1
|
Maleczek M, Reszeć-Giełażyn J, Szymulewska-Konopko K. Beneficial Effects of Selenium and Its Supplementation on Carcinogenesis and the Use of Nanoselenium in the Treatment of Malignant Tumors. Int J Mol Sci 2024; 25:11285. [PMID: 39457066 PMCID: PMC11508626 DOI: 10.3390/ijms252011285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Selenium was recognized as a non-toxic element in the second half of the 20th century. Since then, the positive impact of selenium on the functioning of the human body has been noticed. It has been shown that low levels of selenium in the body are significantly associated with a higher risk of developing cancer. Selenium acts as an antioxidant and inhibits the proliferation of cancer cells. It has been shown that selenium supplementation may contribute to reducing the risk of DNA mutations and carcinogenesis. Nanomedicine has become very helpful in both the diagnosis and treatment of cancer. Due to its anticancer properties, selenium is used in nanotechnology as selenium nanoparticles.
Collapse
Affiliation(s)
| | - Joanna Reszeć-Giełażyn
- Department of Medical Pathomorphology, Medical University of Białystok, 15-269 Białystok, Poland; (M.M.)
| | | |
Collapse
|
2
|
Silveira BKS, Silva AD, Rocha DMUP, Waskow K, Martino HSD, Bressan J, Hermsdorff HHM. Brazil Nut (Bertholletia excelsa H.B.K.) Consumption in Energy-Restricted Intervention Decreases Proinflammatory Markers and Intestinal Permeability of Women with Overweight/Obesity: A Controlled Trial (Brazilian Nuts Study). J Nutr 2024; 154:2670-2679. [PMID: 39025334 DOI: 10.1016/j.tjnut.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Obesity is associated with low-grade inflammation and increased intestinal permeability (IP). The Brazil nut (BN) (Bertholletia excelsa H.B.K.) appears to be a promising dietary intervention to control inflammation by enhancing antioxidant defenses. OBJECTIVES We aimed to assess the effect of daily BN consumption on inflammatory biomarkers and IP in the context of an energy-restricted intervention. Furthermore, we evaluated the correlation between the changes in these inflammatory markers and the changes in serum selenium and IP. METHODS In this 8-wk nonrandomized controlled trial, 56 women with overweight or obesity were allocated into 2 groups, both following an energy-restricted diet (-500 kcal/d). The control group (CO) consumed a nut-free diet, while the BN group consumed 8 g BN/d, providing 347.2 μg selenium (Se). Inflammatory cytokines were analyzed in plasma and Se in serum. IP was assessed using the lactulose/mannitol test (LM ratio). RESULTS Forty-six women completed the intervention. Both groups achieved similar energy restriction (CO Δ= -253.7 ± 169.4 kcal/d; BN Δ= -265.8 ± 141.8 kcal/d) and weight loss (CO Δ= -2.5 ± 0.5 kg; BN Δ= -3.5 ± 0.5 kg). The BN group showed lower values of C-reactive protein, tumor necrosis factor, interleukin (IL)1-β, IL-8, percentage lactulose excretion, and LM ratio than the CO group. Additionally, changes in serum Se concentration were predictive of changes in IL-8 concentration (β: -0.054; adjusted R2: 0.100; 95% confidence interval [CI]: -0.100; -0.007; P = 0.025), and changes in IL-8 were predictive of changes in the LM ratio (β: 0.006; adjusted R2: 0.101; 95% CI: 0.001, 0.011; P = 0.024). CONCLUSIONS Regular intake of BNs can be a promising complementary dietary strategy for controlling low-grade inflammation and improving IP in women with overweight/obesity undergoing energy-restricted treatment. However, the effects of BNs seem to be Se status-dependent. This trial was registered at the Brazilian Registry of Clinical Trials (ReBEC: https://ensaiosclinicos.gov.br/rg/RBR-3ntxrm/.
