1
|
Wang W, Liu S, Li Y, Yan J, Hu A, Zheng J. Effects of different pretreatment methods on the degree of substitution, structure, and physicochemical properties of synthesized malic acid sweet potato starch ester. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9434-9441. [PMID: 39056229 DOI: 10.1002/jsfa.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The preparation of malic acid starch ester (MSE) is mostly carried out using a high temperature method, but there are problems such as high energy consumption, long preparation time, and uneven heating. Microwave technology can be used to overcome these limitations. The semi-crystalline structure of starch granules hinders the modifier's access to the matrix, thus limiting the esterification reaction. Physical techniques can act on the interior of the starch to create a number of active sites, thereby facilitating the reaction of the starch with esterification reagents. Therefore, this study investigated the effect of starch pretreatment by microwave, heat-moisture, and ultrasonic techniques on the degree of substitution (DS), structure, and physicochemical properties of MSE synthesized by the microwave method. RESULTS The DS of MSE was increased after pretreatments. The modified starch obtained by different pretreatment methods did not show new characteristic peaks, while the MSE synthesized showed new absorption peaks near 1735 cm-1. The granular structure and morphology of the modified starch obtained by microwave and heat-moisture pretreatment were gelatinized and aggregated, while some of the starch particles of the modified starch obtained by ultrasonic pretreatment appeared pore-sized. The relative crystallinity and gelatinization enthalpy of the MSE were reduced, but the crystallization pattern remained as A-type. CONCLUSION Overall, the results suggest that various pretreatment methods can enhance the DS of MSE by disrupting the structure of starch. The findings of this study provide theoretical support for improving the DS of esterified starch. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Marine Resource Chemistry and Food Technology, (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
| | - Shiwei Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Marine Resource Chemistry and Food Technology, (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
| | - Yu Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Marine Resource Chemistry and Food Technology, (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
| | - Jiatian Yan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Marine Resource Chemistry and Food Technology, (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
| | - Aijun Hu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Marine Resource Chemistry and Food Technology, (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
| | - Jie Zheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Marine Resource Chemistry and Food Technology, (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
| |
Collapse
|
2
|
Rostamabadi H, Yildirim-Yalcin M, Demirkesen I, Toker OS, Colussi R, do Nascimento LÁ, Şahin S, Falsafi SR. Improving physicochemical and nutritional attributes of rice starch through green modification techniques. Food Chem 2024; 458:140212. [PMID: 38943947 DOI: 10.1016/j.foodchem.2024.140212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Rice, has long been an inseparable part of the human diet all over the world. As one of the most rapidly growing crops, rice has played a key role in securing the food chain of low-income food-deficit countries. Starch is the main component in rice granules which other than its nutritional essence, plays a key role in defining the physicochemical attributes of rice-based products. However, rice starch suffers from weak techno-functional characteristics (e.g., retrogradability of pastes, opacity of gels, and low shear/temperature resistibility. Green modification techniques (i.e. Non-thermal methods, Novel thermal (e.g., microwave, and ohmic heating) and enzymatic approaches) were shown to be potent tools in modifying rice starch characteristics without the exertion of unfavorable chemical reagents. This study corroborated the potential of green techniques for rice starch modification and provided deep insight for their further application instead of unsafe chemical methods.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Meral Yildirim-Yalcin
- Istanbul Aydin University, Engineering Faculty, Food Engineering Department, 34295, Istanbul, Turkey
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Omer Said Toker
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, 34210, Istanbul, Turkey
| | - Rosana Colussi
- Center for Pharmaceutical and Food Chemical Sciences, Federal University of Pelotas, Pelotas, University Campus, s/n, 96010-900, Pelotas, RS, Brazil
| | - Lucas Ávila do Nascimento
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, University Campus, s/n, 96010-900, Pelotas, RS, Brazil
| | - Selin Şahin
- Faculty of Engineering, Chemical Engineering Department, Division of Unit Operations and Thermodynamics, Istanbul University-Cerrahpaşa, Avcilar, 34320, Istanbul, Turkey
| | - Seid Reza Falsafi
- Food Science and Technology Division, Agricultural Engineering Research Department, Safiabad Agricultural and Natural Resources Research and Education Center, (AREEO), Dezful, Iran.
| |
Collapse
|
3
|
Cai M, Zhang Y, Cao H, Li S, Zhang Y, Huang K, Song H, Guan X. Exploring the remarkable effects of microwave treatment on starch modification: From structural evolution to changed physicochemical and digestive properties. Carbohydr Polym 2024; 343:122412. [PMID: 39174077 DOI: 10.1016/j.carbpol.2024.122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 08/24/2024]
Abstract
As one of the crucial components of the food system, starch can be hydrolyzed into glucose after gastrointestinal digestion, so regulating its digestive properties is vital for maintaining health. Microwaves can promote the rearrangement of intramolecular structure of starch, thus improving its physicochemical properties, enhancing its slowly digestible features, and expanding its scope of application. This review zooms in describing recent research results concerning the effects of microwave treatment on the multi-scale structure and physicochemical properties of starch and summarizing the patterns of these changes. Furthermore, the changes in starch structure, resistant starch content, and glycemic index after digestion are pointed out to gain an insight into the enhancement of starch slowly digestible properties by microwave treatment. The resistance of starch to enzymatic digestion may largely hinge on the specific structures formed during microwave treatment. The multi-level structural evolutions of starch during digestion endow it with the power to resist digestion and lower the glycemic index. The properties of starch dictate its application, and these properties are highly associated with its structure. Consequently, understanding the structural changes of microwave-modified starch helps to prepare modified starch with diversified varieties and functional composites.
Collapse
Affiliation(s)
- Mengdi Cai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Ying Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
4
|
Yin Y, Liu W, Li L, Cao W, Chen J, Zhao L, Sun X, Duan X, Ren G. Microwave freeze-drying characteristics and crosslinking behavior of wheat starch-laurel acid complex. Int J Biol Macromol 2024; 279:135235. [PMID: 39222784 DOI: 10.1016/j.ijbiomac.2024.135235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
This article investigates the effect of different microwave powers on the crosslinking behavior and microwave freeze-drying characteristics of wheat starch-lauroyl arginate complex during the microwave freeze-drying process. During microwave freeze-drying, as microwave power increased from 0.1 W/g to 0.9 W/g, the freeze-drying time of WS-LA was reduced by 50 %, while the uniformity of freeze-drying was not affected by its composition. In the research results obtained from DSC, Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), XRD, and SEM analyses, with the microwave power increased from 0.1 W/g to 0.9 W/g, the enthalpy value of the melting peak of the WS-LA (wheat starch-lauric acid) composite decreased from 1.15 J/g to 0.62 J/g. The full width at half maximum (FWHM) value increased from 25.6 to 30.79. The ratio of absorbance at 1022/995 cm-1 increased from 1.0111 to 1.0707. The recrystallization (RC) value decreased from 8.77 % to 0.07 %. Additionally, in the microstructure, the size of WS-LA composite particles decreased accordingly. The above findings indicated that the increase in microwave power during microwave freeze-drying had a negative impact on the formation of the WS-LA complex and the ordering of its structure in the sample.
