1
|
Liu W, Cao J, Wu D, Wu Y, Qin Y, Liu Y, Zhao X, Song Y. Development of an advanced acetaldehyde detection solution based on yeast and bacterial surface display technology. J Biotechnol 2025; 398:42-50. [PMID: 39622345 DOI: 10.1016/j.jbiotec.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Acetaldehyde, a carcinogen widely present in various beverages and the natural environment, necessitates convenient and efficient detection methods. In this work, two different host strains were used to develop a sensitive, convenient, and efficient whole-cell optical biosensor for acetaldehyde detection. Acetaldehyde dehydrogenase (AldH) was displayed on the cell surface of Saccharomyces cerevisiae and E. coli using flocculin protein and the N-terminal ice nucleation protein (INP), respectively. The successful construction of yeast and bacteria surface display platforms was confirmed by laser scanning confocal microscopy. Then, the optimal AldH-display system for yeast and bacteria was confirmed. The optimum reaction conditions were determined by changing testing temperatures and pH values. The differences between the two display systems were compared. The highest whole-cell activities of yeast and bacteria under optimal conditions were 3.68 ± 0.07 U/mL/OD600 for BY-S6G and 6.95 ± 0.04 U/mL/OD600 for E-32-IrA. The strains with the best performance were chosen for the detection of acetaldehyde in wine and other beverage samples and showed substrate specificity and accuracy, in which the recovery rate ranged between 94.4 % and 110.1 %. The results demonstrated that the AldH surface display strains could be used as an optical biosensor to detect acetaldehyde in beverages and red wine.
Collapse
Affiliation(s)
- Weigeng Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiamin Cao
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Di Wu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yue Wu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yi Qin
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xixi Zhao
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yuyang Song
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
2
|
Deng H, Zhang W, Ramezan Y, Riahi Z, Khan A, Huang Z. Antibacterial and antioxidant plant-derived aldehydes: A new role as cross-linking agents in biopolymer-based food packaging films. Compr Rev Food Sci Food Saf 2025; 24:e70089. [PMID: 39676345 DOI: 10.1111/1541-4337.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
In recent years, biopolymer-based food packaging films have emerged as promising alternatives to petroleum-based plastic food packaging films. Various additives have been explored to enhance their properties, and one such group of additives is natural plant aldehydes. These aldehydes are commonly employed to improve the antibacterial and antioxidant properties of biopolymer-based food packaging films. However, their potential role as cross-linking agents is often overlooked in these applications. This work introduces the properties of commonly used natural plant aldehydes in biopolymer-based food packaging films. Specifically, it summarizes the effects of natural plant aldehydes such as cinnamaldehyde, vanillin, and others on the properties of biopolymer-based food packaging films. Furthermore, the application of biopolymer-based food packaging films functionalized with natural plant aldehydes in food preservation is discussed. This work concludes that various natural plant aldehydes serve as effective antimicrobial agents and antioxidants. They can not only physically interact with biopolymers but also undergo chemical cross-linking reactions with some polymers through Schiff base reactions and Michael addition reactions, thereby further improving the comprehensive properties of the film.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Tropical Fruit and Vegetable Cold-Chain of Hainan Province, Institute of Agro-Products of Processing and Design, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yousef Ramezan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zohreh Riahi
- BioNanocomposite Research Center and Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Ajahar Khan
- BioNanocomposite Research Center and Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Zhaoxian Huang
- School of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
3
|
Xu Y, Yang L, Yang Y, Yang F. Unraveling Shengmuxiang in Jiang-flavor base baijiu using a combination of metabolomics and sensomics strategy. Food Chem X 2024; 24:101851. [PMID: 39398868 PMCID: PMC11470176 DOI: 10.1016/j.fochx.2024.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
Shengmuxiang (SMX), an important aroma in Jiang-flavor base baijiu, significantly influences the quality of the product. This study employed untargeted metabolomics combined with sensomics to explore the key compounds responsible for SMX. Results indicated that SMX samples had higher intensities of green and woody-like odors compare to control samples. A total of 87 aroma compounds were identified by headspace solid phase microextraction combined with gas chromatography-mass spectrometry technology. Based on the variable projection importance, PCA and OPLS-DA were employed to identify 22 potential marker compounds. Quantitative results combined with hierarchical cluster and OAV analysis revealed that 9 aroma compounds (OAV > 1) had high concentrations in SMX samples. Aroma recombination and omission experiments further indicated that acetaldehyde and acetal were the key compounds responsible for the characteristic aroma of SMX in Jiang-flavor base baijiu. These findings provide valuable insights into the distinct aroma profile of SMX and offer a basis for quality control of Jiang-flavor base baijiu.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Science and Technology, Moutai Group, Zunyi 564501, China
| | - Lizhang Yang
- Institute of Science and Technology, Moutai Group, Zunyi 564501, China
| | - Yubo Yang
- Institute of Science and Technology, Moutai Group, Zunyi 564501, China
| | - Fan Yang
- Institute of Science and Technology, Moutai Group, Zunyi 564501, China
| |
Collapse
|
4
|