Collapse
Affiliation(s)
- Brenda Kelly Souza Silveira
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Alessandra da Silva
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Daniela Mayumi Usuda Prado Rocha
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Karina Waskow
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Hércia Stampini Duarte Martino
- Laboratory of Experimental Nutrition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Josefina Bressan
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Helen Hermana Miranda Hermsdorff
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil.
| |
Collapse
|
3
|
Bai YZ, Zhang Y, Zhang SQ. New horizons for the role of selenium on cognitive function: advances and challenges. Metab Brain Dis 2024; 39:1255-1268. [PMID: 38963634 DOI: 10.1007/s11011-024-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Cognitive deficits associated with oxidative stress and the dysfunction of the central nervous system are present in some neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Selenium (Se), an essential microelement, exhibits cognition-associated functions through selenoproteins mainly owing to its antioxidant property. Due to the disproportionate distribution of Se in the soil, the amount of Se varies greatly in various foods, resulting in a large proportion of people with Se deficiency worldwide. Numerous cell and animal experiments demonstrate Se deficiency-induced cognitive deficits and Se supplementation-improved cognitive performances. However, human studies yield inconsistent results and the mechanism of Se in cognition still remains elusive, which hinder the further exploration of Se in human cognition. To address the urgent issue, the review summarizes Se-contained foods (plant-based foods, animal-based foods, and Se supplements), brain selenoproteins, mechanisms of Se in cognition (improvement of synaptic plasticity, regulation of Zn2+ level, inhibition of ferroptosis, modulation of autophagy and de novo synthesis of L-serine), and effects of Se on cognitive deficits, as well as consequently sheds light on great potentials of Se in the prevention and treatment of cognitive deficits.
Collapse
Affiliation(s)
- Ya-Zhi Bai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China
| | - Yongming Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 2 East Yinghua Road, Beijing, 100029, China
- National Center for Respiratory Diseases, Beijing, 100029, China
| | - Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China.
| |
Collapse
|
4
|
Zhao X, Lu Y, Dai L, Wang L, Zhou G, Liang T. Selenium spatial distribution and bioavailability of soil-plant systems in China: a comprehensive review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:341. [PMID: 39073467 DOI: 10.1007/s10653-024-02126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Selenium (Se) has a dual nature, with beneficial and harmful effects on plants, essential for both humans and animals, playing a crucial role in ecosystem regulation. Insufficient Se in specific terrestrial environments raises concerns due to its potential to cause diseases, while excess Se can lead to severe toxicity. Thus, maintaining an optimal Se level is essential for living organisms. This review focuses first on Se transformation, speciation, and geochemical properties in soil, and then provides a concise overview of Se distribution in Chinese soil and crops, with a focus on the relationship between soil Se levels and parent materials. Additionally, this paper explores Se bioavailability, considering parent materials and soil physicochemical properties, using partial least squares path modeling for analysis. This paper aimed to be a valuable resource for effectively managing Se-enriched soil resources, contributing to a better understanding of Se role in ecosystems.
Collapse
Affiliation(s)
- Xiaoyuan Zhao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiqing Lu
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing, 100035, China
| | - Lijun Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjin Zhou
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Wang S, Liu Q, Liu Z, Chen W, Zhao X, Zhang J, Bao L, Zhang N. Distribution and soil threshold of selenium in the cropland of southwest mountainous areas in China. Sci Rep 2024; 14:16923. [PMID: 39043698 PMCID: PMC11266564 DOI: 10.1038/s41598-024-67450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
To investigate the distribution characteristics of selenium (Se) in mountainous soil-crop systems and examine the threshold value of Se-rich soil, 275 soil samples and 153 associated crop samples (rice, maize, tea, nuts, konjac, mushrooms, buckwheat, and coffee) were collected in Ximeng County, a typical mountainous area in southwest China. The total Se, available Se, organic matter, pH, sampling point elevation, and crop Se content were analyzed to examine the distribution characteristics of soil Se and the ability of primary crops to enrich Se in Ximeng County. Random forest and multiple regression models were established to identify the factors influencing the available soil Se and the crop Se enrichment coefficient. Finally, the Se-rich soil threshold was examined based on the total Se, available Se, and Se content in primary crops (rice, maize, and tea). The results showed soil Se resource abundance in the study region, with high Se soil accounting for 64.72% of the entire area. The soil Se content displayed significant spatial autocorrelation. The average Se enrichment coefficient of the main cultivated crops included mushrooms > nuts > rice > coffee > tea > maize > buckwheat > konjac. The total Se content in the soil had the highest impact on the available Se content in the soil and the Se enrichment coefficient of crops. A Se-rich soil threshold of 0.3 mg·kg-1 was used for rice and maize, while that of tea was 0.4 mg·kg-1. This result provided a theoretical basis for developing and utilizing Se resources in mountainous soil in southwestern China and dividing the Se-rich soil threshold.
