1
|
Zhang L, Wang M, Song H, Liang W, Wang X, Sun J, Wang D. Changes of microbial communities and metabolites in the fermentation of persimmon vinegar by bioaugmentation fermentation. Food Microbiol 2024; 122:104565. [PMID: 38839213 DOI: 10.1016/j.fm.2024.104565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
To evaluate the effects of bioaugmentation fermentation inoculated with one ester-producing strain (Wickerhamomyces anomalus ZX-1) and two strains of lactic acid bacteria (Lactobacillus plantarum CGMCC 24035 and Lactobacillus acidophilus R2) for improving the flavor of persimmon vinegar, microbial community, flavor compounds and metabolites were analyzed. The results of microbial diversity analysis showed that bioaugmentation fermentation significantly increased the abundance of Lactobacillus, Saccharomyces, Pichia and Wickerhamomyces, while the abundance of Acetobacter, Apiotrichum, Delftia, Komagataeibacter, Kregervanrija and Aspergillus significantly decreased. After bioaugmentation fermentation, the taste was softer, and the sensory irritancy of acetic acid was significantly reduced. The analysis of HS-SPME-GC-MS and untargeted metabolomics based on LC-MS/MS showed that the contents of citric acid, lactic acid, malic acid, ethyl lactate, methyl acetate, isocitrate, acetoin and 2,3-butanediol were significantly increased. By multivariate analysis, 33 differential metabolites were screened out to construct the correlation between the differential metabolites and microorganisms. Pearson correlation analysis showed that methyl acetate, ethyl lactate, betaine, aconitic acid, acetoin, 2,3-butanediol and isocitrate positively associated with Wickerhamomyces and Lactobacillus. The results confirmed that the quality of persimmon vinegar was improved by bioaugmentation fermentation.
Collapse
Affiliation(s)
- Luyao Zhang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Mengyang Wang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Hairu Song
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Weina Liang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Xiaotong Wang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Jianrui Sun
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China; Henan Engineering Research Center of Food Microbiology, Luoyang, 471023, China
| | - Dahong Wang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China; Henan Engineering Research Center of Food Microbiology, Luoyang, 471023, China.
| |
Collapse
|
2
|
Liang W, Shen H, Lin Q, Liu X, Zhao W, Wang X, Zeng J, Gao H, Li W. Moderate regulation of wheat B-starch ratio: Improvement of molecular structure, spatial conformation, aggregation behavior of reconstituted fermented doughs and its processing suitability. Int J Biol Macromol 2024; 274:133256. [PMID: 38908629 DOI: 10.1016/j.ijbiomac.2024.133256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Aiming to investigate the changes and effects of different particle sizes of wheat A/B starch during dough fermentation, the present study reconstituted A/B starch fractions in ratios of 100:0, 75:25, 50:50, 25:75, and 0:100, further blended with gluten and subjected to slight (20 min), medium (30 min), and high (60 min) fermentation processes by yeasts. Results showed that fermentation gas production promoted gluten network extension, inducing starch granule exposure and dough surface roughness. Also, fermentation fractured protein intermolecular disulfide bonds and decreased α-helix and β-folded structure content, contributing to GMP, LPP, and SPP content decreases. Moreover, moderately increasing the B-starch ratio in the dough can improve gluten network stability, continuity, and air-holding capacity. The 25A-75B steam bread exhibited optimal processing suitability (better morphology, texture, and quality) due to its higher GMP and polymer protein content with lower free sulfhydryl and monomeric protein content. Further, conformational relationships indicated the key indicators influencing dough products' properties were free sulfhydryl content, GMP content, protein molecular weight distribution, and secondary structure. The obtained findings contributed to understanding the effect of wheat starch granule size distribution on dough processing behavior, and future targeted breeding for wheat cultivars with high B-starch content for improved fermentation pasta product qualities.
