1
|
Shao Y, Li X, Qi X, Li J, Zhao S, Sun P, Wang H, Cheng Y, Zhang Z, Chen L, Zhang X, Zhu M. A graphene oxide-assisted protein immobilization paper-tip immunosensor with smartphone and naked eye readout for the detection of okadaic acid. Anal Chim Acta 2024; 1314:342781. [PMID: 38876519 DOI: 10.1016/j.aca.2024.342781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Okadaic acid (OA), as a diarrhetic shellfish poisoning, can increase the risk of acute carcinogenic or teratogenic effects for the ingestion of OA contaminated shellfish. At present, much effort has been made to graft immunoassay onto a paper substrate to make paper-based sensors for rapid and simple detection of shellfish toxin. However, the complicated washing steps and low protein fixation efficiency on the paper substrate need to be further addressed. RESULTS A novel paper-tip immunosensor for detecting OA was developed combined with smartphone and naked eye readout. The trapezoid paper tip was consisted of quantitative and qualitative detection zones. To improve the OA antigen immobilization efficiency on the paper substrate, graphene oxide (GO)-assisted protein immobilization method was introduced. Meanwhile, Au nanoparticles composite probe combined with the lateral flow washing was developed to simplify the washing step. The OA antigen-immobilized zone, as the detection zone Ⅰ, was used for quantitative assay by smartphone imaging. The paper-tip front, as the detection zone Ⅱ, which could qualitatively differentiate OA pollution level within 45 min using the naked eye. The competitive immunoassay on the paper tip exhibited a wide linear range for detecting OA (0.02-50 ng∙mL-1) with low detection limit of 0.02 ng∙mL-1. The recovery of OA in spiked shellfish samples was in the range of 90.3 %-113.%. SIGNIFICANCE These results demonstrated that the proposed paper-tip immunosensor could provide a simple, low-cost and high-sensitivity test for OA detection without the need for additional large-scale equipment or expertise. We anticipate that this paper-tip immunosensor will be a flexible and versatile tool for on-site detecting the pollution of marine products.
Collapse
Affiliation(s)
- Yifan Shao
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Xiaotong Li
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Xiaoxiao Qi
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Juan Li
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, China
| | - Sheng Zhao
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, China
| | - Peiyan Sun
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, China
| | | | - Yongqiang Cheng
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China.
| | - Ziwei Zhang
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Longyu Chen
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Xi Zhang
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Meijia Zhu
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| |
Collapse
|
2
|
Ji Y, Wang R, Zhao H. Toward Sensitive and Reliable Immunoassays of Marine Biotoxins: From Rational Design to Food Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16076-16094. [PMID: 39010820 DOI: 10.1021/acs.jafc.4c01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Marine biotoxins are metabolites produced by algae that can accumulate in shellfish or fish and enter organisms through the food chain, posing a serious threat to biological health. Therefore, accurate and rapid detection is an urgent requirement for food safety. Although various detection methods, including the mouse bioassay, liquid chromatography-mass spectrometry, and cell detection methods, and protein phosphatase inhibition assays have been developed in the past decades, the current detection methods cannot fully meet these demands. Among these methods, the outstanding immunoassay virtues of high sensitivity, reliability, and low cost are highly advantageous for marine biotoxin detection in complex samples. In this work, we review the recent 5-year progress in marine biotoxin immunodetection technologies such as optical immunoassays, electrochemical immunoassays, and piezoelectric immunoassays. With the assistance of immunoassays, the detection of food-related marine biotoxins can be implemented for ensuring public health and preventing food poisoning. In addition, the immunodetection technique platforms including lateral flow chips and microfluidic chips are also discussed. We carefully investigate the advantages and disadvantages for each immunoassay, which are compared to demonstrate the guidance for selecting appropriate immunoassays and platforms for the detection of marine biotoxins. It is expected that this review will provide insights for the further development of immunoassays and promote the rapid progress and successful translation of advanced immunoassays with food safety detection.
