1
|
Freire RVM, Tran B, Debas M, Zabara M, Amenitsch H, Salentinig S. Nanostructure Formation in Glycerolipid Films during Enzymatic Hydrolysis: A GISAXS Study. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39448890 DOI: 10.1021/acsami.4c12125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Responsive nanostructured films from food-grade lipids can be valuable for food, pharmaceutical, and biotechnological science. Lyotropic liquid crystalline structures that respond to enzymes in their environment can, for instance, be innovated as drug delivery platforms or biosensors. However, the structural changes that such films undergo during enzymatic reactions with lipase are not yet understood. This work demonstrates the preparation of mesostructured lipid films from the food-grade lipids glycerol monooleate (GMO) and triolein on silicon wafers and their digestion with pancreatic lipase using time-resolved synchrotron grazing incidence small-angle X-ray scattering (GISAXS). The film structure is compared with the corresponding GMO/triolein bulk phases in excess water. Increasing the GMO/triolein ratio in the film makes it possible to modulate the structure of the films from oil coatings to inverse hexagonal and inverse bicontinuous cubic films. Pancreatic lipase triggered swelling of the internal film nanostructure and eventually structural transformation inside the film. Orientation and reorientation of the internal film structure relative to the silicon wafer surface were observed during the preparation of the films and their digestion. The findings contribute to the understanding of self-assembly in thin films and guide the development of enzyme-responsive coatings for the functional modification of various substrates.
Collapse
Affiliation(s)
- Rafael V M Freire
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Bettina Tran
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Meron Debas
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Mahsa Zabara
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Heinz Amenitsch
- Institute for Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria and Elettra Sincrotrone Trieste S.C.p.A., s.s. 14 km 163.5 in Area Science Park, Basovizza, 34149 Trieste, Italy
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
2
|
Liu L, Ma N, Wang L, Zhang Y, Wan YZ, Wang T, Qian W. Development of a Methodology Based on Optical Interferometry for Measuring Fibrinolytic Activity. Anal Chem 2024; 96:13482-13493. [PMID: 39094103 DOI: 10.1021/acs.analchem.4c01646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Fibrinolytic activity assay is particularly important for the detection, diagnosis, and treatment of cardiovascular disease and the development of fibrinolytic drugs. A novel efficacious strategy for real-time and label-free dynamic detection of fibrinolytic activity based on ordered porous layer interferometry (OPLI) was developed. Fibrin or a mixture of fibrin and plasminogen (Plg) was loaded into the highly ordered silica colloidal crystal (SCC) film scaffold to construct a fibrinolytic response interference layer to measure fibrinolytic activity with different mechanisms of action. Fibrinolytic enzyme-triggered fibrinolysis led to the migration of interference fringes in the interferogram, which could be represented by optical thickness changes (ΔOT) tracked in real time by the OPLI system. The morphology and optical property of the fibrinolytic response interference layer were characterized, and the Plg content in the fibrinolytic response interference layer and experimental parameters of the system were optimized. The method showed adequate sensitivity for the fibrinolytic activity of lumbrokinase and streptokinase, with wide linear ranges of 12-6000 and 10-2000 U/mL, respectively. Compared with the traditional fibrin plate method, it has a lower detection limit and higher linearity. The whole kinetic process of fibrinolysis by these two fibrinolytic drug models was recorded in real time, and the Michaelis constant and apparent kinetic parameters were calculated. Importantly, some other blood proteins were less interfering with this system, and it showed reliability in fibrin activity detection in real whole blood samples. This study established a better and more targeted research method of in vitro fibrinolysis and provided dynamic monitoring data for the analysis of fibrinolytic activity of whole blood.