Collapse
Affiliation(s)
- Yize Yin
- College of Food and Bioengineering, Henan University of Science and Technology, 471000 Luoyang, China
| | - Wenchao Liu
- College of Food and Bioengineering, Henan University of Science and Technology, 471000 Luoyang, China; Postdoctoral practice innovation base, Luohe Vocational Technology College, 462002 Luohe, China; Henan Nanjiecun (Group) Co., Ltd., 462600 Linying, China.
| | - Linlin Li
- College of Food and Bioengineering, Henan University of Science and Technology, 471000 Luoyang, China
| | - Weiwei Cao
- College of Food and Bioengineering, Henan University of Science and Technology, 471000 Luoyang, China
| | - Junliang Chen
- College of Food and Bioengineering, Henan University of Science and Technology, 471000 Luoyang, China
| | - Linlin Zhao
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Xiaofei Sun
- College of Food and Bioengineering, Henan University of Science and Technology, 471000 Luoyang, China
| | - Xu Duan
- College of Food and Bioengineering, Henan University of Science and Technology, 471000 Luoyang, China
| | - Guangyue Ren
- College of Food and Bioengineering, Henan University of Science and Technology, 471000 Luoyang, China.
| |
Collapse
|
5
|
Yi M, Tang X, Liang S, He R, Huang T, Lin Q, Zhang R. Effect of microwave alone and microwave-assisted modification on the physicochemical properties of starch and its application in food. Food Chem 2024; 446:138841. [PMID: 38428082 DOI: 10.1016/j.foodchem.2024.138841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Native starch has poor stability and usually requires modification to expand its industrial application range. Commonly used methods are physical, chemical, enzymatic and compound modification. Microwave radiation, as a kind of physical method, is promising due to its uniform energy radiation, greenness, safety, non-toxicity. It can meet the demand of consumers for safe food. Microwave-assisted modification with other methods can directly or indirectly affect the structure of starch granules to obtain modified starch with high degree of substitution and low viscosity, and the modification efficiency is greatly improved. This paper reviews the effect of microwave radiation on the physicochemical properties of starch, such as granule morphology, crystallization characteristics, and gelatinization characteristics, as well as the application of microwave radiation in starch modification and starch food processing. It provides theoretical references and suggestions for the research of microwave heating modified starch and the deep processing of starchy foods.
Collapse
Affiliation(s)
- Mingxia Yi
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
| | - Xuchong Tang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China.
| | - Shaoxiong Liang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Ren He
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
| | - Tingting Huang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
| | - Qing Lin
- Ba Ye Cao Health Industry Research Institute (Xiamen) Co., Ltd, Xiamen 361021, China
| | | |
Collapse
|
6
|
Gu Y, Xu R, Liu T, McClements DJ, Zhao X, Wu J, Zhao M, Zhao Q. Enhancing the nonlinear rheological property and digestibility of mung bean flour gels using controlled microwave treatments: Effect of starch debranching and protein denaturation. Int J Biol Macromol 2024; 270:132049. [PMID: 38704060 DOI: 10.1016/j.ijbiomac.2024.132049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/14/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
In this study, we examined the possibility of using industrial microwave processing to enhance the gelling properties and reduce the starch digestibility of mung bean flour (MBF). MBF (12.6 % moisture) was microwaved at a power of 6 W/g to different final temperatures (100-130 °C), and then its structural and functional properties were characterized. The microwave treatment had little impact on the crystalline structure or amylose content of the starch, but it roughened the starch granule surfaces and decreased the short-range ordered structure and degree of branching. In addition, the extent of mung bean protein denaturation caused by the microwave treatment depended on the final temperature. Slightly denaturing the proteins (100 °C) did not affect the nature of the gels (protein phase dispersed in a starch phase) but the gel network became more compact. Moderately denaturing the proteins (110-120 °C) led to more compact and homogeneous starch-protein double network gels. Excessive protein denaturation (130 °C) caused the gel structure to become more heterogeneous. As a result, the facilitated tangles between starch chains by more linear starch molecules after debranching, and the protein network produced by moderate protein denaturation led to the formation of stronger gel and the improvement of plasticity during large deformation (large amplitude oscillatory shear-LAOS). Starch recrystallization, lipid complexion, and protein network retard starch digestion in the MBF gels. In conclusion, an industrial microwave treatment improved the gelling and digestive properties of MBF, and Lissajous curve has good adaptability in characterizing the viscoelasticity of gels under large deformations.
Collapse
Affiliation(s)
- Yue Gu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rong Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tongxun Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | | | - Xiujie Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinjin Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China.
| |
Collapse
|
7
|
Lei X, Xu J, Han H, Zhang X, Li Y, Wang S, Li Y, Ren Y. Fine molecular structure and digestibility changes of potato starch irradiated with electron beam and X-ray. Food Chem 2024; 439:138192. [PMID: 38091788 DOI: 10.1016/j.foodchem.2023.138192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
The change of digestibility of starch irradiated with different types from the perspective of fine structure is not well understood. In this work, the change of internal structure, molecular weight and chain-length distribution, helical structure, lamellar structure, fractal structure and digestibility of native and treated potato starch with electron beam and X-ray was analyzed. Two irradiations caused the destruction of internal structure, the disappearance of growth rings and increase of pores. Irradiation degraded starch to produce short chains and to decrease molecular weight. Irradiation increased double helical content and the thickness and peak area of lamellar structure, resulting in the reorganization of amylopectin and increase of structure order degree. The protected glycosidic linkages increased starch resistance to hydrolase attack, thereby enhancing the anti-digestibility of irradiated starch. Pearson correlation matrix also verified the above-mentioned results. Moreover, X-ray more increased the anti-digestibility of starch by enhancing ability to change fine structure.