Collapse
Affiliation(s)
- Yuxiang Ji
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Zhu L, Zeng W, Li Y, Han Y, Wei J, Wu L. Development of magnetic fluorescence aptasensor for sensitive detection of saxitoxin based on Fe 3O 4@Au-Pt nanozymes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171236. [PMID: 38412877 DOI: 10.1016/j.scitotenv.2024.171236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
In this work, on the basis of Fe3O4@Au-Pt nanozymes (MAP NZs) and aptamer recognition, a magnetic fluorescent aptasensor (MFA) was developed for sensitive and accurate detection of saxitoxin (STX). With the bridge of STX aptamer (AptSTX) and complementary DNA (cDNA), AptSTX decorated MAP NZs (MAP/Apt) and cDNA modified green quantum dots (cDNA@g-QDs) were connected to form MAP/Apt-cDNA@g-QDs complex. As STX behaves a strong binding ability towards AptSTX, it will compete with cDNA and hybridize with Apt to release cDNA@g-QDs. With the addition of TMB, MAP will catalyze TMB to the oxidized TMB (ox-TMB), thereby quenching the fluorescence of g-QDs due to the inner filter effect. Based on this finding, the quantitative relationship between the change in fluorescence of gQDs and STX concentration was explored with a limit of detection (LOD, S/N = 3) of 0.6 nM. An internal standard signal of oxTMB was adopted and reduced the fluctuation of fluorescence signal output. Besides, the fluorescence probe can selectively recognize and detect STX among five marine toxins. Eventually, the MFA method behaved good performance in detecting seafood samples with recoveries of 82.0 % ∼ 102.6 % as well as coefficient of variations (CV) of 7.2 % ∼ 10.3 %. Therefore, the method with internal signal is hopeful to be a potential candidate for sensitive and accurate detection of STX in seafood.
Collapse
Affiliation(s)
- Lin Zhu
- Hubei Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Life Sciences and Technology, Hubei Engineering University, Xiaogan, 432000, Hubei, PR China
| | - Wei Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, PR China
| | - Yueqing Li
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, PR China
| | - Yu Han
- Hubei Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Life Sciences and Technology, Hubei Engineering University, Xiaogan, 432000, Hubei, PR China
| | - Jing Wei
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314, PR China
| | - Long Wu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, PR China.
| |
Collapse
|
4
|
Wang Y, Javeed A, Jian C, Zeng Q, Han B. Precautions for seafood consumers: An updated review of toxicity, bioaccumulation, and rapid detection methods of marine biotoxins. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116201. [PMID: 38489901 DOI: 10.1016/j.ecoenv.2024.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Seafood products are globally consumed, and there is an increasing demand for the quality and safety of these products among consumers. Some seafoods are easily contaminated by marine biotoxins in natural environments or cultured farming processes. When humans ingest different toxins accumulated in seafood, they may exhibit different poisoning symptoms. According to the investigations, marine toxins produced by harmful algal blooms and various other marine organisms mainly accumulate in the body organs such as liver and digestive tract of seafood animals. Several regions around the world have reported incidents of seafood poisoning by biotoxins, posing a threat to human health. Thus, most countries have legislated to specify the permissible levels of these biotoxins in seafood. Therefore, it is necessary for seafood producers and suppliers to conduct necessary testing of toxins in seafood before and after harvesting to prohibit excessive toxins containing seafood from entering the market, which therefore can reduce the occurrence of seafood poisoning incidents. In recent years, some technologies which can quickly, conveniently, and sensitively detect biological toxins in seafood, have been developed and validated, these technologies have the potential to help seafood producers, suppliers and regulatory authorities. This article reviews the seafood toxins sources and types, mechanism of action and bioaccumulation of marine toxins, as well as legislation and rapid detection technologies for biotoxins in seafood for official and fishermen supervision.
Collapse
Affiliation(s)
- Yifan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Ansar Javeed
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Cuiqin Jian
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qiuyu Zeng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Bingnan Han
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
5
|
Zheng C, Ge R, Wei J, Jiao T, Chen Q, Chen Q, Chen X. NIR-responsive photoelectrochemical sensing platform for the simultaneous determination of tetrodotoxin and okadaic acid in Nassariidae. Food Chem 2024; 430:136999. [PMID: 37542962 DOI: 10.1016/j.foodchem.2023.136999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/05/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
Simultaneous detection of tetrodotoxin (TTX) and okadaic acid (OA) is important for seafood safety. In this work, a novel paper electrode-based near-infrared (NIR) light-responsive photoelectrochemical (PEC) immunosensor was constructed using Ag2S quantum dots (QDs) and NaYF4: Yb, Er upconversion nanoparticles (UCNPs) matched with BiOI for the simultaneous detection of TTX and OA in aquatic products. A low-cost, easily prepared gold nanoparticle-functionalized paper-based screen-printed electrode with six channels was designed to immobilize OA and Ab1 of TTX. Correspondingly, PEC signal immunoprobes (BiOI@UCNPs-Ab and Ab2-Ag2S QDs) with NIR-light response were introduced to construct competitive-type and sandwich-type PEC immunosensors for OA and TTX, respectively. Under optimal conditions, the linear ranges for TTX and OA were 0.001-100 and 0.001-80 ng mL-1, respectively, and the detection limits were 5 and 7 pg mL-1, respectively. The proposed sensor was successfully used for the simultaneous analysis of TTX and OA in Nassariidae samples.