Collapse
Affiliation(s)
- Sheng Wang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, Yunnan, China
| | - Qi Liu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, Yunnan, China
| | - Zhizong Liu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, Yunnan, China
| | - Wen Chen
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, Yunnan, China
| | - Xuanyue Zhao
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, Yunnan, China
| | - Jilai Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, Yunnan, China
| | - Li Bao
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, Yunnan, China
| | - Naiming Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, Yunnan, China.
| |
Collapse
|
6
|
Macan TP, Magenis ML, Damiani AP, Monteiro IDO, Silveira GDB, Zaccaron RP, Silveira PCL, Teixeira JPF, Gajski G, Andrade VMD. Brazil nut consumption reduces DNA damage in overweight type 2 diabetes mellitus patients. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 895:503739. [PMID: 38575248 DOI: 10.1016/j.mrgentox.2024.503739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024]
Abstract
Type 2 diabetes mellitus (T2D) is a metabolic disease, which occurs largely due to unhealthy lifestyle. As oxidative stress is believed to promote T2D, by inducing damage to lipids, proteins, and DNA, appropriate dietary interventions seem critical to prevent, manage, and even reverse this condition. Brazil nuts (Bertholletia excelsa, H.B.K.) are nature's richest source of selenium, a mineral that has shown several health benefits. Therefore, this study aims to assess the effects of selenium consumption, through Brazil nuts, on biochemical and oxidative stress parameters, and genomic instability in T2D patients. We recruited 133 patients with T2D, registered in the Integrated Clinics of the University of Southern Santa Catarina (Brazil). Participants consumed one Brazil nut a day for six months. Blood samples and exfoliated buccal cells were collected at the beginning and the end of the intervention. The glycemic profile, lipid profile, renal profile and hepatic profile, DNA damage and selenium content were evaluated. A total of 74 participants completed the intervention. Brazil nut consumption increased selenium and GSH levels, GPx, and CAT activity while DCF and nitrites levels decreased. Total thiols increased, and protein carbonyl and MDA levels decreased. Levels of baseline and oxidative DNA damage in T2D patients were significantly decreased, as well as the frequency of micronuclei and nuclear buds. The fasting glucose levels, HDL and LDL cholesterol, and GGT levels that increased significantly in patients with type 2 diabetes were significantly reduced with nut consumption. Our results show an increase in antioxidant activity, along with reductions of protein and lipid oxidation as well as DNA damage, suggesting that Brazil nut consumption could be an ally in reducing oxidative stress and modulating the genomic instability in T2D patients.