Collapse
Affiliation(s)
- Xiaoqing Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jiayi Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hui Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiaolu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yihan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yali Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yamei Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| |
Collapse
|
8
|
Lei X, Wang S, Li Y, Han H, Zhang X, Mao X, Ren Y. The multi-scale structure changes of γ-ray irradiated potato starch to mitigate pasting/digestion properties. Food Res Int 2024; 178:113931. [PMID: 38309903 DOI: 10.1016/j.foodres.2024.113931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
The comprehensive understanding of multi-scale structure of starch and how the structure regulates the pasting/digestion properties remain unclear. This work investigated the effects of γ-ray irradiation with different doses on multi-scale structure and pasting/digestion properties of potato starch. Results indicated that γ-ray at lower doses (<20 kGy) had little effect on micromorphology of starch, increased mainly the amylose content and the thickness of amorphous region while decreased crystallinity, double helix content and lamellar ordering. With the increase of dose, the internal structure of large granules was destroyed, resulting in the depolymerization of starch to form more short-chains and to reduce molecular weight. Meanwhile, amylose content decreased due to the depolymerization of amylose. The enhanced double helix content, crystallinity, lamellar ordering and structural compactness manifested the formation of the thicker and denser starch structure. These structure changes resulted in the decreased viscosity, the increased stability and anti- digestibility of paste.
Collapse
Affiliation(s)
- Xiaoqing Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yali Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hui Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xinying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiaoyun Mao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yamei Ren
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China; College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
9
|
Yu X, Wang P, Wang L, Wang K, Duan Y, Huo J, Ma X, Dong S, Xin G, Xiao Z. Inhibition mechanism of rice glutelin on extruded starch digestion: From the structural properties of starch and enzyme activity. Food Res Int 2024; 175:113790. [PMID: 38129010 DOI: 10.1016/j.foodres.2023.113790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
To increase the anti-digestion ability of extruded rice starch (ERS), the influence of rice glutelin (RG) on digestive and structural characteristics of ERS were investigated. The resistant starch content increased from 4.49 % to 18.08 % as the RG content increased, while the digestion rate and digestion velocity constant were reduced by the incorporation of RG. Morphological observations showed that ERS was adhered and encapsulated by RG, and the specific area of starch granules were decreased after the addition of RG. The results of XRD and FTIR suggested that the long-range and short-range orders of ERS were improved due to the complexation with RG. The thickness of crystalline of ERS was increased while its amorphous region thickness was reduced by the supplementation with RG. The 1H NMR and 13C NMR data revealed that the branching degree and double helix content of ERS was increased by 46.24 % and 52.67 % when RG content reached to 12 %. Additionally, the addition of RG altered the molecular weight and chain length distribution of ERS. The α-amylase activity and glucoamylase activity was inhibited by RG. These results could provide a valuable basis for the application of RG in extruded rice starchy foods with lower glycemic index.
Collapse
Affiliation(s)
- Xiaoshuai Yu
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China; College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China
| | - Peng Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China
| | - Lishuang Wang
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Kexin Wang
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yumin Duan
- Experimental Center, Shenyang Normal University, Shenyang 110034, PR China
| | - Jinjie Huo
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xiaoqi Ma
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Shengzhong Dong
- Experimental Center, Shenyang Normal University, Shenyang 110034, PR China
| | - Guang Xin
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Zhigang Xiao
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China; College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China.
| |
Collapse
|
10
|
Zhao Y, Tu D, Wang D, Xu J, Zhuang W, Wu F, Tian Y. Structural and property changes of starch derivatives under microwave field: A review. Int J Biol Macromol 2024; 256:128465. [PMID: 38029893 DOI: 10.1016/j.ijbiomac.2023.128465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/17/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
Native starches are commonly modified for desired properties because of their limited applications. Among various modifications, microwave irradiation has been gaining strong interests and becoming a focal area to transform starch during the last few years. Such interests reside in microwave irradiation's high heating rates, lesser extent of loss in nutritional qualities, and so on when compared with other approaches. This review summaries the effects of microwave field on the structural (e.g. morphology characteristic, lamellae structure, crystallinity, and molecular structure) and physicochemical properties (e.g. pasting properties and gelatinization) of naturally existing starch derivatives. Different microwave-assisted chemical derivatizations can directly or indirectly affect starch structure from the macroscopic to the microscopic level, thereby resulting in various functionalities. Moreover, conventional starch modification processes can be optimized by applying microwave irradiation to obtain modified starch with high degree of substitution and low viscosity. The future research will help to better understand the structural changes of microwave-assisted starch chemical derivatization and thereby creating a wide range of functionalities.
Collapse
Affiliation(s)
- Yingting Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Lab of Quality Science and Processing Technology in Special Starch, Fuzhou, 350002, China
| | - Dongkun Tu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Danni Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingxin Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weijing Zhuang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Lab of Quality Science and Processing Technology in Special Starch, Fuzhou, 350002, China
| | - Fuhan Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuting Tian
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Lab of Quality Science and Processing Technology in Special Starch, Fuzhou, 350002, China.
| |
Collapse
|
11
|
Dorneles MS, de Azevedo ES, Noreña CPZ. Effect of microwave followed by cooling on structural and digestive properties of pinhão starch. Int J Biol Macromol 2023; 253:126981. [PMID: 37729989 DOI: 10.1016/j.ijbiomac.2023.126981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/16/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
To increase its resistant content, native pinhão starch was modified using a microwave (300 W, 90 s) and subsequently cooled at 4 °C for 4, 8, 16, 24, and 72 h. The results demonstrated that all starches exhibited a crystalline structure of type C, with decreased crystallinity after modification. In the modified samples, the ratio of peaks 1047/1022 cm-1 and 995/1022 cm-1, as identified by FTIR, indicated a reduction in the crystalline region and damage to the double helix structure of starch granules. DSC analysis revealed that modified starches had lower gelatinization temperature range values due to the presence of more homogeneous crystals. Rheological analyses showed that starch suspensions obtained exhibited pseudoplastic fluid behavior and gel-like viscoelastic structure formation, with higher storage moduli in samples with longer cooling times. The microwave-modified starch, cooled for 72 h, exhibited higher digestion resistance, resulting in a 43.6 % increase in resistant starch content and a 26.1 % decrease in rapidly digestible starch compared to native starch. The results highlight that the modification of native pinhão starch using a microwave, followed by cooling at 4 °C for 72 h, presents a promising method for increasing the resistant starch content.
Collapse
Affiliation(s)
- Mariane Santos Dorneles
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Eduarda Silva de Azevedo
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Caciano Pelayo Zapata Noreña
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
12
|
Kumari B, Sit N. Comprehensive review on single and dual modification of starch: Methods, properties and applications. Int J Biol Macromol 2023; 253:126952. [PMID: 37722643 DOI: 10.1016/j.ijbiomac.2023.126952] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Starch is a natural, renewable, affordable, and easily available polymer used as gelling agents, thickeners, binders, and potential raw materials in various food products. Due to these techno-functional properties of starch, food and non-food industries are showing interest in developing starch-based food products such as films, hydrogels, starch nanoparticles, and many more. However, the application of native starch is limited due to its shortcomings. To overcome these problems, modification of starch is necessary. Various single and dual modification processes are used to improve techno-functional, morphological, and microstructural properties, film-forming capacity, and resistant starch. This review paper provides a comprehensive and critical understanding of physical, chemical, enzymatic, and dual modifications (combination of any two single modifications), the effects of parameters on modification, and their applications. The sequence of modification plays a key role in the dual modification process. All single modification methods modify the physicochemical properties, crystallinity, and emulsion properties, but some shortcomings such as lower thermal, acidic, and shear stability limit their application in industries. Dual modification has been introduced to overcome these limitations and maximize the effectiveness of single modification.