Chuensun T, Chewonarin T, Laopajon W, Samakradhamrongthai RS, Chaisan W, Utama-Ang N. Evaluation of the phytochemical, bioactive compounds and descriptive sensory of encapsulated lingzhi ( Ganoderma lucidum) extracts with combined wall materials for masking effect on the perception of off-flavour and bitterness. Heliyon 2024; 10:e40094. [PMID: 39559201 PMCID: PMC11570458 DOI: 10.1016/j.heliyon.2024.e40094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
Lingzhi mushroom (Ganoderma lucidum) is known as a medicinal mushroom that can be utilized in various functional foods available in the market, including powders, dietary supplements, and tea. However, its use is limited due to factors such as bitterness, flavour, and astringency. The objective of this study is to characterize and quantify the sensory profile of Lingzhi mushroom samples (fresh, dried and Lingzhi extracts) using quantitative descriptive analysis and investigate the physicochemical and sensory properties of encapsulated Lingzhi extracts using different ratios of wall material (maltodextrin, gum Arabic and modified starch from rice flour). The optimal ratio for encapsulation involved 32.75 % maltodextrin, 42.25 % gum Arabic, and 25 % modified starch w/w. Three parallel experiments were performed under practical conditions, resulting in average encapsulation efficiencies of 88.39 ± 0.09 % for flavonoids 89.53 ± 0.06 % for polysaccharides and 0.31 ± 0.01 of water activity. The sensory descriptive analysis indicated the following ratings: brown sugar aroma (4.36 ± 0.17), earthy aroma (22.04 ± 0.12), nutty aroma (2.00 ± 0.01), fresh mushroom aroma (11.18 ± 0.19), dried Lingzhi aroma (3.08 ± 0.13), black tea aroma (4.50 ± 0.19), salty taste (1.00 ± 0.01), earthy flavour (23.14 ± 0.22) and Mushroomy (after taste) (2.06 ± 0.09), respectively. The flavour identified of Lingzhi extracts and encapsulated by gas chromatography electronic nose (GC-E-Nose). The result showed ten flavour compounds (Acetaldehyde, Methanethiol, Propanal, propane-2-one, Methyl acetate, 2-methyl propanal, Ethyl Acetate, Heptane, 1-Butanamine, 2-methyl butanal, Thiophene). Optimizing the encapsulation conditions has a significant impact on reducing off-flavours and bitterness. Comparing the flavour profiles of Lingzhi extracts with encapsulated Lingzhi extracts using gas chromatography electronic nose (GC-E-Nose). Encapsulation technology represents a burgeoning field that holds immense potential in ensuring the stability of functional ingredients and facilitating their incorporation into instant beverage products.
Collapse
Affiliation(s)
- Threethip Chuensun
- Division of Product Development Technology, Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Teera Chewonarin
- Department of Biochemistry, Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Witida Laopajon
- Department of Medical Technology, Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | - Worrapob Chaisan
- Division of Product Development Technology, Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Niramon Utama-Ang
- Division of Product Development Technology, Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Cebrián-Tarancón C, Sánchez-Gómez R, María Martínez-Gil A, Del Alamo-Sanza M, Nevares I, Rosario Salinas M. Chemical and sensorial profile of Tempranillo wines elaborated with toasted vine-shoots of different varieties and micro-oxygenation. Food Chem 2024; 453:139607. [PMID: 38761725 DOI: 10.1016/j.foodchem.2024.139607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
The positive impact of use SEGs ("Shoot from vines - Enological - Granule") in winemaking for wines of the same variety has been extensively demonstrated, but their combination with different SEGs varieties and micro-oxygenation (MOX) remains unstudied. In this study, Tempranillo wines were in contact along 35 days with two doses of Tempranillo and Cabernet Sauvignon SEGs (12 and 24 g/L) and two fixed doses of MOX (LOTR, 6.24 mg/L·month, and HOTR, 11.91 mg/L·month). Chemical composition and sensory profiles were analyzed after SEGs-MOX treatments. Results indicated a greater impact of MOX on volatile composition when Cabernet Sauvignon SEGs were used, with similar results for CS12-HOTR and CS24-LOTR wines. Phenolic compounds showed a total concentration decrease in all treated wines, though trans-resveratrol increased in all cases, particularly with the highest MOX dose. In sensory evaluation, MOX accelerated the integration of characteristic SEGs aromas into the wine, reducing the required bottle time for round them.
Collapse
Affiliation(s)
- Cristina Cebrián-Tarancón
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain.
| | - Rosario Sánchez-Gómez
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain
| | - Ana María Martínez-Gil
- Departamento de Química Analítica, UVaMOX - Universidad de Valladolid, 34004 Palencia, Spain
| | - Maria Del Alamo-Sanza
- Departamento de Química Analítica, UVaMOX - Universidad de Valladolid, 34004 Palencia, Spain
| | - Ignacio Nevares
- Departamento de Ingeniería Agroforestal, UVaMOX - Universidad de Valladolid, 34004 Palencia, Spain
| | - Maria Rosario Salinas
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain
| |
Collapse
|
6
|
Deng Q, Xia S, Han X, You Y, Huang W, Zhan J. Enhancing the flavour quality of Laiyang pear wine by screening sorbitol-utilizing yeasts and co-fermentation strategies. Food Chem 2024; 449:139213. [PMID: 38631134 DOI: 10.1016/j.foodchem.2024.139213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/19/2024]
Abstract
This study took a novel approach to address the dual challenges of enhancing the ethanol content and aroma complexity in Laiyang pear wine. It focused on sorbitol as a pivotal element in the strategic selection of yeasts with specific sorbitol-utilization capabilities and their application in co-fermentation strategies. We selected two Saccharomyces cerevisiae strains (coded as Sc1, Sc2), two Metschnikowia pulcherrima (coded as Mp1, Mp2), and one Pichia terricola (coded as Tp) due to their efficacy as starter cultures. Notably, the Sc2 strain, alone or with Mp2, significantly increased the ethanol content (30% and 16%). Mixed Saccharomyces cerevisiae and Pichia terricola fermentation improved the ester profiles and beta-damascenone levels (maximum of 150%), while Metschnikowia pulcherrima addition enriched the phenethyl alcohol content (maximum of 330%), diversifying the aroma. This study investigated the efficacy of strategic yeast selection based on sorbitol utilization and co-fermentation methods in enhancing Laiyang pear wine quality and aroma.