Collapse
Affiliation(s)
- Tamires Pavei Macan
- Laboratory of Translational Biomedicine, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil; Environmental Health Department, Portuguese National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
| | - Marina Lummertz Magenis
- Laboratory of Translational Biomedicine, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Adriani Paganini Damiani
- Laboratory of Translational Biomedicine, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Isadora de Oliveira Monteiro
- Laboratory of Translational Biomedicine, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Gustavo De Bem Silveira
- Laboratory of Experimental Physiopathology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Physiopathology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | | | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vanessa Moraes de Andrade
- Laboratory of Translational Biomedicine, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
7
|
Kelly Souza Silveira B, Mayumi Usuda Prado Rocha D, Stampini Duarte Martino H, Grancieri M, Juste Contin Gomes M, Cuquetto Mantovani H, Bressan J, Hermana Miranda Hermsdorff H. Daily Cashew and Brazil Nut Consumption Modifies Intestinal Health in Overweight Women on Energy-Restricted Intervention: A Randomized Controlled Trial (Brazilian Nuts Study). J Nutr 2024; 154:962-977. [PMID: 38246355 DOI: 10.1016/j.tjnut.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Increased intestinal permeability and dysbiosis are related to obesity. Nuts can provide nutrients and bioactive compounds that modulate gut microbiota and inflammation, enhancing the beneficial effects of weight loss. OBJECTIVES To evaluate the effect of consuming cashew nuts (Anacardium occidentale L.) and Brazil nuts (Bertholletia excelsa H.B.K) on intestinal permeability and microbiota, fecal SCFAs and pH, inflammation, and weight loss in energy restriction condition. METHODS In this 8-week randomized controlled trial, 40 women with overweight or obesity were assigned to energy-restricted groups (-500 kcal/d): control group (free of nuts) or Brazilian nuts group (BN: 30 g of cashew nuts and 15 g of Brazil nuts per day). Permeability was analyzed by the lactulose/mannitol test and the microbiota by sequencing the 16S gene in the V3-V4 regions. Plasma concentrations of inflammatory cytokines (TNF, IL-6, IL-10, IL-8, IL-17A) and C-reactive protein were analyzed. RESULTS In total, 25 women completed the intervention. Both groups lost weight without statistical differences. Lactulose excretion increased only in the control group (P < 0.05). The BN consumption increased fecal propionic acid and potentially beneficial bacteria, such as Ruminococcus, Roseburia, strains NK4A214 and UCG-002 from the Ruminococcaceae family, but also Lachnospiraceae family, Bacteroides, and Lachnoclostridium, when compared to the control group. Changes in intestinal permeability were correlated to a greater reduction in body fat (kg), and IL-8, and increases in Ruminococcus abundance. CONCLUSION Our findings demonstrate a positive impact of BN consumption within an energy-restricted context, linked to the augmentation of potentially beneficial bacteria and pathways associated with body fat reduction. Besides, BN consumption mitigated increased intestinal permeability, although its capacity to diminish permeability or enhance weight loss proved limited. This trial was registered at the Brazilian Registry of Clinical Trials as ReBEC (ID: RBR-3ntxrm).
Collapse
Affiliation(s)
- Brenda Kelly Souza Silveira
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Daniela Mayumi Usuda Prado Rocha
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Mariana Grancieri
- Experimental Nutrition Laboratory, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Mariana Juste Contin Gomes
- Experimental Nutrition Laboratory, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Hilário Cuquetto Mantovani
- Anaerobic Microbioloy Laboratory, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Josefina Bressan
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Helen Hermana Miranda Hermsdorff
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil.
| |
Collapse
|
8
|
Teixeira JLDP, Rebellato AP, Fioravanti MIA, Milani RF, Morgano MA. Selenium in plant-based beverages: Total content, estimated bioaccessibility and contribution to daily intake. J Trace Elem Med Biol 2024; 81:127329. [PMID: 37924611 DOI: 10.1016/j.jtemb.2023.127329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND The search for alternative protein sources has increased the consumption and commercialization of plant-based beverages (PBBs). This study aimed to determine the total Se content, estimate the bioaccessibility of selenium (Se) in commercial PBBs derived from different raw materials, and evaluate their contribution to the reference daily intake (RDI). METHODS An ultrasound assisted acid digestion method and ICP-MS was used to determine Se, and the INFOGEST method to estimate the bioaccessible percentages. Validation of this method was also performed, and the parameters obtained were: LOD and LOQ were 2.1 and 4.0 µg/kg, respectively. For accuracy, recovery percentages ranged from 99 % and 111 % (certified reference materials), and 95 % and 101 % (spiked experiments for bioaccessible extracts as recoveries). RESULTS The PBBs presented total Se content between 4 and 226 µg/kg. Bioaccessible percentages ranged from 63.5 % (mix of plant sources) to 95.9 % (produced with organic cashew nuts). Only one cashew nut PBBs supplied the daily demand of Se, representing 64.6 %, 75.3 % and 82.2 % of the RDI; for lactating and pregnant women, children (≥ 4 years) and adults, respectively. CONCLUSIONS The Se determination method through acid digestion assisted by ultrasound and ICP-MS was considered adequate for the PBBs samples. Se content varied according to the raw material used in sample preparation. High percentages (> 60 %) of bioaccessibility were observed and only one PBBs derived from organic cashew nuts supplied the recommended Se demand for different groups of individuals.