Collapse
Affiliation(s)
- Bharati Kumari
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
13
|
Tian Y, Wang Y, Herbuger K, Petersen BL, Cui Y, Blennow A, Liu X, Zhong Y. High-pressure pasting performance and multilevel structures of short-term microwave-treated high-amylose maize starch. Carbohydr Polym 2023; 322:121366. [PMID: 37839836 DOI: 10.1016/j.carbpol.2023.121366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023]
Abstract
Microwave treatment is an environmentally friendly method for modification of high-amylose maize starch (HAMS). Here, the effects of short-time (≤120 s) microwave treatment on the structure and pasting of two types of HAMSs, Gelose 50 (HAMSI) and Gelose 80 (HAMSII), with apparent amylose content (AAC) of 45 % and 58 %, respectively, was studied using a multiscale approach including X-ray scattering, surface structures, particle size distribution, molecular size distributions and high temperature/pressure Rapid Visco Analysis (RVA)-4800 pasting. As compared to starch with no amylose (waxy maize starch, WMS) and 25 % amylose content (normal maize starch, NMS), HAMSI underwent similar structural and pasting changes as WMS and NMS upon microwave treatment, and it might primarily be attributed to the amylopectin fraction that was affected by cleavage of the connector chains between double helices and backbone chains, which decreased the crystallinity and thickness of the crystalline lamellae. However, the multi-scale structure of HAMSII was almost unaffected by this treatment. The pasting properties of fully gelatinized HAMSI starch showed a decrease in RVA-4800 peak and final viscosities after microwave treatment. In contrast, for HAMSII starch, the microwave treatment led to an increase in these viscosities. The combined results highlight the influence of varying AAC on the effects of microwave-mediated modification, leading to diverse alterations in the structure and functionality of starches.
Collapse
Affiliation(s)
- Yu Tian
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Ying Wang
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Klaus Herbuger
- Institute of Biological Sciences, University of Rostock, Germany
| | - Bent L Petersen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Ying Cui
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Yuyue Zhong
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark; Sustainable and Bio-inspired Materials, Max-Planck Institute of Colloids and Interfaces, Germany.
| |
Collapse
|
14
|
Rostamabadi H, Demirkesen I, Hakgüder Taze B, Can Karaca A, Habib M, Jan K, Bashir K, Nemțanu MR, Colussi R, Reza Falsafi S. Ionizing and nonionizing radiations can change physicochemical, technofunctional, and nutritional attributes of starch. Food Chem X 2023; 19:100771. [PMID: 37780299 PMCID: PMC10534100 DOI: 10.1016/j.fochx.2023.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 10/03/2023] Open
Abstract
Challenges for the food/non-food applications of starch mostly arise from its low stability against severe processing conditions (i.e. elevated temperatures, pH variations, intense shear forces), inordinate retrogradability, as well as restricted applicability. These drawbacks have been addressed through the modification of starch. The escalating awareness of individuals toward the presumptive side effects of chemical modification approaches has engrossed the attention of scientists to the development of physical modification procedures. In this regard, starch treatment via ionizing (i.e. gamma, electron beam, and X-rays) and non-ionizing (microwave, radiofrequency, infrared, ultraviolet) radiations has been introduced as a potent physical strategy offering new outstanding attributes to the modified product. Ionizing radiations, through dose-dependent pathways, are able to provoke depolymerization or cross-linking/grafting reactions to the starch medium. While non-ionizing radiations could modify the starch attributes by changing the morphology/architecture of granules and inducing reorientation/rearrangement in the molecular order of starch amorphous/crystalline fractions.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746–73461, Iran
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Bengi Hakgüder Taze
- Usak University, Faculty of Engineering, Department of Food Engineering 1 Eylul Campus, 64000 Usak, Turkey
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Mehvish Habib
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Kulsum Jan
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Monica R. Nemțanu
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor St., P.O. Box MG-36, 077125 Bucharest-Măgurele, Romania
| | - Rosana Colussi
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Campus Universitário, s/n, 96010-900, Pelotas, RS, Brazil
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Chi C, Lian S, Zou Y, Chen B, He Y, Zheng M, Zhao Y, Wang H. Preparation, multi-scale structures, and functionalities of acetylated starch: An updated review. Int J Biol Macromol 2023; 249:126142. [PMID: 37544556 DOI: 10.1016/j.ijbiomac.2023.126142] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Acetylated starch has been widely used as food additives. However, there was limited information available regarding the impact of acetylation on starch structure and functionalities, as well as the advanced acetylation technologies. This review aimed to summarize current methods for starch acetylation and discuss the structure and functionalities of acetylated starch. Innovative techniques, such as milling, microwave, pulsed electric fields, ultrasonic, and extrusion, could be employed for environmental-friendly synthesis of acetylated starch. Acetylation led to the degradation of starch structures and weakening of the interactions between starch molecules, resulting in the disorganization of starch multi-scale ordered structure. The introduction of acetyl groups retarded the self-reassembly behavior of starch, leading to increased solubility, clarity, and softness of starch-based hydrogels. Moreover, the acetyl groups improved water/oil absorption capacity, emulsifiability, film-forming properties, and colonic fermentability of starch, while reduced the susceptibility of starch molecules to enzymes. Importantly, starch functionalities were largely influenced by the decoration of acetyl groups on starch molecules, while the impact of multi-scale ordered structures on starch physicochemical properties was relatively minor. These findings will aid in the design of structured acetylated starch with desirable functionalities.