Collapse
Affiliation(s)
- Qiaoyun Deng
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural Univ, Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Shuang Xia
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural Univ, Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Xiaoyu Han
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural Univ, Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural Univ, Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural Univ, Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural Univ, Tsinghua East Road 17, Haidian District, Beijing 100083, China.
| |
Collapse
|
7
|
Mercanti N, Macaluso M, Pieracci Y, Brazzarola F, Palla F, Verdini PG, Zinnai A. Enhancing wine shelf-life: Insights into factors influencing oxidation and preservation. Heliyon 2024; 10:e35688. [PMID: 39170578 PMCID: PMC11336860 DOI: 10.1016/j.heliyon.2024.e35688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Background Understanding the shelf life of wine is complex and involves factors such as aroma preservation, flavour development and market acceptance. Ageing potential, crucial for flavour complexity, exposes wine to oxidation, influenced by oxygen, temperature and light, with an impact on quality. This type of oxidation is non-enzymatic, is catalyzed by metal ions and alters colour and flavour. Scope and approach This review examines the dynamics of wine preservation, focusing on oxidation and the impact of closure. Corks allow controlled oxygen transfer, while screw caps offer a nearly hermetic closure. Oxygen transfer rates vary, with natural corks having fluctuating rates and synthetic corks causing over-exposure. Additives such as sulphur dioxide and alternative substitute such as lysozyme and ascorbic acid are examined for their role in preventing oxidation and ensuring microbiological stability. Key findings and conclusions Closure choice significantly affects wine preservation. Balancing oxygen exposure, temperature, and light is vital. Effective management, including the strategic use of preservatives and additives, is crucial for maintaining quality and extending shelf life. This review underscores the delicate equilibrium necessary for preserving wine quality from production to consumption.
Collapse
Affiliation(s)
- Nicola Mercanti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Monica Macaluso
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Ylenia Pieracci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Department of Pharmacy, Via Bonanno 33, 56124, Pisa, Italy
| | | | - Fabrizio Palla
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, Largo Bruno Pontecorvo, 3, Pisa, 56127, Italy
| | - Piero Giorgio Verdini
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, Largo Bruno Pontecorvo, 3, Pisa, 56127, Italy
| | - Angela Zinnai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Centre “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
8
|
Chen L, Wang L, Ma L, Wang C, Qin X, Wang M, Zhang X, Yang R, Fang B, An J. Synergistic Antioxidant Effects of Cysteine Derivative and Sm-Cluster for Food Applications. Antioxidants (Basel) 2024; 13:910. [PMID: 39199157 PMCID: PMC11351330 DOI: 10.3390/antiox13080910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The incorporation of antioxidants in food products is essential to prevent or delay deterioration, thereby addressing food spoilage. Thiol compounds, recognized for their natural antioxidant properties, are widely used in various foods; however, their antioxidant capacity is often limited. This study investigates the potential enhancement of thiol antioxidant capacity through the addition of a soluble, low-toxic inorganic Sm-cluster. Our findings demonstrate that the Sm-cluster significantly bolsters the antioxidant efficacy of thiol compounds. We explored, for the first time, the in vitro antioxidant activities of an Sm-oxo/hydroxy cluster combined with a cysteine derivative for potential food applications. The composition exhibited a robust inhibition of aromatic aldehyde flavor compound oxidation and displayed strong, dose-dependent DPPH (2,2-diphenyl-1-picrylhydrazine) radical scavenging activity. Notably, the antioxidant activity of the Sm-cluster/cysteine derivative was further enhanced under strong visible light conditions, which typically increased the likelihood of oxidation. These results suggest that the combination of inorganic cluster and thiol compounds presents a promising natural alternative to traditional antioxidants in the food industry.
Collapse
Affiliation(s)
- Lingxia Chen
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (L.C.); (L.W.); (C.W.); (X.Q.); (M.W.); (X.Z.); (R.Y.)
| | - Lijun Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (L.C.); (L.W.); (C.W.); (X.Q.); (M.W.); (X.Z.); (R.Y.)
| | - Lifu Ma
- Tianjin Rianlon Corporation Research Institute Analytic Center, Tianjin 300457, China;
| | - Chao Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (L.C.); (L.W.); (C.W.); (X.Q.); (M.W.); (X.Z.); (R.Y.)
| | - Xinshu Qin
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (L.C.); (L.W.); (C.W.); (X.Q.); (M.W.); (X.Z.); (R.Y.)
| | - Minlong Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (L.C.); (L.W.); (C.W.); (X.Q.); (M.W.); (X.Z.); (R.Y.)
| | - Xiaohe Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (L.C.); (L.W.); (C.W.); (X.Q.); (M.W.); (X.Z.); (R.Y.)
| | - Ruoyan Yang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (L.C.); (L.W.); (C.W.); (X.Q.); (M.W.); (X.Z.); (R.Y.)
| | - Bing Fang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (L.C.); (L.W.); (C.W.); (X.Q.); (M.W.); (X.Z.); (R.Y.)
| | - Jie An
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (L.C.); (L.W.); (C.W.); (X.Q.); (M.W.); (X.Z.); (R.Y.)