Collapse
Affiliation(s)
- José Luan da Paixão Teixeira
- Food Science and Quality Center, Institute of Food Technology, Av. Brazil, 2880, Jd. Chapadão, CEP.: 13070-178, Campinas, SP, Brazil.
| | - Ana Paula Rebellato
- Food Science and Quality Center, Institute of Food Technology, Av. Brazil, 2880, Jd. Chapadão, CEP.: 13070-178, Campinas, SP, Brazil
| | | | - Raquel Fernanda Milani
- Food Science and Quality Center, Institute of Food Technology, Av. Brazil, 2880, Jd. Chapadão, CEP.: 13070-178, Campinas, SP, Brazil
| | - Marcelo Antonio Morgano
- Food Science and Quality Center, Institute of Food Technology, Av. Brazil, 2880, Jd. Chapadão, CEP.: 13070-178, Campinas, SP, Brazil
| |
Collapse
|
9
|
Zhang F, Li X, Wei Y. Selenium and Selenoproteins in Health. Biomolecules 2023; 13:biom13050799. [PMID: 37238669 DOI: 10.3390/biom13050799] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Selenium is a trace mineral that is essential for health. After being obtained from food and taken up by the liver, selenium performs various physiological functions in the body in the form of selenoproteins, which are best known for their redox activity and anti-inflammatory properties. Selenium stimulates the activation of immune cells and is important for the activation of the immune system. Selenium is also essential for the maintenance of brain function. Selenium supplements can regulate lipid metabolism, cell apoptosis, and autophagy, and have displayed significant alleviating effects in most cardiovascular diseases. However, the effect of increased selenium intake on the risk of cancer remains unclear. Elevated serum selenium levels are associated with an increased risk of type 2 diabetes, and this relationship is complex and nonlinear. Selenium supplementation seems beneficial to some extent; however, existing studies have not fully explained the influence of selenium on various diseases. Further, more intervention trials are needed to verify the beneficial or harmful effects of selenium supplementation in various diseases.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuelian Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Chen M, Wu Q, Zhu Z, Huang A, Zhang J, Bekhit AEDA, Wang J, Ding Y. Selenium-enriched foods and their ingredients: As intervention for the vicious cycle between autophagy and overloaded stress responses in Alzheimer's disease. Crit Rev Food Sci Nutr 2023; 64:6672-6685. [PMID: 36728929 DOI: 10.1080/10408398.2023.2172547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dysfunctional autophagy induced by excessive reactive oxygen species (ROS) load and inflammation accelerates the development of Alzheimer's disease (AD). Recently, there has been an increasing interest in selenium-enriched ingredients (SEIs), such as selenoproteins, selenoamino acids and selenosugars, which could improve AD through antioxidant and anti-inflammation, as well as autophagy modulating effects. This review indicates that SEIs eliminate excessive ROS by activating the nuclear translocation of nuclear factor erythroid2-related factor 2 (Nrf2) and alleviate inflammation by inhibiting the mitogen-activated protein kinases (MAPKs)/nuclear factor kappa-B (NF-κB) pathway. Furthermore, they can activate the adenosine 5'-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, and subsequently promote amyloid beta (Aβ) clearance and reduce memory impairments. SEIs are ubiquitous in many plants and microorganisms, such as Brassicaceae vegetables, yeast, and mushroom. Enzymatic hydrolysis, as well as physical processing, such as thermal, high pressure and microwave treatment, are the main techniques to modify the properties of dietary selenium. This work highlights the fact that SEIs can inhibit inflammation and oxidative stress and provides evidence that supports the potential use of these dietary materials to be a novel strategy for improving AD.
