1
|
Yu J, Xu L, Mi L, Zhang N, Liu F, Zhao J, Xu Z. Integrated, high-throughput metabolomics approach for metabolite analysis of four sprout types. Food Chem 2025; 463:141182. [PMID: 39276547 DOI: 10.1016/j.foodchem.2024.141182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
In this study, we combined two distinct extraction and separation techniques with the aim of comprehensively collecting metabolite features in sprouts, particularly hydrophilic compounds. By synergistically analyzing the data using MS-DIAL and MetaboAnalystR, we obtained a greater number of annotated metabolites and explored differences in annotation across analytical tools. We found that this approach significantly increased the number of detected metabolite features and the final identification counts. Furthermore, we explored the functional component characteristics of four sprout types. This study provides data supporting the potential of sprouts as nutritious vegetables and functional food ingredients, emphasizing their value in the development of functional foods.
Collapse
Affiliation(s)
- Junyan Yu
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Lei Xu
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Lu Mi
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Nan Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - Fengjuan Liu
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, PR China.
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Zhenzhen Xu
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
2
|
Liu F, Edelmann M, Piironen V, Li Y, Liu X, Yan JK, Li L, Kariluoto S. How food matrices modulate folate bioaccessibility: A comprehensive overview of recent advances and challenges. Compr Rev Food Sci Food Saf 2024; 23:e13328. [PMID: 38551068 DOI: 10.1111/1541-4337.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
The incomplete absorption of dietary folate makes it crucial to understand how food matrices affect folate bioaccessibility. Bioavailability encompasses bioaccessibility, which depicts the proportion that is liberated from the food matrix during digestion and becomes available for absorption. Bioavailability studies are expensive and difficult to control, whereas bioaccessibility studies utilize in vitro digestion models to parameterize the complex digestion, allowing the evaluation of the effect of food matrices on bioaccessibility. This review covers the folate contents in various food matrices, the methods used to determine and the factors affecting folate bioaccessibility, and the advances and challenges in understanding how food matrices affect folate bioaccessibility. The methods for determining bioaccessibility have been improved in the last decade. Current research shows that food matrices modulate folate bioaccessibility by affecting the liberation and stability of folate during digestion but do not provide enough information about folate and food component interactions at the molecular level. In addition, information on folate interconversion and degradation during digestion is scant, hindering our understanding of the impact of food matrices on folate stability. Moreover, the role of conjugase inhibitors should not be neglected when evaluating the nutritional value of food folates. Due to the complexity of food digestion, holistic methods should be applied to investigate bioaccessibility. By synthesizing the current state of knowledge on this topic, this review highlights the lack of in-depth understanding of the mechanisms of how food matrices modulate folate bioaccessibility and provides insights into potential strategies for accurate evaluation of the nutritional value of dietary folate.
Collapse
Affiliation(s)
- Fengyuan Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Minnamari Edelmann
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Yuting Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Xiaozhen Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Jing-Kun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Susanna Kariluoto
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
He Y, Li C, Yang M, Wang C, Guo H, Liu J, Liu H. Transcriptome Analysis Reveals the Mechanisms of Accumulation and Conversion of Folate Derivatives during Germination of Quinoa ( Chenopodium quinoa Willd.) Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3800-3813. [PMID: 38327020 DOI: 10.1021/acs.jafc.3c08209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Folate was enriched during quinoa germination, while molecular mechanisms were not well understood. In this study, three quinoa varieties were selected for germination, and changes in substrate content and enzyme activity of the folate biosynthesis pathway were monitored. 5-Methyltetrahydrofolate (5-CH3-THF) and 5-formyltetrahydrofolate (5-CHO-THF) were significantly enriched in quinoa sprouts. Among the selected varieties, QL-2 exhibited the lowest content of the oxidation product MeFox and the highest total folate content. Based on transcriptome analysis, the p-ABA branch was found to be crucial for folate accumulation, while the pterin branch served as a key control point for the one carbon pool by folate pathway, which limited further folate biosynthesis. In the one carbon pool by folate pathway, genes CqMTHFR and CqAMT significantly contributed to the enrichment of 5-CH3-THF and 5-CHO-THF. Findings gained here would facilitate the potential application of quinoa sprouts as an alternative strategy for folate supplementation.
Collapse
Affiliation(s)
- Yanan He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Cui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Miao Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | - Haiyun Guo
- Hebei Tongfu Group Co., Ltd., Shijiazhuang 050000, China
| | - Jun Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haijie Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
4
|
Eldin SMS, Shawky E, Ghareeb DA, El Sohafy SM, Sallam SM. Metabolomics and chemometrics depict the changes in the chemical profile of white lupine (Lupinus albus L.) bioactive metabolites during seed germination. Food Chem 2023; 418:135967. [PMID: 36965385 DOI: 10.1016/j.foodchem.2023.135967] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/27/2023]
Abstract
The current study attempts to illustrate how the chemical and biological profile of white lupine seeds varies throughout the course of various germination days using UHPLC-QqQ-MS combined to chemometrics. Abscisic acid showed maximum level in the un-germinated seeds and started to decline with seed germination accompanied by an increase in the levels of gibberellins which were undetectable in un-germinated seeds. Coumaronochromones were the most prevalent constituents detected in un-germinated seeds while day 2 sprouts showed significant accumulation of flavones. The levels of alkaloids showed significant increase upon germination of the seeds reaching its maximum in day 14 sprouts. The OPLS model coefficients plot indicated that lupinalbin D and F, apigenin hexoside, kaempferol hexoside, albine, and hydoxylupanine showed strong positive correlation to the alpha amylase inhibitory activity of the tested samples while lupinalbin A, lupinisoflavone, lupinic acid and multiflorine were positively correlated to the inhibition of alpha glycosidase activity. The results obtained indicated that seed germination has a profound effect on the chemical profile as well as the in-vitro antidiabetic activity of lupine seeds.