| |
Collapse
|
9
|
Van Buiten CB, Elias RJ. Impact of pre- and post-fermentation fining with polyvinylpolypyrrolidone on the chemical stability and aromatic profile of Viognier wine. J Food Sci 2024; 89:4286-4297. [PMID: 38858776 DOI: 10.1111/1750-3841.17141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
Polyvinylpolypyrrolidone (PVPP) is a synthetic, insoluble polymer that can be added to white wines to improve the chemical stability of the final product by precipitating unstable low molecular weight phenolic compounds responsible for visual defects and undesirable flavor characteristics (e.g., excessive bitterness and/or astringency). The objective of this study was to characterize the effects of PVPP on the quality characteristics of Viognier wine when added pre- or post-fermentation as compared to an untreated control wine. Both PVPP-treated wines contained significantly lower concentrations of monomeric phenolics and browning pigments than the control wine (p ≤ 0.05). The addition of PVPP prior to fermentation conferred protection against oxidation of the wine as measured by acetaldehyde concentration (p ≤ 0.05). Analysis of the volatile aroma profile of each wine by headspace solid phase microextraction gas chromatographymass spectrometry (HS-SPME-GC-MS) revealed that the overarching aroma profiles of the PVPP-treated wines were significantly different from the control wine, but there was no difference between wines treated with PVPP pre-fermentation versus those treated post-fermentation. Specifically, statistically significant differences were observed in 9 of the 22 quantified aroma compounds, including those notably associated with the "stone fruit" aroma of Viognier. A negative correlation was identified between aroma compound concentration removal and the hydrophobicity of each compound, suggesting that the observed differences in aroma may be due to adsorption of aroma compounds by PVPP. The findings from this study present risks and benefits to wine quality upon treatment with PVPP at commercially recommended levels, and provide potentially valuable information for industrial wine producers.
Collapse
Affiliation(s)
- Charlene B Van Buiten
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - Ryan J Elias
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
10
|
Indriani S, Srisakultiew N, Sangsawad P, Paengkoum P, Pongsetkul J. Characterization of the Non-Volatiles and Volatiles in Correlation with Flavor Development of Cooked Goat Meat as Affected by Different Cooking Methods. Food Sci Anim Resour 2024; 44:662-683. [PMID: 38765281 PMCID: PMC11097014 DOI: 10.5851/kosfa.2024.e10] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 05/21/2024] Open
Abstract
Thai-Native×Anglo-Nubian goat meat cooked by grilling (GR), sous vide (SV), and microwave (MW), was compared to fresh meat (Raw) in terms of flavor development. Non-volatile [i.e., free amino acids, nucleotide-related compounds, taste active values (TAVs) and umami equivalency, sugars, lipid oxidation, Maillard reaction products] and volatile compounds, were investigated. Notably, inosine monophosphate and Glu/Gln were the major compounds contributing to umami taste, as indicated by the highest TAVs in all samples. Raw had higher TAVs than cooked ones, indicating that heat-cooking removes these desirable flavor and taste compounds. This could be proportionally associated with the increase in aldehyde, ketone, and nitrogen-containing volatiles in all cooked samples. GR showed the highest thiobarbituric acid reactive substances (1.46 mg malonaldehyde/kg sample) and browning intensity (0.73), indicating the greatest lipid oxidation and Maillard reaction due to the higher temperature among all cooked samples (p<0.05). In contrast, SV and Raw exhibited similar profiles, indicating that low cooking temperatures preserved natural goat meat flavor, particularly the goaty odor. The principal component analysis biplot linked volatiles and non-volatiles dominant for each cooked sample to their unique flavor and taste. Therefore, these findings shed light on cooking method selection based on desirable flavor and preferences.
Collapse
Affiliation(s)
- Sylvia Indriani
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nattanan Srisakultiew
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Papungkorn Sangsawad
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pramote Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jaksuma Pongsetkul
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
11
|
Martusevice P, Li X, Hengel MJ, Wang SC, Fox GP. A Review of N-Heterocycles: Mousy Off-Flavor in Sour Beer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7618-7628. [PMID: 38538519 DOI: 10.1021/acs.jafc.3c09776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Beer has over 600 flavor compounds and creates a positive tasting experience with acceptable sensory properties, which are essential for the best consumer experience. Spontaneous and mixed-culture fermentation beers, generally classified as sour beers, are gaining popularity compared to typical lager or ale styles, which have dominated in the USA for the last few decades. Unique and acceptable flavor compounds characterize sour beers, but some unfavorable aspects appear in conjunction. One such unfavorable flavor is called "mousy". This description is usually labeled as an unpleasant odor, identifying spoilage of fermented food and beverages. It is related as having the odor of mouse urine, cereal, corn tortilla chips, or freshly baked sour bread. The main compounds responsible for it are N-heterocyclic compounds: 2-acetyltetrahydropyridine, 2-acetyl-1-pyrroline, and 2-ethyltetrahydropyridine. The most common beverages associated with mousy off-flavor are identified in wines, sour beers, other grain-based beverages, and kombucha, which may contain heterofermentative lactic acid bacteria, acetic acid bacteria, and/or yeast/fungus cultures. In particular, the fungal species Brettanomyces bruxellensis are associated with mousy-off flavor occurrence in fermented beverages matrices. However, many factors for N-heterocycle formation are not well-understood. Currently, the research and development of mixed-cultured beer and non/low alcohol beverages (NABLAB) has increased to obtain the highest quality, sensory, functionality, and most notably safety standards, and also to meet consumers' demand for a balanced sourness in these beverages. This paper introduces mousy off-flavor expression in beers and beverages, which occurs in spontaneous or mixed-culture fermentations, with a focus on sour beers due to common inconsistency aspects in fermentation. We discuss and suggest possible pathways of mousy off-flavor development in the beer matrix, which also apply to other fermented beverages, including non/low alcohol drinks, e.g., kombucha and low/nonalcohol beers. Some precautions and modifications may prevent the occurrence of these off-flavor compounds in the beverage matrix: improving raw material quality, adjusting brewing processes, and using specific strains of yeast and bacteria that are less likely to produce the off-flavor. Conceivably, it is clear that spontaneous and mixed culture fermentation is gaining popularity in industrial, craft, and home brewing. The review discusses important elements to identify and understand metabolic pathways, following the prevention of spoilage targeted to off-flavor compounds development in beers and NABLABs.