Collapse
Affiliation(s)
- Mengfei Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - AoHuan Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | | | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Wang H, Xu MZ, Liang XY, Nag A, Zeng QZ, Yuan Y. Fabrication of food grade zein-dispersed selenium dual-nanoparticles with controllable size, cell friendliness and oral bioavailability. Food Chem 2023; 398:133878. [DOI: 10.1016/j.foodchem.2022.133878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/17/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
|
12
|
Pereira MAN, da Silva Junior EC, Dayse da Silva IL, de Carvalho BA, Ferreira E, Andrade EF, Guimarães Guilherme LR, Pereira LJ. Antitumor effect of selenium-rich Brazil nuts and selenomethionine dietary supplementation on pre-existing 4T1 mammary tumor growth in mice. PLoS One 2023; 18:e0278088. [PMID: 36634075 PMCID: PMC9836315 DOI: 10.1371/journal.pone.0278088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/11/2022] [Indexed: 01/13/2023] Open
Abstract
Selenium (Se) is an essential micronutrient known to play an important role in the antioxidant system that can potentially influence tumor growth. We aimed to investigate the effects of dietary Se supplementation after detection of 4T1 mammary tumor growth in BALB/c mice. Thirty female mice received subcutaneous inoculation of 4T1 cells. After five days, all animals presenting palpable tumors were randomly assigned to three groups: a control group (Se-control) receiving a diet with adequate Se (0.15 mg/kg) and two other groups that received Se-supplemented diets (1.4 mg/kg of total Se) with either Brazilian nuts (Se-Nuts) or selenomethionine (SeMet). Data were assessed by either One or Two-way ANOVA followed by Tukey's HSD or Bonferroni's post hoc tests, respectively. Both Se-supplemented diets reduced tumor volume from the thirteenth day of feeding compared with the Se-adequate (control) diet (p < 0.05). The SeMet group presented a higher Se blood concentration (p < 0.05) than the Se-control group, with the Se-Nuts group presenting intermediate values. Selenoprotein P gene expression in the liver was higher in the Se-Nuts group than in the Se-control group (p < 0.05), while the SeMet group presented intermediate expression. Dietary Se supplementation, starting after detection of 4T1 palpable lesions, reduced tumor volume in mice.
Collapse
Affiliation(s)
| | | | | | - Bárbara Andrade de Carvalho
- Biological Sciences Institute (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Enio Ferreira
- Biological Sciences Institute (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Eric Francelino Andrade
- Department of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | | | - Luciano José Pereira
- Department of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
13
|
Jonas da Rocha Esperança V, Corrêa de Souza Coelho C, Tonon R, Torrezan R, Freitas-Silva O. A review on plant-based tree nuts beverages: technological, sensory, nutritional, health and microbiological aspects. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2134417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Victor Jonas da Rocha Esperança
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (PPGAN/ UNIRIO). Av. Pasteur, Rio de Janeiro, Brasil
| | - Caroline Corrêa de Souza Coelho
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (PPGAN/ UNIRIO). Av. Pasteur, Rio de Janeiro, Brasil
| | - Renata Tonon
- Centro de Tecnologia Agrícola e Alimentar/CTAA, EMBRAPA Agroindústria de Alimentos, Av. das Américas, Rio de Janeiro, Brasil
| | - Renata Torrezan
- Centro de Tecnologia Agrícola e Alimentar/CTAA, EMBRAPA Agroindústria de Alimentos, Av. das Américas, Rio de Janeiro, Brasil
| | - Otniel Freitas-Silva
- Centro de Tecnologia Agrícola e Alimentar/CTAA, EMBRAPA Agroindústria de Alimentos, Av. das Américas, Rio de Janeiro, Brasil
| |
Collapse
|
14
|
Xiao Z, Lu Y, Zou Y, Zhang C, Ding L, Luo K, Tang Q, Zhou Y. Gene Identification, expression analysis and molecular docking of ATP sulfurylase in the selenization pathway of Cardamine hupingshanensis. BMC PLANT BIOLOGY 2022; 22:491. [PMID: 36253724 PMCID: PMC9578213 DOI: 10.1186/s12870-022-03872-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND ATP sulfurylase (ATPS) is a crucial enzyme for the selenate assimilation pathway in plants. RESULTS In this study, genome-wide and comparative analyses of ATPS in Cardamine hupingshanensis, including sequence and structural analyses, were performed. The expression of ChATPS gene family members in C. hupingshanensis under selenium (Se) stress was also investigated, and our results suggest that ChATPS1-2 play key roles in the response to Se stress. Nine ATPS genes were found from C. hupingshanensis, which share highly conserved sequences with ATPS from Arabidopsis thaliana. In addition, we performed molecular docking of ATP sulfurylase in complex with compounds ATP, selenate, selenite, sulfate, and sulfite. ChAPS3-1 was found to have stronger binding energies with all compounds tested. Among these complexes, amino acid residues Arg, Gly, Ser, Glu, and Asn were commonly present. CONCLUSION Our study reveals the molecular mechanism of C. hupingshanensis ATP sulfurylase interacting with selenate, which is essential for understanding selenium assimilation. This information will guide further studies on the function of the ChATPS gene family in the selenium stress response and lay the foundation for the selenium metabolic pathway in higher plants.