Collapse
Affiliation(s)
- Chengdeng Chi
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Suyang Lian
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yiqing Zou
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Mingmin Zheng
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yingting Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongwei Wang
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China
| |
Collapse
|
16
|
Yılmaz A, Tugrul N. Effect of ultrasound-microwave and microwave-ultrasound treatment on physicochemical properties of corn starch. ULTRASONICS SONOCHEMISTRY 2023; 98:106516. [PMID: 37423071 PMCID: PMC10422102 DOI: 10.1016/j.ultsonch.2023.106516] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Natural starch is an agricultural sourced biopolymer being low cost, biodegradable, high efficiently, renewable and easy available. Despite these advantages, phisochemical properties of native starch are limited for most industrial applications and must be modified. Ultrasound and microwave treatment have been widely applied separately for starch modification. Ultrasound treatment, with high efficiency and low cost, and microwave treatment, which produces homogeneous and high quality products, are short proceesing time technologies that can be used together to change the structure and properties of starches obtained from various plants. In this study the effects of ultrasound and microwave combined treatment on the physicochemical properties of natural corn starch were investigated. Corn starch was irritated using different combination of ultrasound-microwave and microwave-ultrasound treatment; using 90, 180, 360 and 600 W microwave power during 1, 2, 3 min, and using ultrasound at 35 °C constant temperature for 20, 30, 40 min. The structural changes of modified corn starches were determined by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analyses. Nowadays, many physical methods are used for starch modification, but limited studies were on ultrasound-microwave and microwave-ultrasound combined treatment method. As a result of this study, it was observed that ultrasound and microwave combination is an efficient, fast and environmentally friendly method for natural corn starch modification.
Collapse
Affiliation(s)
- Aslıhan Yılmaz
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Nurcan Tugrul
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey.
| |
Collapse
|
17
|
Li Y, Wang JH, Han Y, Yue FH, Zeng XA, Chen BR, Zeng MQ, Woo MW, Han Z. The effects of pulsed electric fields treatment on the structure and physicochemical properties of dialdehyde starch. Food Chem 2023; 408:135231. [PMID: 36563620 DOI: 10.1016/j.foodchem.2022.135231] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The structural and physicochemical properties changes of corn starch oxidized by sodium periodate under the assistance of pulsed electric fields (PEF) were studied. It was found that dialdehyde starch (DAS) particles produced by PEF-assisted oxidation exhibited shrinkage and pits, and had a larger particle size when compared to the control without PEF. The solubility of the DAS (12 kV/cm PEF- assisted oxidation) improved by 70.2% when compared to the native starch. Increment in the strength of the PEF, led to a decrease in the viscosity of the DAS. In addition, the aldehyde group content of the DAS produced by PEF-assisted oxidation exhibited shrinkage and pits, and had a larger particle size when compared to the control increased by 11.6% when compared with the traditional oxidation method. PEF is an effective method to promote oxidation reaction of starch.
Collapse
Affiliation(s)
- Ying Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan528225, China
| | - Jin-Hua Wang
- Foshan Shunde Midea Washing Appliances MFG. CO., LTD, Foshan 528300, China
| | - Yu Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fu-Hao Yue
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan528225, China
| | - Bo-Ru Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Man-Qin Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Meng-Wai Woo
- Department of Chemical and Materials Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan528225, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
18
|
Wang G, Shen X, Bai C, Zhuang Z, Jiang H, Yang M, Wei X, Wu Z. Metabolomic study on the quality differences and physiological characteristics between rice cultivated in drought and flood conditions. Food Chem 2023; 425:135946. [PMID: 37300996 DOI: 10.1016/j.foodchem.2023.135946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 06/12/2023]
Abstract
The differences between dry- and flood-cultivated rice and the reason behind low-quality dry-cultivated rice were clarified. The physiological traits, starch synthase activity, and grain metabolomics of 'Longdao 18' were measured and analyzed at four growth stages. The brown, milled, and whole-milled rice rates and AGPase, SSS, and SBE activity were lower after drought treatment than during flood cultivation, while the chalkiness, chalky grain rate, amylose (16.57-20.999%), protein (7.99-12.09%), and GBSS activity were higher. Related enzymatic gene expression showed significant differences. Metabolic results showed pyruvate, glycine, and methionine upregulation at 8DAF and higher citric, pyruvic, and α-ketoglutaric acid content at 15DAF. Therefore, 8DAF-15DAF represented the crucial quality formation period for dry-cultivated rice. At 8DAF, the respiratory pathways used amino acids as signaling molecules and alternative substrates to adapt to energy shortages, arid environments and rapid protein accumulation and synthesis. Excessive amylose synthesis at 15DAF accelerated reproductive growth, promoting rapid premature aging.
Collapse
Affiliation(s)
- Guan Wang
- Faculty of Agronomy Jilin Agricultural University/National Crop Variety Approval and Characterization Station, Chang Chun 130118, China
| | - Xinru Shen
- Faculty of Agronomy Jilin Agricultural University/National Crop Variety Approval and Characterization Station, Chang Chun 130118, China
| | - Chenyang Bai
- Faculty of Agronomy Jilin Agricultural University/National Crop Variety Approval and Characterization Station, Chang Chun 130118, China
| | - Zixin Zhuang
- Faculty of Agronomy Jilin Agricultural University/National Crop Variety Approval and Characterization Station, Chang Chun 130118, China
| | - Hao Jiang
- Faculty of Agronomy Jilin Agricultural University/National Crop Variety Approval and Characterization Station, Chang Chun 130118, China
| | - Meiying Yang
- College of Life Science, Jilin Agricultural University Changchun, 130118, China
| | - Xiaoshuang Wei
- Faculty of Agronomy Jilin Agricultural University/National Crop Variety Approval and Characterization Station, Chang Chun 130118, China
| | - Zhihai Wu
- Faculty of Agronomy Jilin Agricultural University/National Crop Variety Approval and Characterization Station, Chang Chun 130118, China.
| |
Collapse
|
19
|
Gou M, Chen Q, Dong P, Liu C, Huang K. Design of a Microwave Heating and Permittivity Measurement System Based on Oblique Aperture Ridge Waveguide. SENSORS (BASEL, SWITZERLAND) 2023; 23:4035. [PMID: 37112376 PMCID: PMC10142508 DOI: 10.3390/s23084035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
In this paper, an oblique aperture ridge waveguide operating at 2450 MHz is proposed, and, using the ridge waveguide, a permittivity measurement system is constructed which can measure the permittivity of materials during microwave heating. The system calculates the amplitudes of the scattering parameters by using the forward, reflected and transmitted powers of the power meters, and it reconstructs the permittivity of the material by combining the scattering parameters with an artificial neural network. The system is used to measure the complex permittivity of mixed solutions of methanol and ethanol with different ratios at room temperature, and the permittivity of methanol and ethanol with increasing temperature, from room temperature to 50 °C. The measured results are in good agreement with the reference data. The system allows simultaneous measurement of the permittivity with microwave heating and provides real-time, rapid changes in the permittivity during heating, avoiding thermal runaway and providing a reference for applications of microwave energy in the chemical industry.