Collapse
Affiliation(s)
- Paulina Martusevice
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas 58344, Lithuania
- Botanical Garden, Vytautas Magnus University, Kaunas 44248, Lithuania
| | - Xueqi Li
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - Matt J Hengel
- Department of Environmental Toxicology, University of California, Davis, Davis, California 95616, United States
| | - Selina C Wang
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - Glen P Fox
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
12
|
Ferrero-Del-Teso S, Arapitsas P, Jeffery DW, Ferreira C, Mattivi F, Fernández-Zurbano P, Sáenz-Navajas MP. Exploring UPLC-QTOF-MS-based targeted and untargeted approaches for understanding wine mouthfeel: A sensometabolomic approach. Food Chem 2024; 437:137726. [PMID: 37907002 DOI: 10.1016/j.foodchem.2023.137726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/13/2023] [Accepted: 10/08/2023] [Indexed: 11/02/2023]
Abstract
This study aimed to establish relationships between wine composition and in-mouth sensory properties using a sensometabolomic approach. Forty-two red wines were sensorially assessed and chemically characterised using UPLC-QTOF-MS for targeted and untargeted analyses. Suitable partial least squares regression models were obtained for "dry", "sour", "oily", "prickly", and "unctuous". "Dry" was positively contributed by flavan-3-ols, anthocyanin derivatives (AntD), valine, gallic acid and its ethyl ester, and peptides, and negatively by sulfonated flavan-3-ols, anthocyanin-ethyl-flavan-3-ols, tartaric acid, flavonols (FOL), hydroxycinnamic acids (HA), protocatechuic ethyl ester, and proline. The "sour" model included molecules involved in "dry" and "bitter", ostensibly as a result of cognitive interactions. Derivatives of FOLs, epicatechin gallate, and N-acetyl-glucosamine phosphate contributed positively to "oily", as did vanillic acid, HAs, pyranoanthocyanins, and malvidin-flavan-3-ol derivatives for "prickly", and sugars, glutathione disulfide, AntD, FOL, and one HA for "unctuous". The presented approach offers an interesting tool for deciphering the sensory-active compounds involved in mouthfeel perception.
Collapse
Affiliation(s)
- Sara Ferrero-Del-Teso
- Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja-Consejo Superior de Investigaciones Científicas-Gobierno de La Rioja), Departamento de Enología, Logroño, La Rioja, Spain
| | - Panagiotis Arapitsas
- Unit of Metabolomics, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all'Adige, Italy; Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Ag. Spyridonos 28, Egaleo, 12243 Athens, Greece
| | - David W Jeffery
- School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Chelo Ferreira
- Laboratorio de Análisis del Aroma y Enología (LAAE), Instituto Universitario de Matemáticas y Aplicaciones (IUMA-UNIZAR), Universidad de Zaragoza, c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Fulvio Mattivi
- Unit of Metabolomics, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Purificación Fernández-Zurbano
- Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja-Consejo Superior de Investigaciones Científicas-Gobierno de La Rioja), Departamento de Enología, Logroño, La Rioja, Spain
| | - María-Pilar Sáenz-Navajas
- Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja-Consejo Superior de Investigaciones Científicas-Gobierno de La Rioja), Departamento de Enología, Logroño, La Rioja, Spain.
| |
Collapse
|
13
|
Cebrián-Tarancón C, Sánchez-Gómez R, Fernández-Roldán F, Alonso GL, Salinas MR. Evolution in the Bottling of Cabernet Sauvignon Wines Macerated with Their Own Toasted Vine-Shoots. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1864-1877. [PMID: 36988934 PMCID: PMC10835714 DOI: 10.1021/acs.jafc.2c08978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This work studies, for the first time, the effect of the use of Cabernet Sauvignon vine-shoots as an enological additive (called "Shoot Enological Granule", SEG) in wines of the same variety. SEGs were added in two doses (12 and 24 g/L) at the end of malolactic fermentation, and after that, wines were bottled for six months. The phenolic and volatile composition and sensory profiles of wines were analyzed at bottling and after six months. The results showed a decrease in the total content of phenolic compounds with bottle time; however, stilbenes─specifically trans-resveratrol─were maintained at significant levels in SEG wines. In contrast, the total content of volatile compounds, mainly esters, increased with bottle aging. Finally, in terms of sensory profile, SEG wines showed a clear differentiation between the descriptors and the control, with more-integrated aromas after bottle time with more toasted, nutty vanilla notes, as well as silkier and less bitter tannins, compared to the control.