Collapse
Affiliation(s)
- Zhijing Xiao
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, 44500 Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, 44500 Enshi, China
| | - Yanke Lu
- College of Biological and Food Engineering, Hubei Minzu University, 44500 Enshi, China
| | - Yi Zou
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 445000 Enshi, Hubei China
| | - Chi Zhang
- College of Biological and Food Engineering, Hubei Minzu University, 44500 Enshi, China
| | - Li Ding
- College of Biological and Food Engineering, Hubei Minzu University, 44500 Enshi, China
| | - Kai Luo
- College of Biological and Food Engineering, Hubei Minzu University, 44500 Enshi, China
| | - Qiaoyu Tang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, 44500 Enshi, China
| | - Yifeng Zhou
- College of Biological and Food Engineering, Hubei Minzu University, 44500 Enshi, China
| |
Collapse
|
15
|
Effects of Regular Brazil Nut ( Bertholletia excelsa H.B.K.) Consumption on Health: A Systematic Review of Clinical Trials. Foods 2022; 11:foods11182925. [PMID: 36141050 PMCID: PMC9498495 DOI: 10.3390/foods11182925] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The Brazil nut (BN) is a promising food due to its numerous health benefits, but it is still necessary to systematically review the scientific evidence on these benefits. Thus, we examined the effects of regular BN consumption on health markers in humans according to the health state (with specific diseases or not) of the subjects. PubMed, Embase®, and Scielo databases were used to search for clinical trials. The PRISMA guideline was used to report the review, and the risk of bias for all studies was assessed. Twenty-four studies were included in the present review, of which fifteen were non-randomized. BNs were consumed in the context of a habitual free-living diet in all studies. Improvement in antioxidant status through increased levels of selenium and/or glutathione peroxidase activity in plasma, serum, whole blood, and/or erythrocytes was observed in all studies that evaluated antioxidant status, regardless of the health state of the sample. In addition, healthy subjects improved lipid markers and fasting glucose. Subjects with obesity had improvement in markers of lipid metabolism. Subjects with type 2 diabetes mellitus or dyslipidemia improved oxidative stress or DNA damage. Subjects undergoing hemodialysis benefited greatly from BN consumption, as they improved lipid profile markers, oxidative stress, inflammation, and thyroid function. Older adults with mild cognitive impairment improved verbal fluency and constructional praxis, and controversial results regarding the change in a marker of lipid peroxidation were observed in subjects with coronary artery disease. In conclusion, the benefits of BN consumption were found in different pathways of action and study populations.
Collapse
|
16
|
Morán-Serradilla C, Angulo-Elizari E, Henriquez-Figuereo A, Sanmartín C, Sharma AK, Plano D. Seleno-Metabolites and Their Precursors: A New Dawn for Several Illnesses? Metabolites 2022; 12:874. [PMID: 36144278 PMCID: PMC9504997 DOI: 10.3390/metabo12090874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023] Open
Abstract
Selenium (Se) is an essential element for human health as it is involved in different physiological functions. Moreover, a great number of Se compounds can be considered potential agents in the prevention and treatment of some diseases. It is widely recognized that Se activity is related to multiple factors, such as its chemical form, dose, and its metabolism. The understanding of its complex biochemistry is necessary as it has been demonstrated that the metabolites of the Se molecules used to be the ones that exert the biological activity. Therefore, the aim of this review is to summarize the recent information about its most remarkable metabolites of acknowledged biological effects: hydrogen selenide (HSe-/H2Se) and methylselenol (CH3SeH). In addition, special attention is paid to the main seleno-containing precursors of these derivatives and their role in different pathologies.