Collapse
Affiliation(s)
- Wei Liang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Huishan Shen
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Qian Lin
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyue Liu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenqing Zhao
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyu Wang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Wenhao Li
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
3
|
Li S, Liu S, Wu H, Zhao W, Zhang A, Li P, Liu J, Yi H. Insights into the starch and proteins molecular structure changes of foxtail millet sourdough: Effect of fermentation from grains of cereal to pre-meal. Int J Biol Macromol 2024; 272:132729. [PMID: 38821307 DOI: 10.1016/j.ijbiomac.2024.132729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
This study investigated the effects of foxtail millet sourdough fermentation time (0, 8, 16, and 24 h) on the protein structural properties, thermomechanical, fermentation, dynamic rheological, starch granules crystalline regions molecular mobility, and starch microstructural characteristics. The fermentation led to a significant increase in the concentration of free amino acids from protein hydrolysis. Fourier transform infrared spectroscopy (FTIR) revealed changes in protein secondary structure and the presence of functional groups of different bioactive compounds. The result of thermomechanical properties showed a significant increase in the stability (0.70-0.79 min) and anti-retrogradation ability (2.29-3.14 Nm) of lactic acid bacteria (LAB) sourdough compared to the control dough, showing a wider processing applicability with radar profiler index. In contrast, sourdoughs with lower tan δ values had higher elasticity and strength. Scanning electron microscopy showed that the surface of the starch appeared from smooth to uneven with patchy shapes and cavities, which declined the crystallinity from 34.00 % to 21.57 %, 23.64 %, 25.09 %, and 26.34 % respectively. Fermentation changed the To, Tp, Tc, and ΔH of the starch. The results of the study will have great potential for application in the whole grain sourdough industry.
Collapse
Affiliation(s)
- Shaohui Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China; Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Songyan Liu
- Shijiazhuang Livestock Products and Veterinary Feed Quality Testing Center, Shijiazhuang, Hebei 050041, People's Republic of China
| | - Hanmei Wu
- Shijiazhuang Agricultural Product Quality Testing Center, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Wei Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Aixia Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Pengliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China.
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China.
| |
Collapse
|
4
|
Yan X, McClements DJ, Luo S, Ye J, Liu C. A review of the effects of fermentation on the structure, properties, and application of cereal starch in foods. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38532611 DOI: 10.1080/10408398.2024.2334269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Fermentation is one of the oldest food processing techniques known to humans and cereal fermentation is still widely used to create many types of foods and beverages. Starch is a major component of cereals and the changes in its structure and function during fermentation are of great importance for scientific research and industrial applications. This review summarizes the preparation of fermented cereals and the effects of fermentation on the structure, properties, and application of cereal starch in foods. The most important factors influencing cereal fermentation are pretreatment, starter culture, and fermentation conditions. Fermentation preferentially hydrolyzes the amorphous regions of starch and fermented starches have a coarser appearance and a smaller molecular weight. In addition, fermentation increases the starch gelatinization temperature and enthalpy and reduces the setback viscosity. This means that fermentation leads to a more stable and retrogradation-resistant structure, which could expand its application in products prone to staling during storage. Furthermore, fermented cereals have potential health benefits. This review may have important implications for the modulation of the quality and nutritional value of starch-based foods through fermentation.
Collapse
Affiliation(s)
- Xudong Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - David Julian McClements
- Biopolymers and Colloids Research Laboratory, Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - Shunjing Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jiangping Ye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Gebre BA, Zhang C, Li Z, Sui Z, Corke H. Impact of starch chain length distributions on physicochemical properties and digestibility of starches. Food Chem 2024; 435:137641. [PMID: 37804724 DOI: 10.1016/j.foodchem.2023.137641] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/02/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Changing starch structure at different levels is a promising approach to promote desirable metabolic responses. Chain length distribution (CLD) is among the starch structural characteristics having a potential to determine properties of starch-based products. Therefore, the objective of the current review is to summarize recent findings on CLD and its impact on physicochemical properties and digestion. Investigations undertaken to enhance understanding of starch structure have shown clearly that CLD is a significant determining factor in modulating starch digestibility. Enzymatic modifications and processing treatments alter the CLD of starch, which in turn affects the rate of digestion, but the underlying molecular mechanisms have yet to be fully elucidated. Even though advances have been made in manipulating CLD using different methods and to correlate the changes with various functional properties, in general the area needs further investigations to open new awareness for enhancing healthiness of starchy foods.