Collapse
Affiliation(s)
- Mingyi Gou
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
| | - Qian Chen
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
| | - Penghao Dong
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
| | - Changjun Liu
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
- Laboratory of Microwave Energy Applications, Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Kama Huang
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
20
|
Xiao W, He H, Dong Q, Huang Q, An F, Song H. Effects of high-speed shear and double-enzymatic hydrolysis on the structural and physicochemical properties of rice porous starch. Int J Biol Macromol 2023; 234:123692. [PMID: 36801279 DOI: 10.1016/j.ijbiomac.2023.123692] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
This study aimed to investigate the physicochemical properties of the rice porous starch (HSS-ES) prepared by high-speed shear combined with double-enzymatic (α-amylase and glucoamylase) hydrolysis, and to reveal their mechanism. The analyses of 1H NMR and amylose content showed that high-speed shear changed the molecular structure of starch and increased the amylose content (up to 20.42 ± 0.04 %). FTIR, XRD and SAXS spectra indicated that high-speed shear did not change the starch crystal configuration but caused a decrease in short-range molecular order and relative crystallinity (24.42 ± 0.06 %), and a loose semi-crystalline lamellar, which were beneficial to the followed double-enzymatic hydrolysis. Therefore, the HSS-ES displayed a superior porous structure and larger specific surface area (2.962 ± 0.002 m2/g) compared with double-enzymatic hydrolyzed porous starch (ES), resulting in the increase of water and oil absorption from 130.79 ± 0.50 % and 109.63 ± 0.71 % to 154.79 ± 1.14 % and 138.40 ± 1.18 %, respectively. In vitro digestion analysis showed that the HSS-ES had good digestive resistance derived from the higher content of slowly digestible and resistant starch. The present study suggested that high-speed shear as an enzymatic hydrolysis pretreatment significantly enhanced the pore formation of rice starch.
Collapse
Affiliation(s)
- Wanying Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Hong He
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Qingfei Dong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, PR China
| | - Qun Huang
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Fengping An
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China.
| | - Hongbo Song
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China.
| |
Collapse
|
21
|
Li Y, Wang JH, Wang EC, Tang ZS, Han Y, Luo XE, Zeng XA, Woo MW, Han Z. The microstructure and thermal properties of pulsed electric field pretreated oxidized starch. Int J Biol Macromol 2023; 235:123721. [PMID: 36801303 DOI: 10.1016/j.ijbiomac.2023.123721] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
The structure and thermal properties of pulsed electric field (PEF) assisted sodium hypochlorite oxidized starch were investigated. The carboxyl content of the oxidized starch was increased by 25 % when compared with the traditional oxidation method. Dents and cracks were evident on the surface of the PEF-pretreated starch. Compared with native starch, the peak gelatinization temperature (Tp) of PEF-assisted oxidized starch (POS) was reduced by 10.3 °C, while that of the oxidized starch without PEF treatment (NOS) was only reduced by 7.4 °C. In addition, PEF treatment further reduces the viscosity and improve the thermal stability of the starch slurry. Therefore, PEF treatment combined with hypochlorite oxidation is an effective method to prepare oxidized starch. PEF showed great potential in expanding starch modification, to promote a wider application of oxidized starch in the paper, the textile and the food industry.
Collapse
Affiliation(s)
- Ying Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Jin-Hua Wang
- Foshan Shunde Midea Washing Appliances MFG. Co., Ltd, Foshan 528300, China
| | - Er-Chun Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhong-Sheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500,China
| | - Yu Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiu-Er Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, Foshan University, Foshan 528000, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500,China
| | - Meng-Wai Woo
- Department of Chemical and Materials Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
22
|
Incorporating acetylated starch regulates the structure and sol-gel performance of wheat starch-based binary system. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
23
|
Xiong G, Jia L, Luo L, Ding Y, Lin Q, Liu C. Improvement in texture and cooking quality of black rice (Oryza sativa L.) using different pretreatments. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2022.103611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Deng X, Huang H, Huang S, Yang M, Wu J, Ci Z, He Y, Wu Z, Han L, Zhang D. Insight into the incredible effects of microwave heating: Driving changes in the structure, properties and functions of macromolecular nutrients in novel food. Front Nutr 2022; 9:941527. [PMID: 36313079 PMCID: PMC9607893 DOI: 10.3389/fnut.2022.941527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Microwave heating technology performs the characteristics of fast heating, high efficiency, green energy saving and easy control, which makes it deeply penetrate into the food industry and home cooking. It has the potential to alter the appearance and flavor of food, enhance nutrient absorption, and speed up the transformation of active components, which provides an opportunity for the development of innovation foods. However, the change of food driven by microwave heating are very complex, which often occurs beyond people's cognition and blocks the development of new food. It is thus necessary to explore the transformation mechanism and influence factors from the perspectives of microwave technology and food nutrient diversity. This manuscript focuses on the nutritional macromolecules in food, such as starch, lipid and protein, and systematically analyzes the change rule of structure, properties and function under microwave heating. Then, the flavor, health benefits, potential safety risks and bidirectional allergenicity associated with microwave heating are fully discussed. In addition, the development of new functional foods for health needs and future market based on microwave technology is also prospected. It aims to break the scientific fog of microwave technology and provide theoretical support for food science to understand the change law, control the change process and use the change results.
Collapse
Affiliation(s)
- Xuan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haozhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengjie Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China,State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jing Wu
- Xinqi Microwave Co., Ltd., Guiyang, China
| | - Zhimin Ci
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China,State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China,Zhenfeng Wu
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Li Han
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Dingkun Zhang
| |
Collapse
|
25
|
Tian S, Xue X, Wang X, Chen Z. Preparation of starch-based functional food nano-microcapsule delivery system and its controlled release characteristics. Front Nutr 2022; 9:982370. [PMID: 36046140 PMCID: PMC9421261 DOI: 10.3389/fnut.2022.982370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Most of the functional substances in food are absorbed in the small intestine, but before entering the small intestine, the strong acid and enzymes in the stomach limit the amount that can reach the small intestine. Therefore, in this paper, to develop a delivery system for functional food ingredients, maintain the biological activity of the ingredients, and deliver them to the target digestive organs, preparation of starch-based functional food nano-microcapsule delivery system and its controlled release characteristics were reviewed. Embedding unstable food active ingredients in starch-based nano-microcapsules can give the core material excellent stability and certain functional effects. Starch-based wall materials refer to a type of natural polymer material that uses starch or its derivatives to coat fat-soluble components with its hydrophobic cavities. The preparation methods of starch-based wall materials mainly include spray drying, extrusion, freeze drying, ultra-high pressure, coagulation, fluidized bed coating, molecular inclusion, chemical, and enzymic methods. The controlled release of functional food can be achieved by preparing starch-based nano-microcapsules to encapsulate the active agents. It has been reported that that compared with traditional embedding agents such as gelatin, acacia gum, and xanthan gum, starch-based functional food nano-microcapsule delivery system had many good properties, including improving antioxidant capacity, bioavailability, probiotics, and concealing bad flavors. From this review, we can learn which method should be chosen to prepare starch-based functional food nano-microcapsule delivery system and understand the mechanism of controlled release.