Collapse
Affiliation(s)
- C Cebrián-Tarancón
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain
| | - R Sánchez-Gómez
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain
| | - F Fernández-Roldán
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain
- Pago de la Jaraba, Crta, Nacional 310, km 142, 7, 02600 Villarrobledo, Spain
| | - G L Alonso
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain
| | - M R Salinas
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain
| |
Collapse
|
14
|
Álvarez-Barragán J, Mallard J, Ballester J, David V, Vichy S, Tourdot-Maréchal R, Alexandre H, Roullier-Gall C. Influence of spontaneous, "pied de cuve" and commercial dry yeast fermentation strategies on wine molecular composition and sensory properties. Food Res Int 2023; 174:113648. [PMID: 37981362 DOI: 10.1016/j.foodres.2023.113648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
While most producers in recent decades have relied on commercial yeasts (ADY) as their primary choice given their reliability and reproducibility, the fear of standardising the taste and properties of wine has led to the employment of alternative strategies that involve autochthonous yeasts such as pied de cuve (PdC) and spontaneous fermentation (SF). However, the impact of different fermentation strategies on wine has been a subject of debate and speculation. Consequently, this study describes, for the first time, the differences between the three kinds of fermentation at the metabolomic, chemical, and sensory levels in two wines: Chardonnay and Pinot Noir. The results showed how the yeast chosen significantly impacted the molecular composition of the wines, as revealed by metabolomic analysis that identified biomarkers with varying chemical compositions according to the fermentation modality. Notably, higher numbers of lipid markers were found for SF and PdC than ADY, which contained more peptides. Key molecules from the metabolic amino acid pathway, which are addressed in this article, showed evidence of such variations. In addition, the analysis of volatile aromatic compounds revealed an increase in groups of compounds specific to each fermentation. The sensorial analysis of Chardonnay wine showed a more qualitative sensory outcome (Higher fruit intensity) for ADY and SF compared to PdC. Our finding challenges the common speculation among wine producers that autochthonous yeast fermentations may offer greater complexity and uniqueness in comparison to commercial yeast fermentations.
Collapse
Affiliation(s)
- Joyce Álvarez-Barragán
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France
| | - Jérôme Mallard
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Franche-Comté, 21000 Dijon, France
| | - Jordi Ballester
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Franche-Comté, 21000 Dijon, France
| | - Vanessa David
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France
| | - Stephania Vichy
- LiBiFOOD Research Group, Nutrition and Food Science Department-XaRTA-INSA, University of Barcelona, Food and Nutrition Torribera Campus, Avenida Prat de la Riba, 171. Edificio Gaudí, 08921 Santa Coloma de Gramenet, España
| | - Raphaëlle Tourdot-Maréchal
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France
| | - Hervé Alexandre
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France.
| | - Chloé Roullier-Gall
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France
| |
Collapse
|
15
|
Lee SB. Quality Characteristics and Antioxidant Activities of Six Types of Korean White Wine. Foods 2023; 12:3246. [PMID: 37685179 PMCID: PMC10486741 DOI: 10.3390/foods12173246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The cultivation of European grape cultivars suitable for winemaking in Korea presents challenges due to factors such as climate, soil conditions, precipitation, and sunlight. Consequently, Korea has traditionally resorted to adding sugar to its wine production to counteract the low sugar content in Korean grapes, yielding lower-quality wines. However, recent success in the cultivation of five European grape cultivars and the development of the domestic grape cultivar Cheongsoo have increased the possibility of achieving high-quality Korean wines. This study aimed to explore the potential of European grape cultivars and Cheongsoo as wine grapes in Korea. This study also conducted sensory evaluation and analyzed the physicochemical properties of the grapes and wines, including antioxidant capacity and color. Despite originating from the same vineyard, the composition of grapes and wines, including volatile aromatic compounds, significantly differed among the grape cultivars. In particular, Vidal wine exhibited superior antioxidant capacity compared with other wines. Moreover, Cheongsoo wine showed higher levels of essential volatile aromatic compounds, such as monoterpenes, than other wines. Sensory evaluation of these two wines also revealed excellent results. In conclusion, these findings hold promise for enhancing the diversity of Korean white wine and fostering growth in the wine industry.
Collapse
Affiliation(s)
- Sae-Byuk Lee
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehakro, Daegu 41566, Republic of Korea; ; Tel.: +82-53-950-7749
- Institute of Fermentation Biotechnology, Kyungpook National University, 80 Daehakro, Daegu 41566, Republic of Korea
| |
Collapse
|
16
|
Cucciniello R, Tomasini M, Russo A, Falivene L, Gambuti A, Forino M. Experimental and theoretical studies on the acetaldehyde reaction with (+)-catechin. Food Chem 2023; 426:136556. [PMID: 37343411 DOI: 10.1016/j.foodchem.2023.136556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/23/2023]
Abstract
Acetaldehyde plays a key role in determining some wine properties. Interesting is the reaction of acetaldehyde with flavonoids, as the ensuing products can alter wine color, astringency, colloidal stability. Many studies reported on the formation of ethylidene-bridged flavan-3-ols as products of the reaction between acetaldehyde and either (+)-catechin or (-)-epicatechin. In white wines after one year of incubation with acetaldehyde only vinyl-(+)-catechin and vinyl-(-)-epicatechin were observed, while no ethylidene linked oligomers were detected. This observation prompted us to study the reaction of (+)-catechin with acetaldehyde in wine model solution through an experimental and theoretical approach, with the purpose of exploring the nature of the species involved along with the mechanisms leading to them. The products of the reaction were observed over 38 days. The results showed that ethylidene-bridged catechins are the first products to be formed but over time the dissociation of these dimers causes vinyl-catechins to accumulate.