Collapse
Affiliation(s)
- Liming Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lu Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi-Zhen Wan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianze Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiping Qian
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- OPLI (Suzhou) Biotechnology Company Limited, New District, Suzhou 215163, China
| |
Collapse
|
3
|
Su Q, Sun Y, Tang Y, Ni N, Ding N. Measurement of enzyme activity of insoluble substrates based on ordered porous layer interferometry and the application in evaluation of thrombolytic drugs. Analyst 2024; 149:1537-1547. [PMID: 38284466 DOI: 10.1039/d3an02054a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The development of innovative methods for real-time surveillance of enzymatic activity determination processes is essential, particularly for insoluble substrate enzymatic assessments. In this work, a novel method for enzymatic activity determination was devised by assembling a 190 nm silica colloidal crystal (SCC) film onto a glass slide, coupled with Ordered Porous Layer Interferometry (OPLI) technology. By fixing the substrate of the enzyme on the surface of the silica sphere, a solid-liquid interface can be formed for monitoring enzymatic activity. The enzymatic activity is gauged by the change in the SCC film's thickness caused by the digestion of the loaded substrate. The procedure of chymotrypsin-mediated casein digestion was documented in real time, facilitating the examination of chymotrypsin's activity and kinetics. The newly-developed enzymatic activity determination method demonstrated exceptional sensitivity towards chymotrypsin activity, with a linear range spanning 0.0505-2.02 units per mg. Additionally, the method was extended to the assessment of fibrinolysis enzyme activity and kinetic analysis, yielding promising results. Therefore, this technique can serve as a real-time, user-friendly, cost-effective novel approach for enzymatic activity determination, providing fresh perspectives for enzymatic activity determination studies.
Collapse
Affiliation(s)
- Qianqian Su
- Pharmacy School, Jiangsu Ocean University, Lianyungang 222005, China.
- Jiangsu Key Laboratory of Marine Drug Screening, Lianyungang 222005, China
| | - Yu Sun
- Pharmacy School, Jiangsu Ocean University, Lianyungang 222005, China.
- Jiangsu Key Laboratory of Marine Drug Screening, Lianyungang 222005, China
| | - Yanhua Tang
- Pharmacy School, Jiangsu Ocean University, Lianyungang 222005, China.
- Jiangsu Key Laboratory of Marine Drug Screening, Lianyungang 222005, China
| | - Na Ni
- Pharmacy School, Jiangsu Ocean University, Lianyungang 222005, China.
- Jiangsu Key Laboratory of Marine Drug Screening, Lianyungang 222005, China
| | - Nian Ding
- Pharmacy School, Jiangsu Ocean University, Lianyungang 222005, China.
- Jiangsu Key Laboratory of Marine Drug Screening, Lianyungang 222005, China
| |
Collapse
|
4
|
Zhang Y, Wang L, Ma N, Wan Y, Zhu X, Qian W. Ordered Porous Layer Interferometry for Dynamic Observation of Non-Specific Adsorption Induced by 1-Ethyl-3-(3-(dimethylamino)propyl) Carbodiimide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11406-11413. [PMID: 37542713 DOI: 10.1021/acs.langmuir.3c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
Nonspecific adsorption (NSA) seems to be an impregnable obstacle to the progress of the biomedical, diagnostic, microelectronic, and material fields. The reaction path of bioconjugation can alter the surface charge distribution on products and the interaction of bioconjugates, an ignored factor causing NSA. We monitored exacerbated NSA introduced by a 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDC) addition reaction, which cannot be resistant to bovine serum albumin (BSA) or polyethylene glycol (PEG) antifouling coating and Tween-20. And the negative effects can be minimized by adding as low as 7.5 × 10-6 M N-hydroxysulfosuccinimide (sulfo-NHS). We applied ordered porous layer interferometry (OPLI) to sensitively evaluate the NSA that is difficult to measure on individual particles. Using the silica colloidal crystal (SCC) film with Fabry-Perot fringes as in situ and real-time monitoring for the NSA, we optimized the surface chemistry to yield a conjugate surface without variational charge distribution. In this work, we propose a novel approach from the perspective of the reaction pathway to minimize the NSA of solely EDC-induced chemistry.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lu Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yizhen Wan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xueyi Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiping Qian
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
5
|
Wang L, Zhou L, Ma N, Wan Y, Zhang Y, Xu B, Qian W. Real-time monitoring of papain digestion of antibodies immobilized with various strategies by optical interferometry. Int J Biol Macromol 2023; 235:123872. [PMID: 36871683 DOI: 10.1016/j.ijbiomac.2023.123872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/26/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023]
Abstract
Antigen binding fragments (Fabs) employed in research are typically generated by the papain digestion of monoclonal antibodies. However, the interaction between papain and antibodies at the interface remains unclear. Herein, we developed ordered porous layer interferometry for the label-free monitoring of the interaction between the antibody and papain at liquid-solid interfaces. Human immunoglobulin G (hIgG) was used as the model antibody, and different strategies were employed to immobilize it on the surface of silica colloidal crystal (SCC) films which are optical interferometric substrates. It was observed that different immobilization strategies induced different changes in the optical thickness (OT) of SCCs. The order of rate of the changes of OT from largest to smallest was IgG immobilized by protein A orientation, glutaraldehyde coupling, and physical adsorption. This phenomenon can be explained by the varied orientations of the antibodies created at the interface by the different modification procedures. The Fab-up orientation maximized the exposure of the hinge region sulfhydryl group and easily underwent conformational transitions because hIgG was immobilized by protein A. This process stimulates papain to produce the highest degree of activity, resulting in the greatest decrease in OT. This study provides insights into the catalysis of papain on antibodies.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lele Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yizhen Wan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Bin Xu
- Center of Clinical Laboratory Science, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Weiping Qian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; OPLI (Suzhou) Biotechnology Co., Ltd, New District, Suzhou 215163, China.