Collapse
Affiliation(s)
- Shuangqi Tian
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xing'ao Xue
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xinwei Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Zhicheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
26
|
Qin W, Xi H, Wang A, Gong X, Chen Z, He Y, Wang L, Liu L, Wang F, Tong L. Ultrasound Treatment Enhanced Semidry-Milled Rice Flour Properties and Gluten-Free Rice Bread Quality. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175403. [PMID: 36080172 PMCID: PMC9457677 DOI: 10.3390/molecules27175403] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/30/2022]
Abstract
The structural and functional properties of physical modified rice flour, including ultrasound treated rice flour (US), microwave treated rice flour (MW) and hydrothermal treated rice flour (HT) were investigated with wet-milled rice flour (WF) used as a positive control. The results showed the presence of small dents and pores on the rice flour granules of US and MW while more fragments and cracks were showed in HT. XRD and FTIR revealed that moderate ultrasonic treatment promoted the orderly arrangement of starch while hydrothermal treatment destroyed the crystalline structure of rice flour. In addition, the significant decrease of gelatinization enthalpy and the narrowing gelatinization temperature were observed in US. Compared to that of SF, adding physical modified rice flour led to a batter with higher viscoelasticity and lower tan δ. However, the batter added HT exhibited highest G' and G″ values and lowest tan δ, which led to a harder texture of bread. Texture analysis demonstrated that physical modified rice flour (except HT) reduced the hardness, cohesion, and gumminess of rice bread. Especially, the specific volume of bread with US increased by 15.6% and the hardness decreased by 17.6%. This study suggested that ultrasound treatment of rice flour could improve texture properties and appearance of rice bread.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fengzhong Wang
- Correspondence: (F.W.); (L.T.); Tel./Fax: +86-10-6281-7417 (L.T.)
| | - Litao Tong
- Correspondence: (F.W.); (L.T.); Tel./Fax: +86-10-6281-7417 (L.T.)
| |
Collapse
|
27
|
Physicochemical, Pasting Properties and In Vitro Starch Digestion of Chinese Yam Flours as Affected by Microwave Freeze-Drying. Foods 2022; 11:foods11152324. [PMID: 35954090 PMCID: PMC9368656 DOI: 10.3390/foods11152324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Microwave freeze-drying (MFD) is a new freeze-drying technique, which differs from single microwave treatment; it involves simultaneous effects of microwave power, time, and the moisture state applied to the materials. In this study, the effects of MFD under various microwave power densities (0.5, 1.0, and 1.5 W/g) on the drying characteristics of Chinese yam slices and the physicochemical, pasting, and thermal properties as well as the starch digestibility of the flour were investigated using conventional hot air drying (HAD) at 50 °C as a control. Compared to HAD, MFD shortened the drying time up to 14.29~35.71%, with a higher drying efficiency at a high microwave power density (1.5 W/g). MFD yam flours provided benefits over HAD products in terms of color, water/oil absorption capacity, and solubility, exhibiting high hot-paste viscosity but low resistant starch content. The content of total starch and free glucose of the yam flour and its iodine blue value were significantly influenced by the drying method and the MFD process parameters (p < 0.05). MFD processing could disrupt the short-range ordered structure of yam starch. Among the MFD flours, samples dried by MFD at 1.5 W/g presented the highest ratio of peak intensity at 1047 and 1022 cm−1 (R1047/1022) value, gelatinization enthalpy, and resistant starch content. These results gave a theoretical foundation for the novel freeze-drying method that MFD applied to foods with a high starch content, enabling the production of a product with the desired quality.
Collapse
|
28
|
Almeida RLJ, Santos NC, Feitoza JVF, de Alcântara Ribeiro VH, de Alcântara Silva VM, de Figueiredo MJ, Ribeiro CAC, Galdino PO, Queiroga AHF, de Sousa Muniz CE. The impact of the pulsed electric field on the structural, morphological, functional, textural, and rheological properties of red rice starch (
Oryza sativa
). J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Newton Carlos Santos
- Chemical Engineering Department Federal University of Rio Grande do Norte Natal Brazil
| | | | | | | | - Maria José de Figueiredo
- Department of Agro‐Industrial Management and Technology Federal University of Paraiba Bananeiras Brazil
| | | | | | | | | |
Collapse
|
29
|
Barua S, Hanewald A, Bächle M, Mezger M, Srivastav PP, Vilgis TA. Insights into the structural, thermal, crystalline and rheological behavior of various hydrothermally modified elephant foot yam (Amorphophallus paeoniifolius) starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Wang L, Wang M, Zhou Y, Wu Y, Ouyang J. Influence of ultrasound and microwave treatments on the structural and thermal properties of normal maize starch and potato starch: A comparative study. Food Chem 2022; 377:131990. [PMID: 34999449 DOI: 10.1016/j.foodchem.2021.131990] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/28/2023]
Abstract
The effects of ultrasound and microwave on the physicochemical properties of normal maize and potato starches were compared. The cavitation effect of ultrasound loosened the internal space and destroyed the structure of starch granules, increased the damaged starch content, which was consistent with the decrease in relative crystallinity and the number and brightness of Maltese crosses, and the increase in D(0.5) and D(4,3) values. Microwave vibrated the molecules inside the granules and generated heat to destroy the structure of starch. The content of damaged starch was significantly lower in microwave-treated starch compared with ultrasound-treated starch. Microwave treatment promoted the formation of amylose-lipid complex, with the larger peak area at 20°(2θ) than that of the ultrasound-treated starch. The type of starch and the treatment sequence showed a significant effect. The results might help understand the mechanism of ultrasound and microwave treatments influencing the structural properties of starches.