Collapse
Affiliation(s)
- Chenyan Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Rui Ge
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
6
|
Ji Y, Cai G, Liang C, Gao Z, Lin W, Ming Z, Feng S, Zhao H. A microfluidic immunosensor based on magnetic separation for rapid detection of okadaic acid in marine shellfish. Anal Chim Acta 2023; 1239:340737. [PMID: 36628732 DOI: 10.1016/j.aca.2022.340737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Okadaic acid (OA) is a marine biotoxin that accumulates in seafood and can cause diarrheic shellfish poisoning if consumed. Accordingly, many countries have established regulatory limits for the content of OA in shellfish. At present, methods used for the detection of marine toxins are time-consuming and labor-intensive. In order to realize rapid, simple, and accurate detection of OA, we developed a novel microfluidic immunosensor based on magnetic beads modified with a highly specific and sensitive monoclonal antibody (mAb) against OA that is used in conjunction with smartphone imaging to realize the rapid detection of OA in shellfish. The method achieves on-site detection results within 1 h with an IC50 value of 3.30 ng/mL for OA and a limit of detection (LOD) of 0.49 ng/mL. In addition, the analysis of real samples showed that the recoveries for spiked shellfish samples ranged from 84.91% to 95.18%, and the results were confirmed by indirect competitive enzyme-linked immunosorbent assay (icELISA), indicating that the method has good accuracy and precision. Furthermore, the results are reported in a specially designed smartphone app. The microfluidic immunosensor has the advantages of simple operation, rapid detection, and high sensitivity, providing a reliable technical solution for detecting OA residues in shellfish.
Collapse
Affiliation(s)
- Yuxiang Ji
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou, 570228, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Gaozhe Cai
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Cheng Liang
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou, 570228, China
| | - Zehang Gao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangdong, 510150, China
| | - Weimin Lin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | - Zizhen Ming
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
7
|
Wang X, Yang C, Jiang W, Zhang M, Li R, Lin Y, Wang Q. Rapid quantitative detection of okadaic acid in shellfish using lanthanide-labelled fluorescent-nanoparticle immunochromatographic test strips. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Tian Y, Yuan L, Zhang M, He Y, Lin X. Sensitive detection of the okadaic acid marine toxin in shellfish by Au@Pt NPs/horseradish peroxidase dual catalysis immunoassay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1261-1267. [PMID: 35266934 DOI: 10.1039/d1ay01973b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Based on the catalysis enhancement strategy of Au@Pt nanoparticles (Au@Pt NPs) and horseradish peroxidase (HRP) related to the TMB-H2O2 indicator, a sensitive colorimetric immunoassay was established for trace okadaic acid (OA) detection. The anti-OA monoclonal antibody (McAb) with a high Kaff constant was prepared and modified on Au@Pt NPs. Through grafting the HRP conjugated goat anti-mouse IgG antibody (IgG) on Au@Pt/McAb, bifunctional composites with Au@Pt-Ab and HRP were prepared and adopted. Characteristics including morphology, specificity and catalytic performance were evaluated. Under the optimal conditions, the sensitivity of the resultant enzyme immunoassay was significantly improved, and a low limit of detection (LOD) of OA was achieved at 0.04 ng mL-1 (equivalent to 0.6 μg kg-1 in mussel tissue), which was better than that of most HRP or Au/HRP enzyme-linked immunosorbent assays. When applied to fortified shellfish samples (e.g. oysters, mussels and clams), the recoveries ranging from 98.3 ± 2.3% to 106.0 ± 9.0% were acceptable and comparable with those of the LC-MS method. Acceptable precision was achieved with a variation coefficient (CV) of 2.3-8.4%. The method provides a promising alternative for the highly sensitive detection of the OA marine toxin at trace levels.
Collapse
Affiliation(s)
- Yinqi Tian
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Lin Yuan
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Min Zhang
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Youfen He
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P. R. China.
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, 350108, Fujian, P. R. China
| |
Collapse
|