| |
Collapse
|
6
|
Niu H, Wang W, Dou Z, Chen X, Chen X, Chen H, Fu X. Multiscale combined techniques for evaluating emulsion stability: A critical review. Adv Colloid Interface Sci 2023; 311:102813. [PMID: 36403408 DOI: 10.1016/j.cis.2022.102813] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Emulsions are multiscale and thermodynamically unstable systems which will undergo various unstable processes over time. The behavior of emulsifier molecules at the oil-water interface and the properties of the interfacial film are very important to the stability of the emulsion. In this paper, we mainly discussed the instability phenomena and mechanisms of emulsions, the effects of interfacial films on the long-term stability of emulsions and summarized a set of systematic multiscale combined methods for studying emulsion stability, including droplet size and distribution, zeta-potential, the continuous phase viscosity, adsorption mass and thickness of the interfacial film, interfacial dilatational rheology, interfacial shear rheology, particle tracking microrheology, visualization technologies of the interfacial film, molecular dynamics simulation and the quantitative evaluation methods of emulsion stability. This review provides the latest research progress and a set of systematic multiscale combined techniques and methods for researchers who are committed to the study of oil-water interface and emulsion stability. In addition, this review has important guiding significances for designing and customizing interfacial films with different properties, so as to obtain emulsion-based delivery systems with varying stability, oil digestibility and bioactive substance utilization.
Collapse
Affiliation(s)
- Hui Niu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang 529500, Guangdong, PR China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xianwei Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China; Maritime Academy, Hainan Vocational University of Science and Technology, 18 Qiongshan Road, Haikou 571126, PR China.
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China.
| |
Collapse
|
7
|
Zhou L, Wang L, Ma N, Wan Y, Zhang Y, Liu H, Qian W. Real-Time Monitoring of Curcumin Release with a Lipid–Curcumin-Loaded Silica Colloidal Crystal Film Using Optical Interferometry. Anal Chem 2022; 94:15809-15817. [DOI: 10.1021/acs.analchem.2c03582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lele Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Lu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Ning Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Yizhen Wan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Hao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Weiping Qian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| |
Collapse
|
8
|
Zhou L, Wang L, Ma N, Wan Y, Qian W. Real-time monitoring of interactions between dietary fibers and lipid layer and their impact on the lipolysis process. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Ma N, Wan Y, Zhou L, Wang L, Qian W. Insights into the interaction between chitosan and pepsin by optical interferometry. Int J Biol Macromol 2022; 203:563-571. [PMID: 35120935 DOI: 10.1016/j.ijbiomac.2022.01.185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
Abstract
Polysaccharides and proteins have attracted increasing interest in the fields of biomedicine and green chemical as biocomposites due to their inherent versatility. Here, we used silica colloidal crystal (SCC) films combined with an ordered porous layer interferometry (OPLI) method to investigate the interaction between chitosan and pepsin at different concentrations and pH values in real time. Zeta potential was combined with attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Fourier transform infrared microscopy (FTIR microscopy) to illustrate the interaction mechanism further. The results showed that the variation and slope of the optical thickness (OT) caused by the Fabry-Perot fringes represent the degree and process of interaction. The protonation of chitosan and the net charge carried by pepsin caused various degrees of electrostatic attraction under different pH values. Meanwhile, the rate and degree of hydrolysis were positively correlated with pepsin concentration. This work results provide a theoretical basis for designing novel composites based on the development of polysaccharides and proteins.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yizhen Wan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lele Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiping Qian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|