Collapse
Affiliation(s)
- Bilatu Agza Gebre
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Food Science & Nutrition, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Chuangchuang Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zijun Li
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 320000, Israel.
| |
Collapse
|
6
|
Zhao G, Liu C, Li L, Li J, Wang J, Fan X, Zheng X. Structural characteristics and paste properties of wheat starch in natural fermentation during traditional Chinese Mianpi processing. Int J Biol Macromol 2024; 262:129993. [PMID: 38325684 DOI: 10.1016/j.ijbiomac.2024.129993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/09/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Fermentation plays a crucial role in traditional Chinese mianpi processing, where short-term natural fermentation (within 24 h) is considered advantageous for mianpi production. However, the influence of short-term natural fermentation on the properties of wheat starch is not explored yet. Hence, structural characteristics and paste properties of wheat starch during natural fermentation were investigated in this study. The findings revealed that fermenting for 24 h had a slight effect on the morphology of wheat starch but significantly decreased the particle size of starch. Compared to native wheat starch, the enzyme activity produced during fermentation may destroy the integrity of starch granules, resulting in a lower molecular weight but higher relative crystallinity and orderliness of starch. After 24 h of natural fermentation, higher solubility and swelling power were obtained compared to non-fermentation. Regarding paste properties, fermented starches exhibited higher peak viscosity and breakdown, along with lower final viscosity, tough viscosity, and setback. Furthermore, the hardness, gel strength, G', and G" decreased after fermentation. Clarifying changes in starch during the short-term natural fermentation process could provide theoretical guidance for improving the quality and production of short-term naturally fermented foods such as mianpi, as discussed in this study.
Collapse
Affiliation(s)
- Guiting Zhao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chong Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Limin Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jie Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jiasheng Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiangqi Fan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueling Zheng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Li X, Wei S, Gao Z, Zhao R, Wang Z, Fan Y, Cui L, Wang Y. The influence of cooperative fermentation on the structure, crystallinity, and rheological properties of buckwheat starch. Curr Res Food Sci 2023; 8:100670. [PMID: 38261894 PMCID: PMC10797143 DOI: 10.1016/j.crfs.2023.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/25/2024] Open
Abstract
The effects of co-fermentation of yeast and Lactiplantibacillus plantarum 104 on buckwheat starch physical properties were investigated by various analytical techniques. To investigate the regulations of starch modification during fermentation and to provide a foundation for improving the performance of modified properties of buckwheat starch food. The pasting properties were decreased by co-fermentation also resulted in a reduction in the relative crystallinity. Scanning electron microscopy (SEM) demonstrated that more holes and a relatively rough granule surface were seen in the co-fermentation group. Fourier transform-infrared spectroscopy (FT-IR) results suggested that co-fermentation fermentation decreased the degree of short-range order (DO) and degree of t1he double helix (DD). The results demonstrated that co-fermentation altered these properties more rapidly than spontaneous fermentation. In conclusion, Lactiplantibacillus plantarum 104 could be used for buckwheat fermentation to improve food quality.
Collapse
Affiliation(s)
| | | | - Zixin Gao
- College of Food Science and Engineering and Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, Jilin Province, 130033, China
| | - Ruixue Zhao
- College of Food Science and Engineering and Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, Jilin Province, 130033, China
| | - Zhanpeng Wang
- College of Food Science and Engineering and Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, Jilin Province, 130033, China
| | - Yuling Fan
- College of Food Science and Engineering and Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, Jilin Province, 130033, China
| | - Linlin Cui
- College of Food Science and Engineering and Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, Jilin Province, 130033, China
| | - Yuhua Wang
- College of Food Science and Engineering and Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, Jilin Province, 130033, China
| |
Collapse
|
8
|
Liu H, Ni Y, Yu Q, Fan L. Evaluation of co-fermentation of L. plantarum and P. kluyveri of a plant-based fermented beverage: Physicochemical, functional, and sensory properties. Food Res Int 2023; 172:113060. [PMID: 37689854 DOI: 10.1016/j.foodres.2023.113060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 09/11/2023]
Abstract
In this study, Pichia kluyveri (P. kluyveri) and Lactobacillus plantarum (L. plantarum) were sequentially inoculated into a plant-based beverage consisting of bananas, broccoli, and wolfberries. The physicochemical characteristics, functional components, and taste of it at different stages were determined. After 8-d fermentation, the viable counts of P. kluyveri and L. plantarum were 6.50 log CFU/mL and 8.43 log CFU/mL, respectively. The ethanol was <0.5 % (v/v). Compared with control group, the superoxide dismutase (SOD) activity increased by 96.08 folds and total phenolics content increased by 1.09 folds. The contents of lactic acid, protocatechuic acid, and chlorogenic acid exhibited an upgrade trend, whereas the contents of caffeic acid and malic acid presented a downward tendency. Some organic acids had positive correlations with sensory quality, especially sourness. In addition, the γ-amino butyric acid (GABA) concentration and antioxidant activity were also improved during fermentation. Results showed the nutritional functional properties and sensory quality of this beverage could be improved through co-fermentation of P. kluyveri and L. plantarum.
