulated after Se treatment, which led to the accumulation of anthocyanin metabolites in colored-grain wheat. Genetic alterations in the expression profiles of several genes and transcription factors were observed, which slowed down lignin and proanthocyanidin biosynthesis and accelerated anthocyanin synthesis. Our results deepen the understanding of anthocyanin metabolism in Se-treated colored-grain wheat, which will likely promote harvest of these varieties.
Collapse
Affiliation(s)
- Qing Xia
- Department of Life Sciences, Lyuliang University, Lvliang, 033001, China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, 030801, China
| | - Yang Shui
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, 030801, China
| | - Hui Zhi
- Department of Life Sciences, Lyuliang University, Lvliang, 033001, China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, 030801, China
| | - Aamir Ali
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, 030801, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, 030801, China; John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, 030801, China.
| |
Collapse
|
8
|
Mechanisms and technology of marine oligosaccharides to control postharvest disease of fruits. Food Chem 2023; 404:134664. [DOI: 10.1016/j.foodchem.2022.134664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/18/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
9
|
Zhang F, Li X, Wu Q, Lu P, Kang Q, Zhao M, Wang A, Dong Q, Sun M, Yang Z, Gao Z. Selenium Application Enhances the Accumulation of Flavones and Anthocyanins in Bread Wheat ( Triticum aestivum L.) Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13431-13444. [PMID: 36198089 DOI: 10.1021/acs.jafc.2c04868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Selenium (Se) biofortification in wheat reduces the risk of Se deficiency in humans. Se biofortification increases the concentration of Se and anthocyanins in wheat grains. However, it is unknown whether Se biofortification can enhance flavonoids other than anthocyanins and the mechanism underlying flavonoid accumulation in wheat grains. Here, foliar application of selenite solution in wheat was conducted 10 days after flowering. Metabolite profiling and transcriptome sequencing were performed in Se-treated grains. A significant increase in the total contents of Se, anthocyanins, and flavonoids was observed in Se-treated mature grains. Twenty-seven significantly increased flavonoids were identified in Se-treated immature grains. The significant accumulation of flavones (tricin, tricin derivatives, and chrysoeriol derivatives) was detected, and six anthocyanins, dihydroquercetin (the precursor for anthocyanin biosynthesis) and catechins were also increased. Integrated analysis of metabolites and transcriptome revealed that Se application enhanced the biosynthesis of flavones, dihydroquercetin, anthocyanins, and catechins by increasing the expression levels of seven key structural genes in flavonoid biosynthesis (two TaF3Hs, two TaDFRs, one TaF3'5'H, one TaOMT, and one TaANR). Our findings shed new light on the molecular mechanism underlying the enhancement in flavonoid accumulation by Se supplementation and pave the way for further enhancing the nutritional value of wheat grains.
Collapse
Affiliation(s)
- Fengjie Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xueyin Li
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Qiangqiang Wu
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Ping Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Qingfang Kang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Mengyao Zhao
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Aiping Wang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Qi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Min Sun
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
10
|
Ma X, Zhang S, Yang Y, Tong Z, Shen T, Yu Z, Xie J, Yao Y, Gao B, Li YC, Helal MI. Development of multifunctional copper alginate and bio-polyurethane bilayer coated fertilizer: Controlled-release, selenium supply and antifungal. Int J Biol Macromol 2022; 224:256-265. [DOI: 10.1016/j.ijbiomac.2022.10.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
11
|
Li X, Cai K, Han Z, Zhang S, Sun A, Xie Y, Han R, Guo R, Tigabu M, Sederoff R, Pei X, Zhao C, Zhao X. Chromosome-Level Genome Assembly for Acer pseudosieboldianum and Highlights to Mechanisms for Leaf Color and Shape Change. FRONTIERS IN PLANT SCIENCE 2022; 13:850054. [PMID: 35310631 PMCID: PMC8927880 DOI: 10.3389/fpls.2022.850054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Acer pseudosieboldianum (Pax) Komarov is an ornamental plant with prominent potential and is naturally distributed in Northeast China. Here, we obtained a chromosome-scale genome assembly of A. pseudosieboldianum combining HiFi and Hi-C data, and the final assembled genome size was 690.24 Mb and consisted of 287 contigs, with a contig N50 value of 5.7 Mb and a BUSCO complete gene percentage of 98.4%. Genome evolution analysis showed that an ancient duplication occurred in A. pseudosieboldianum. Phylogenetic analyses revealed that Aceraceae family could be incorporated into Sapindaceae, consistent with the present Angiosperm Phylogeny Group system. We further construct a gene-to-metabolite correlation network and identified key genes and metabolites that might be involved in anthocyanin biosynthesis pathways during leaf color change. Additionally, we identified crucial teosinte branched1, cycloidea, and proliferating cell factors (TCP) transcription factors that might be involved in leaf morphology regulation of A. pseudosieboldianum, Acer yangbiense and Acer truncatum. Overall, this reference genome is a valuable resource for evolutionary history studies of A. pseudosieboldianum and lays a fundamental foundation for its molecular breeding.
Collapse
Affiliation(s)
- Xiang Li
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhiming Han
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Shikai Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Anran Sun
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Ying Xie
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Rui Han
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Ruixue Guo
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Faculty of Forest Science, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Xiaona Pei
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Chunli Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
12
|
Liu Y, Huang S, Jiang Z, Wang Y, Zhang Z. Selenium Biofortification Modulates Plant Growth, Microelement and Heavy Metal Concentrations, Selenium Uptake, and Accumulation in Black-Grained Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:748523. [PMID: 34733304 PMCID: PMC8560013 DOI: 10.3389/fpls.2021.748523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 05/17/2023]
Abstract
In Se-deficient populations, Selenium- (Se-) enriched wheat is a source of Se supplementation, and Se content can be improved by agronomic biofortification. Thus, black-grained wheat (BGW) and white-grained wheat (WGW) (as the control) were grown in Se naturally contained soils at different concentrations (11.02, 2.21, 2.02, and 0.20 mg·kg-1). Then, a field experiment was conducted to assess agronomic performance, the concentration of microelements and heavy metals, and the uptake and distribution of Se in the BGW under the application of Se ore powder. The results showed that the grain yield and grain Se concentration of wheat respectively show a significant increase and decrease from high Se to low Se areas. Higher grain yield and crude protein content were observed in Se-rich areas. The soil application of Se ore powder increased wheat grain yield and its components (biomass, harvest index, grain number, and 1,000 kernels weight). The concentrations of Zn, Fe, Mn, total Se, and organic Se in the grains of wheat were also increased, but Cu concentration was decreased. The concentrations of Pb, As, Hg, and Cr in wheat grains were below the China food regulation limits following the soil application of Se ore powder. Compared with the control, Se ore powder treatment increased the uptake of Se in various parts of wheat plants. More Se accumulation was observed in roots following Se ore powder application, with a smaller amount in grains. In addition, compared with the control, BGW had significantly higher concentrations of Zn, Fe, and Mn and accumulated more Se in grains and shoots and less Se in roots. The results indicate that wheat grown in Se-rich areas increases its grain yield and crude protein content. The soil application of Se ore powder promotes wheat growth and grain yield. Compared with WGW, BGW accumulated more Se in grains and had a higher concentration of organic Se in grains. In conclusion, the application of Se ore powder from Ziyang as Se-enriched fertilizer could be a promising strategy for Se biofortification in the case of wheat, and BGW is the most Se-rich potential genotype.
Collapse
Affiliation(s)
- Yuxiu Liu
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Shuhua Huang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Zonghao Jiang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Yizhao Wang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Zhengmao Zhang
- College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|