Collapse
Affiliation(s)
- Cristina Morán-Serradilla
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Eduardo Angulo-Elizari
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Arun K. Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
17
|
Wang K, Yuan Y, Luo X, Shen Z, Huang Y, Zhou H, Gao X. Effects of exogenous selenium application on nutritional quality and metabolomic characteristics of mung bean ( Vigna radiata L.). FRONTIERS IN PLANT SCIENCE 2022; 13:961447. [PMID: 36061759 PMCID: PMC9433778 DOI: 10.3389/fpls.2022.961447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Selenium (Se) biofortification is an important strategy for reducing hidden hunger by increasing the nutritional quality of crops. However, there is limited metabolomic information on the nutritional quality of Se-enriched mung beans. In this study, physiological assays and LC-MS/MS based widely targeted metabolomics approach was employed to reveal the Se biofortification potential of mung bean by evaluating the effect of Se on mung bean nutraceutical compounds and their qualitative parameters. Physiological data showed that foliar application of 30 g ha-1 Se at key growth stages significantly increased the content of Se, protein, fat, total phenols, and total flavonoids content in two mung bean varieties. Widely targeted metabolomics identified 1,080 metabolites, among which L-Alanyl-L-leucine, 9,10-Dihydroxy-12,13-epoxyoctadecanoic acid, and 1-caffeoylquinic acid could serve as biomarkers for identifying highly nutritious mung bean varieties. Pathway enrichment analysis revealed that the metabolic pathways of different metabolites were different in the Se-enriched mung bean. Specifically, P1 was mainly enriched in the linoleic acid metabolic pathway, while P2 was mainly enriched in the phosphonate and phosphinate metabolic pathways. Overall, these results revealed the specific Se enrichment mechanism of different mung bean varieties. This study provides new insights into the comprehensive improvement of the nutritional quality of mung beans.
Collapse
|
18
|
Ma Q, Zhang Q, Li X, Gao Y, Wei C, Li H, Jiao H. The compound-independent calibration of five selenium species in rice using ion-pairing reversed phase chromatography coupled to inductively coupled plasma tandem mass spectrometry. J Chromatogr A 2022; 1674:463134. [DOI: 10.1016/j.chroma.2022.463134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/30/2022] [Accepted: 05/07/2022] [Indexed: 11/26/2022]
|
19
|
Selenomethionine-Dominated Selenium-Enriched Peanut Protein Ameliorates Alcohol-Induced Liver Disease in Mice by Suppressing Oxidative Stress. Foods 2021; 10:foods10122979. [PMID: 34945529 PMCID: PMC8700997 DOI: 10.3390/foods10122979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
Numerous natural compounds are considered as potential therapeutic agents against alcohol-induced liver disease (ALD). Research shows that selenium (Se) has a variety of bioactivities, including liver protecting ability. The present study based on in vitro cell culture models and in vivo mouse models was aimed at examining the contribution of selenomethionine (SeMet)-dominated Se-enriched peanut protein (SePP) to liver protection. SeMet and especially SePP reversed cell viability and cell death, inhibited ethanol induced CYP2E1 activation, decreased reactive oxygen species level, and restored GSH level. Hence, SeMet-dominated SePP alleviates alcohol-induced AML-12 cytotoxicity by suppressing oxidative stress. The p38-dependent mechanism was found to be responsible for SePP-induced Nrf-2 activation. Furthermore, supplementation with SePP and SeMet regulated lipid metabolism and reduced oxidative stress, minimizing liver damage in mice. Selenomethionine-dominated SePP possesses potential therapeutic properties and can be used to treat ALD through the suppression of oxidative stress.
Collapse
|