Collapse
Affiliation(s)
- Safa M Shams Eldin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Doaa A Ghareeb
- Bio‑Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Samah M El Sohafy
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Shaimaa M Sallam
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
5
|
Bermejo NF, Munné-Bosch S. Mixing chia seeds and sprouts at different developmental stages: a cost-effective way to improve antioxidant vitamin composition. Food Chem 2022; 405:134880. [DOI: 10.1016/j.foodchem.2022.134880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
6
|
Li X, Meng H, Liu L, Hong C, Zhang C. Metabolic network changes during skotomorphogenesis in Arabidopsis thaliana mutant ( atdfb-3). PLANT DIRECT 2022; 6:e00467. [PMID: 36438611 PMCID: PMC9684686 DOI: 10.1002/pld3.467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The metabolic networks underlying skotomorphogenesis in seedlings remain relatively unknown. On the basis of our previous study on the folate metabolism in seedlings grown in darkness, the plastidial folylpolyglutamate synthetase gene (AtDFB) T-DNA insertion Arabidopsis thaliana mutant (atdfb-3) was examined. Under the nitrate-sufficient condition, the mutant exhibited deficient folate metabolism and hypocotyl elongation, which affected skotomorphogenesis. Further analyses revealed changes to multiple intermediate metabolites related to carbon and nitrogen metabolism in the etiolated atdfb-3 seedlings. Specifically, the sugar, polyol, and fatty acid contents decreased in the atdfb-3 mutant under the nitrate-sufficient condition, whereas the abundance of various organic acids and amino acids increased. In response to nitrate-limited stress, multiple metabolites, including sugars, polyols, fatty acids, organic acids, and amino acids, accumulated more in the mutant than in the wild-type control. The differences in the contents of multiple metabolites between the atdfb-3 and wild-type seedlings decreased following the addition of exogenous 5-F-THF under both nitrogen conditions. Additionally, the mutant accumulated high levels of one-carbon metabolites, such as Cys, S-adenosylmethionine, and S-adenosylhomocysteine, under both nitrogen conditions. Thus, our data demonstrated that the perturbed folate metabolism in the atdfb-3 seedlings, which was caused by the loss-of-function mutation to AtDFB, probably altered carbon and nitrogen metabolism, thereby modulating skotomorphogenesis. Furthermore, the study findings provide new evidence of the links among folate metabolism, metabolic networks, and skotomorphogenesis.
Collapse
Affiliation(s)
- Xingjuan Li
- College of BioengineeringBeijing PolytechnicBeijingChina
| | - Hongyan Meng
- Fujian Provincial Key Laboratory of Subtropical Plant Physiology and BiochemistryFujian Institute of Subtropical BotanyXiamenChina
| | - Liqing Liu
- Fujian Provincial Key Laboratory of Subtropical Plant Physiology and BiochemistryFujian Institute of Subtropical BotanyXiamenChina
| | - Cuiyun Hong
- Fujian Provincial Key Laboratory of Subtropical Plant Physiology and BiochemistryFujian Institute of Subtropical BotanyXiamenChina
| | - Chunyi Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
7
|
Alrosan M, Tan TC, Mat Easa A, Gammoh S, Alu'datt MH. Recent updates on lentil and quinoa protein-based dairy protein alternatives: Nutrition, technologies, and challenges. Food Chem 2022; 383:132386. [PMID: 35176718 DOI: 10.1016/j.foodchem.2022.132386] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/07/2022] [Accepted: 02/05/2022] [Indexed: 12/27/2022]
Abstract
Due to its high nutritional value and increasing consumption trends, plant-based proteins were used in a variety of dietary products, either in their entirety or as partial substitutions. There is indeed a growing need to produce plant-based proteins as alternatives to dairy-based proteins that have good functional properties, high nutritional values, and high protein digestibility. Among the plant-based proteins, both lentil and quinoa proteins received a lot of attention in recent years as dairy-based protein alternatives. To ensure plant-based proteins a success in food applications, food industries and researchers need to have a comprehensive scientific understanding of these proteins. The demand for proteins is highly dependent on several factors, mainly functional properties, nutritional values, and protein digestibility. Fermentation and protein complexation are recognised to be suitable techniques in enhancing the functional properties, nutritional values, and protein digestibility of these plant-based proteins, making them potential alternatives for dairy-based proteins.
Collapse
Affiliation(s)
- Mohammad Alrosan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia; Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia.
| | - Azhar Mat Easa
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|