Collapse
Affiliation(s)
- Raffaele Cucciniello
- Department of Chemistry and Biology 'Adolfo Zambelli', University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Province of Salerno 84084, Italy
| | - Michele Tomasini
- Department of Chemistry and Biology 'Adolfo Zambelli', University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Province of Salerno 84084, Italy; Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, Girona, Catalonia 17003, Spain
| | - Anna Russo
- Department of Chemistry and Biology 'Adolfo Zambelli', University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Province of Salerno 84084, Italy
| | - Laura Falivene
- Department of Chemistry and Biology 'Adolfo Zambelli', University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Province of Salerno 84084, Italy.
| | - Angelita Gambuti
- Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Napoli 'Federico II', Viale Italia, Avellino 83100, Italy
| | - Martino Forino
- Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Napoli 'Federico II', Viale Italia, Avellino 83100, Italy
| |
Collapse
|
17
|
Stoffel ES, Robertson TM, Catania AA, Casassa LF. The Impact of Fermentation Temperature and Cap Management on Selected Volatile Compounds and Temporal Sensory Characteristics of Grenache Wines from the Central Coast of California. Molecules 2023; 28:molecules28104230. [PMID: 37241971 DOI: 10.3390/molecules28104230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Grenache wines from the Central Coast of California were subjected to different alcoholic fermentation temperature regimes (Cold, Cold/Hot, Hot) and cap management protocols, namely, punch down (PD), or no punch down (No PD), to determine the effect of these practices on the color, aroma, and the retronasal and mouthfeel sensory characteristics of the resulting wines. Descriptive analysis (n = 8, line scale rating 0-15) results indicated that the combination of a hot fermentation temperature and no punch downs led to a significantly higher intensity in perceived color saturation (7.89) and purple hue (8.62). A two-way analysis of variance (ANOVA) showed that cap management was significantly more impactful on the perception of orthonasal aromas than fermentation temperature. The reduction aroma was significantly higher in No PD wines (5.02) compared to PD wines (3.50), while rose and hot aromas had significantly higher intensity perception for PD wines (5.18, 6.80) than for No PD wines (6.80, 6.14). Conversely, analysis of selected volatile compounds indicated that fermentation temperature was more impactful than cap management regime. Cold/Hot wines had higher concentrations of important esters such as ethyl hexanoate (650 µg/L) and isoamyl acetate (992 µg/L). Cold wines had a higher concentration of β-damascenone (0.719 µg/L). TCATA evaluation (n = 8) indicated that Cold/Hot PD wines had a significantly higher citation proportion of fruit flavor (1.0) and velvet astringency perception (0.80) without significant reduction flavors. Finally, the present study represents a contribution with the main volatile compounds (e.g., β-damascenone and esters in the Cold and Cold/Hot fermented wines, respectively; hexanol in PD wines, which may be potentially responsible for a hot mouthfeel), and sensory characteristics (red fruit, tropical fruit, white pepper, and rose) of Grenache wines grown in the Mediterranean climate of the Central Coast of California.
Collapse
Affiliation(s)
- Emily S Stoffel
- Food Science & Nutrition Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
- Wine & Viticulture Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Taylor M Robertson
- Wine & Viticulture Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Anibal A Catania
- Centro de Estudios de Enología, Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agro-pecuaria (INTA), San Martín 3853, Mendoza 5507, Argentina
| | - L Federico Casassa
- Wine & Viticulture Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
18
|
Han X, Qin Q, Li C, Zhao X, Song F, An M, Chen Y, Wang X, Huang W, Zhan J, You Y. Application of non-Saccharomyces yeasts with high β-glucosidase activity to enhance terpene-related floral flavor in craft beer. Food Chem 2023; 404:134726. [DOI: 10.1016/j.foodchem.2022.134726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
19
|
Acetaldehyde accumulation during wine micro oxygenation: The influence of microbial metabolism. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Ibáñez D, González-García MB, Hernández-Santos D, Fanjul-Bolado P. Spectroelectrochemical Enzyme Sensor System for Acetaldehyde Detection in Wine. BIOSENSORS 2022; 12:1032. [PMID: 36421150 PMCID: PMC9688840 DOI: 10.3390/bios12111032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
A new spectroelectrochemical two-enzyme sensor system has been developed for the detection of acetaldehyde in wine. A combination of spectroscopy and electrochemistry improves the analytical features of the electrochemical sensor because the optical information collected with this system is only associated with acetaldehyde and avoids the interferents also present in wines as polyphenols. Spectroelectrochemical detection is achieved by the analysis of the optical properties of the K3[Fe(CN)6]/K4[Fe(CN)6] redox couple involved in the enzymatic process: aldehyde dehydrogenase catalyzes the aldehyde oxidation using β-nicotinamide adenine dinucleotide hydrate (NAD+) as a cofactor and, simultaneously, diaphorase reoxidizes the NADH formed in the first enzymatic process due to the presence of K3[Fe(CN)6]. An analysis of the characteristic UV-vis bands of K3[Fe(CN)6] at 310 and 420 nm allows the detection of acetaldehyde, since absorption bands are only related to the oxidation of this substrate, and avoids the contribution of other interferents.
