1
|
Wang B, Chen W, Jia R, Guo Z. Structural and physicochemical properties of debranched lotus seed starch treated with high hydrostatic pressure. Int J Biol Macromol 2024; 293:139422. [PMID: 39746420 DOI: 10.1016/j.ijbiomac.2024.139422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/27/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Lotus seeds represent a significant economic crop and are abundant in starch. To further enhance their application value, this study investigates the structural characteristics of lotus seed starch (LS) under the combined influence of pullulanase and high hydrostatic pressure (HHP). Pullulanase increased amylose content from 39.80 % to 72.26 %, and HHP increased amylose content further. LS crystals changed from C-type to B-type, and the ordered structure of LS was destroyed by enzymatic hydrolysis, and amylose single helix and partial double helix structure were formed. At low concentration, lotus seed amylose single helix tends to form amylose double helix structure with itself. At high concentrations, they tend to aggregate, forming a network structure with large surface area and loose order. HHP destroys the double helix structure of amylose, resulting in the decrease of starch crystallinity. These findings provide new insights into improving the processing properties and application range of lotus seed starch.
Collapse
Affiliation(s)
- Bailong Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Wenjing Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Ru Jia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China.
| |
Collapse
|
2
|
Xu L, Sun DW, Tian Y, Zhu Z. Minimizing polyphenols and enzymes degradation using hydrogel packaging with combined evaporative and daytime radiative cooling functions during ambient transportation. Food Chem 2024; 437:137804. [PMID: 37924758 DOI: 10.1016/j.foodchem.2023.137804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Polyphenols and enzymes usually suffer from degradation during transportation due to the lack of a cold chain system in developing countries and regions. In this study, anthocyanin and trypsin were selected as examples of polyphenols and enzymes and investigated for minimizing their degradation during ambient transportation using hydrogel packaging with combined evaporative and daytime radiative cooling functions. A polyacrylamide/polyvinyl alcohol contained with nanoparticles (NPs@PAAm/PVA) hydrogel packaging was thus developed. The NPs@PAAm/PVA packaging exhibited desirable swelling behaviour, high solar reflectance, and strong atmospheric emissivity to synergistically achieve evaporative and daytime radiative cooling. The indoor experiments indicated that the vial with NPs@PAAm/PVA packaging realised sub-ambient temperatures under different working temperatures and humidities, and the field tests indicated that the vial with NPs@PAAm/PVA packaging could effectively preserve the anthocyanin and trypsin without degradation caused by strong sunlight and high temperature. Consequently, the NPs@PAAm/PVA packaging with evaporative and daytime radiative cooling effects has promising prospects for anthocyanin and trypsin transportation in an energy-saving and sustainable manner.
Collapse
Affiliation(s)
- Liang Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - You Tian
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhiwei Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
3
|
Lan T, Qian S, Song T, Zhang H, Liu J. The chromogenic mechanism of natural pigments and the methods and techniques to improve their stability: A systematic review. Food Chem 2023; 407:134875. [PMID: 36502728 DOI: 10.1016/j.foodchem.2022.134875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Pigments have become a very important part of food research, not only adding sensory properties to food, but also providing functional properties to the food system. In this paper, we review the source, structure, modification, encapsulation and current status of the three main types of natural pigments that have been studied in recent years: polyphenolic flavonoids, tetraterpenoids and betaines. By examining the modification of pigment, the improvement of their stability and the impact of new food processing methods on the pigments, a deeper understanding of the properties and applications of the three pigments is gained, the paper reviews the research status of pigments in order to promote their further research and provide new innovations and ideas for future research in this field.
Collapse
Affiliation(s)
- Tiantong Lan
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Sheng Qian
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Tingyu Song
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Hao Zhang
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Jingsheng Liu
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
4
|
Mierzwa D, Szadzińska J, Gapiński B, Radziejewska-Kubzdela E, Biegańska-Marecik R. Assessment of ultrasound-assisted vacuum impregnation as a method for modifying cranberries' quality. ULTRASONICS SONOCHEMISTRY 2022; 89:106117. [PMID: 35964529 PMCID: PMC9391597 DOI: 10.1016/j.ultsonch.2022.106117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Combined vacuum impregnation and ultrasound was proposed as an alternative method to improve the infusion of ascorbic acid in berry fruit. The effect of ultrasound application at different stages of impregnation - vacuum, relaxation, and both stages - on the qualitative characteristics of impregnated cranberries was investigated. The quality assessment was based on porosity, color, antioxidant capacity, anthocyanin, polyphenol and structure compound content. Ultrasound-assisted vacuum impregnation contributed to higher ascorbic acid content, smaller relative color difference, and greater antioxidant properties. It was found that the degree of impregnation varies considerably and depends on the stage of using ultrasound. Due to more favorable quality attributes, the conclusion was reached that ultrasound should be applied during the relaxation stage of vacuum impregnation.
Collapse
Affiliation(s)
- Dominik Mierzwa
- Division of Process Engineering, Institute of Chemical Technology and Engineering, Poznań University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland.
| | - Justyna Szadzińska
- Division of Process Engineering, Institute of Chemical Technology and Engineering, Poznań University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland.
| | - Bartosz Gapiński
- Division of Metrology and Measurement Systems, Institute of Mechanical Technology, Poznań University of Technology, ul. Jana Pawła II 24, 60-965 Poznań, Poland.
| | - Elżbieta Radziejewska-Kubzdela
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Róża Biegańska-Marecik
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznań, Poland.
| |
Collapse
|