Collapse
Affiliation(s)
- Luyu Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Meng Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries Co. Ltd., Beijing 100015, China
| | - Yihan Zhou
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
31
|
Li Y, Cai L, Chen H, Liu Z, Zhang X, Li J, Shi SQ, Li J, Gao Q. Preparation of a high bonding performance soybean protein-based adhesive with low crosslinker addition via microwave chemistry. Int J Biol Macromol 2022; 208:45-55. [PMID: 35301001 DOI: 10.1016/j.ijbiomac.2022.03.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 11/05/2022]
Abstract
Human health and environmental protection demand wood-based panel industry for innovative soy-based adhesives with high production efficiency, straightforward synthesis processes, non-toxicity, and high bonding performance. A simple and efficient microwave pretreatment process and low addition of bio-derived crosslinking agent was used in this study to prepare a non-toxic and high-bonding performance soybean protein-based adhesive. After 4 min of microwave pretreatment time, the complex quaternary structure of soybean protein molecule unfolds, the soybean protein disperses evenly and stably, and active groups of soybean protein molecules are exposed. After adding 3.85% crosslinking agent, the moisture absorption rate of the soybean protein-based adhesive decreases by 41.77%, the residual rate increases by 3.68%, and the wet shear strength of the resultant plywood increases to 1.12 MPa, which satisfies requirement of interior use plywood. Compared with previously reported soy-based adhesives, this adhesive is dependent on fewer chemical reagents, but has good bonding performance. The 204.41% of relative cell viability indicates the resultant adhesive was non-toxic. The proposed high-efficiency, high-performance, non-toxic biomass adhesive has great prospects for the industrial application.
Collapse
Affiliation(s)
- Yue Li
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Li Cai
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Hui Chen
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Zheng Liu
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Xin Zhang
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Jingchao Li
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Sheldon Q Shi
- College of Engineering Department of Mechanical and Energy Engineering, University of North Texas, 3940 North Elm street, Suite F101P, Denton, TX 76207-7102, USA
| | - Jianzhang Li
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Qiang Gao
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China..
| |
Collapse
|
32
|
Zhang Z, Zhang M, Zhang B, Wang Y, Zhao W. Radio frequency energy regulates the multi-scale structure, digestive and physicochemical properties of rice starch. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Jia S, Zhao H, Tao H, Yu B, Liu P, Cui B. Influence of corn resistant starches type III on the rheology, structure, and viable counts of set yogurt. Int J Biol Macromol 2022; 203:10-18. [PMID: 35032494 DOI: 10.1016/j.ijbiomac.2022.01.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/19/2022]
Abstract
The study intended to explore the influence of corn resistant starches type III (RS3s) prepared by autoclave, debranching, and microwave heat on the rheology, structure, and viable counts of set yogurt. The rheological analysis suggested that RS3s enhanced the elastic and viscous modulus of yogurt, and that microwave-heated RS was the most effective for improving viscoelasticity. Fitting the creep data using the Burger model showed that yogurt with microwave-heated RS increased the structural strength of yogurt, which displayed the highest instantaneous and viscoelastic deformations. The confocal laser scanning microscopy and scanning electron microscopy micrographs demonstrated that autoclaved and debranched RS3s formed large fragments and disrupted the continuity of the milk protein structure; however, microwave-heated RS evenly filled the gel network and formed an interpenetrating network with proteins. The bacterial count and acidity of yogurt indicated that microwave-heated and debranched RS3s promoted the growth of lactic acid bacteria and accelerated the fermentation process of yogurt. The results of this study demonstrated that microwave-heated RS is a favorable supplement to the microstructure and rheological properties of yogurt compared with autoclaved and debranched RS3s.
Collapse
Affiliation(s)
- Shuyu Jia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Haibo Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
34
|
Radio frequency treatment improved the slowly digestive characteristics of rice flour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Dong J, Huang L, Chen W, Zhu Y, Dun B, Shen R. Effect of Heat-Moisture Treatments on Digestibility and Physicochemical Property of Whole Quinoa Flour. Foods 2021; 10:3042. [PMID: 34945593 PMCID: PMC8701148 DOI: 10.3390/foods10123042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
The starch digestion processing of whole grain foods is associated with its health benefits in improving insulin resistance. This study modified the digestibility of whole quinoa flour (WQ) via heat-moisture treatment (HMT), HMT combined with pullulanase (HMT+P), HMT combined with microwave (HMT+M), and HMT combined with citric acids (HMT+A), respectively. Results showed that all the treatments significantly increased (p < 0.05) the total dietary fiber (TDF) content, amylose content, and resistant starch (RS) content, however, significantly decreased (p < 0.05) the amylopectin content and rapidly digestible starch (RDS) content of WQ. HMT+P brought the highest TDF content (15.3%), amylose content (31.24%), and RS content (15.71%), and the lowest amylopecyin content (30.02%) and RDS content (23.65%). HMT+M brought the highest slowly digestible starch (SDS) content (25.09%). The estimated glycemic index (eGI) was respectively reduced from 74.36 to 70.59, 65.87, 69.79, and 69.12 by HMT, HMT+P, HMT+M, and HMT+A. Moreover, a significant and consistent reduction in the heat enthalpy (ΔH) of WQ was observed (p < 0.05), after four treatments. All these effects were caused by changes in the starch structure, as evidenced by the observed conjunction of protein and starch by a confocal laser scanning microscope (CLSM), the decrease in relative crystallinity, and transformation of starch crystal.
Collapse
Affiliation(s)
- Jilin Dong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (J.D.); (L.H.); (W.C.); (Y.Z.)
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Lu Huang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (J.D.); (L.H.); (W.C.); (Y.Z.)
| | - Wenwen Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (J.D.); (L.H.); (W.C.); (Y.Z.)
| | - Yingying Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (J.D.); (L.H.); (W.C.); (Y.Z.)
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baoqing Dun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruiling Shen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (J.D.); (L.H.); (W.C.); (Y.Z.)
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
36
|
Zhu H, Han Z, Cheng JH, Sun DW. Modification of cellulose from sugarcane (Saccharum officinarum) bagasse pulp by cold plasma: Dissolution, structure and surface chemistry analysis. Food Chem 2021; 374:131675. [PMID: 34883432 DOI: 10.1016/j.foodchem.2021.131675] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/01/2021] [Accepted: 11/21/2021] [Indexed: 01/27/2023]
Abstract
Cellulose is a most abundant natural biopolymer, however, the strong hydrogen bonding system makes cellulose hard to dissolve, limiting its further applications. In this study, an innovative cold plasma (CP) technology was used to modify cellulose from sugarcane (Saccharum officinarum) bagasse pulp. Dissolution, structure, and surface chemistry of cellulose before and after CP treatment were investigated. Results showed that the dissolution rate of cellulose after different CP treatment time (3-12 min) and operating voltage (40-70 kV) was significantly improved. Roughness, even holes (CP treatment 9 min with 50 kV) and breakage (CP treatment 9 min with 70 kV) were observed on the surface. The crystallinity index decreased from 62.31% (control) to 60.88% (CP treatment 3 min with 50 kV). The hydrogen bonding force was weakened and the peak intensity of CO and CO stretching vibration groups were enhanced. Therefore, CP-modified cellulose may be applied more in future, such as biological films for food future packaging.
Collapse
Affiliation(s)
- Hong Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhuorui Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland; ITMO University, Lomonosova Street 9, Saint-Petersburg 191002, Russian Federation.
| |
Collapse
|