Collapse
|
21
|
Jia W, Du A, Fan Z, Wang Y, Shi L. Effects of Short-Chain Peptides on the Flavor Profile of Baijiu by the Density Functional Theory: Peptidomics, Sensomics, Flavor Reconstitution, and Sensory Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9547-9556. [PMID: 35866578 DOI: 10.1021/acs.jafc.2c02549] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The effect of peptides on the flavor profile of Baijiu is unclear as a result of their trace concentrations in the complex matrix, and therefore, the study involving the interaction mechanism between peptides and flavor compounds is limited. In this study, short-chain peptides (amino acid number between 2 and 4, SCPs) associated with the Feng-flavor Baijiu (FFB) were comprehensively analyzed by a dedicated workflow using ultra-high-performance liquid chromatography Q Orbitrap high-resolution mass spectrometry, flavor reconstitution experiments, sensory analysis, and density functional theory (DFT) analysis. The concentrations of 96 SCPs intimately related with six different grades of honey aroma intensity in FFB were quantified (0.12-155.01 μg L-1) after multivariable analysis, Spearman's correlation analysis (ρ ≥ 0.7), and confirmation with synthetic standards, and 32 dominant odorants with an odor activity value of ≥1 in FFB with the highest intensity of honey aroma were quantified by gas chromatography-mass spectrometry and gas chromatography-flame ionization detection analyses. The results of flavor reconstitution experiments and sensory analysis indicated that the SCPs can obviously influence the honey aroma with amplifying the fruity, sweet, and flora flavor odor characters (p < 0.05) while significantly reducing the acidic character (p < 0.001), which could be attributed to the most stable complex structure between SCPs and odor-active compounds calculated by DFT being butanoic acid, followed by β-damascenone, 3-methylbutanal, and ethyl hexanoate, and the multiple sites as a hydrogen bond donor or acceptor in SCPs can form a stable ternary structure with water and ethanol inside the peptide chain or carboxyl terminal of SCPs, consequently improving the stability of the Baijiu system. The results highlighted the important role of SCPs on the volatiles in Baijiu and laid the foundation for further facilitating the sensory quality of Baijiu products.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Yongbo Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| |
Collapse
|
22
|
Garcia L, Perrin C, Nolleau V, Godet T, Farines V, Garcia F, Caillé S, Saucier C. Impact of Acetaldehyde Addition on the Sensory Perception of Syrah Red Wines. Foods 2022; 11:foods11121693. [PMID: 35741891 PMCID: PMC9223084 DOI: 10.3390/foods11121693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Two experimental Syrah red wines with different polyphenol contents were used to study the impact of acetaldehyde addition on olfactory perception. Free acetaldehyde levels were measured in red wine by Head Space-Gas Chromatography-Mass Spectrometry (HS-GC-MS) to determine the acetaldehyde combination levels for those wines. Significant differences were observed for both sensory threshold and acetaldehyde combination for the wines. A descriptive sensory analysis of the wines was then performed by using a trained panel and a Hierarchical-Check-All-That-Apply (HCATA) analysis of the wines with or without acetaldehyde addition. The results show that classical cited sensory descriptors for acetaldehyde (overripe apple and oxidized apple) varied significantly between the control wines and those with acetaldehyde addition. Non-acetaldehyde related descriptors (fresh vegetable, fresh flowers, cocoa, and meat juice) were also significantly impacted in the samples with increasing acetaldehyde additions. This suggests possible interactions between acetaldehyde and other volatile compounds that can create antagonistic or synergistic effects between the molecules or at the olfactory receptor level.
Collapse
|
23
|
Wang C, Liang S, Yang J, Wu C, Qiu S. The impact of indigenous Saccharomyces cerevisiae and Schizosaccharomyces japonicus on typicality of crystal grape (Niagara) wine. Food Res Int 2022; 159:111580. [DOI: 10.1016/j.foodres.2022.111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022]
|
24
|
He Y, Tang K, Yu X, Chen S, Xu Y. Identification of Compounds Contributing to Trigeminal Pungency of Baijiu by Sensory Evaluation, Quantitative Measurements, Correlation Analysis, and Sensory Verification Testing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:598-606. [PMID: 34939413 DOI: 10.1021/acs.jafc.1c06875] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pungency is one of the most important mouthfeel characteristics that is primarily related to the sensory quality of distilled spirits. However, the chemical basis of pungency is still unclear. A set of Baijiu samples with different levels of pungency was characterized by sensory analysis and volatile compound analyses. Several esters, aldehydes, and acids significantly correlated with pungency. Ethyl hexanoate, ethyl acetate, 3-methylbutyl hexanoate, acetaldehyde, acetal, and 3-methylbutanal were confirmed to be the strongest contributors to the pungency of Baijiu by the two-alternative forced-choice test. Sensory recombination testing further revealed that the contribution of esters to pungency was much higher than that of the aldehydes, and acid compounds at low concentrations suppress the pungency perception. In this study, the importance of esters in the pungency of distilled spirits is first reported. The results provide an instructive basis for further research into optimizing the quality of products.
Collapse
Affiliation(s)
- Yingxia He
- Lab of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ke Tang
- Lab of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaowei Yu
- Lab of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuang Chen
- Lab of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
25
|
Huang XH, Luo Y, Zhu XH, Ayed C, Fu BS, Dong XP, Fisk I, Qin L. Dynamic release and perception of key odorants in grilled eel during chewing. Food Chem 2022; 378:132073. [PMID: 35030462 DOI: 10.1016/j.foodchem.2022.132073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Abstract
The release mechanism of odorants in the oral cavity during consumption directly affects sensory attributes, consumers' preferences, and ultimately purchase intent. Targets was set to monitor in real-time the key odorants released from grilled eel during mastication via an atmospheric pressure chemical ionization mass spectrometry (APCI-MS) connected with a nose interface. The release and perception of odorants during mastication were divided into three distinct phases. Dimethyl sulfide was the main odorant in the first stage. The release and perception of fishy aromas were predominant in the middle and last stages of mastication contributed by trimethylamine, 1-penten-3-ol, and 2-methyl-1-butanol. Chewing behavior experiments suggested that extending the chewing period to >20 s and having a chewing frequency of 2 cycles/s could enhance the aroma delivery of grilled eel and optimize the consumer experience. Consequently, the results explained the relationship between aroma release and the optimal chewing behavior for grilled eel consumption.
Collapse
Affiliation(s)
- Xu-Hui Huang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yong Luo
- Department of Otolaryngology, Union Jiangnan Hospital, Wuhan, 430200, China
| | | | - Charfedinne Ayed
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Bao-Shang Fu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiu-Ping Dong
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ian Fisk
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, United Kingdom; The University of Adelaide, North Terrace, Adelaide, South Australia, Australia.
| | - Lei Qin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|