Collapse
Affiliation(s)
- Heng Liu
- State Key Laboratory of Food Science & Resourses, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yang Ni
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Qun Yu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science & Resourses, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborat Innovat Ctr Food Safety & Qual Control, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Li W, Sun X, Du Y, Su A, Fang Y, Hu Q, Pei F. Effects of co-fermentation on the release of ferulic acid and the rheological properties of whole wheat dough. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
10
|
The effects of cooperative fermentation by yeast and lactic acid bacteria on the dough rheology, retention and stabilization of gas cells in a whole wheat flour dough system – A review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Qi K, Yi X, Li C. Effects of endogenous macronutrients and processing conditions on starch digestibility in wheat bread. Carbohydr Polym 2022; 295:119874. [DOI: 10.1016/j.carbpol.2022.119874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
|
12
|
Yao L, Zhang Y, Qiao Y, Wang C, Wang X, Liu C, Han Q, Hua F. Physical properties and hypoglycemic activity of biscuits as affected by the addition of stigma maydis extract. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lianmou Yao
- Research Center for Agricultural Products Preservation and Processing Shanghai Academy of Agricultural Sciences Shanghai 201403 PR China
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 PR China
| | - Yi Zhang
- Research Center for Agricultural Products Preservation and Processing Shanghai Academy of Agricultural Sciences Shanghai 201403 PR China
| | - Yongjin Qiao
- Research Center for Agricultural Products Preservation and Processing Shanghai Academy of Agricultural Sciences Shanghai 201403 PR China
| | - Chunfang Wang
- Research Center for Agricultural Products Preservation and Processing Shanghai Academy of Agricultural Sciences Shanghai 201403 PR China
| | - Xiao Wang
- Research Center for Agricultural Products Preservation and Processing Shanghai Academy of Agricultural Sciences Shanghai 201403 PR China
| | - Chenxia Liu
- Research Center for Agricultural Products Preservation and Processing Shanghai Academy of Agricultural Sciences Shanghai 201403 PR China
| | - Qing Han
- Crop Breeding and Cultivating Institute Shanghai Academy of Agricultural Sciences Shanghai 201403 P.R. China
| | - Fang Hua
- Shanghai Fusong Food Co., LTD Shanghai 201404 P.R. China
| |
Collapse
|
13
|
Caponio GR, Difonzo G, de Gennaro G, Calasso M, De Angelis M, Pasqualone A. Nutritional Improvement of Gluten-Free Breadsticks by Olive Cake Addition and Sourdough Fermentation: How Texture, Sensory, and Aromatic Profile Were Affected? Front Nutr 2022; 9:830932. [PMID: 35223958 PMCID: PMC8869757 DOI: 10.3389/fnut.2022.830932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
There is a growing need for gluten-free bakery products with an improved nutritional profile. Currently, gluten-free baked goods deliver low protein, fiber, and mineral content and elevated predicted glycaemic index (pGI). Olive cake (OC), a by-product from virgin olive oil extraction, is an excellent natural source of unsaturated fatty acids, dietary fiber and bioactive molecules, including polyphenols and tocopherols. In this framework, this study aimed at using two selected lactic acid bacteria and a yeast for increasing the antioxidant features and the phenol profile of the gluten-free breadsticks fortified with OC with the perspective of producing a functional food. Control (CTR) samples were prepared and compared with fermented ones (fCTR). Samples were added with either non-fermented OC (nfOC) or fermented for 12 and 20 h (fOC-12 and fOC-20). Our results showed that the predicted glycemic index (pGI) was influenced by both OC addition and sourdough fermentation. In fact, the lowest value of pGI was found in fOC-12, and hydrolysis index and pGI values of samples with OC (fOC-12 and nfOC) were statistically lower than fCTR. Both OC addition and fermentation improved the total phenol content and antioxidant activity of breadsticks. The most pronounced increase in hardness values was observed in the samples subjected to sourdough fermentation as evidenced both from texture profile analysis and sensory evaluation. Moreover, in most cases, the concentration of the detected volatile compounds was reduced by fermentation. Our work highlights the potential of OC to be upcycled in combination with fermentation to produce gluten-free breadsticks with improved nutritional profile, although additional trials are required to enhance textural and sensory profile.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Graziana Difonzo
| | - Giuditta de Gennaro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|