1
|
Ye L, Song L, Zhang L, Cui R. Waste Point Identification of Frying Oil Based on Gas Chromatography-Ion Mobility Spectrometry (GC-IMS). Molecules 2024; 29:3979. [PMID: 39203057 PMCID: PMC11357186 DOI: 10.3390/molecules29163979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
This study described the quality detection and rapid identification of frying oil waste points based on gas chromatography-ion mobility spectrometry (GC-IMS). A total of 48 volatile substances were identified, among which the levels of 11 components, including 2-pentylfuran, 2-butylfuran, and 2-hexanone, increased with prolonged frying time after 40 h in cottonseed oil. Conversely, the levels of hexanal, heptanal, and E,E-2,4-heptadienal decreased as frying time extended. Correlation analysis revealed a significant association between volatile substances of the oil and acid value (p < 0.05) and polar components with volatile substances (p < 0.05). Furthermore, significant differences in the types and contents of flavor substances were observed in cottonseed oil at different frying times (including before and after reaching the discard point) (p < 0.05). Subsequently, principal component analysis (PCA) results clearly showed that the cottonseed oil samples at different frying times were well distinguished by the volatile compounds; moreover, discriminant model analysis indicated a model accuracy rate of 100%. These results showed the potential of GC-IMS-based approaches in discriminating the waste points of frying oil.
Collapse
Affiliation(s)
- Lin Ye
- College of Food Science and Engineering, Tarim University, Alar 843300, China;
- Construction Corps Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, Alar 843300, China
| | - Lijun Song
- School of Food Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China; (L.S.); (L.Z.)
| | - Li Zhang
- School of Food Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China; (L.S.); (L.Z.)
| | - Ruiguo Cui
- School of Food Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China; (L.S.); (L.Z.)
| |
Collapse
|
2
|
Wei B, Gao Y, Zheng Y, Yu J, Fu X, Bao H, Guo Q, Hu H. Changes in the Quality and Microbial Communities of Precooked Seasoned Crayfish Tail Treated with Microwave and Biological Preservatives during Room Temperature Storage. Foods 2024; 13:1256. [PMID: 38672928 PMCID: PMC11049464 DOI: 10.3390/foods13081256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The qualities of precooked foods can be significantly changed by the microorganisms produced during room temperature storage. This work assessed the effects of different antibacterial treatments (CK, without any treatment; microwave treatment, MS; microwave treatment and biological preservatives, MSBP) on the physicochemical properties and microbial communities of precooked crayfish tails during room temperature storage. Only the combination of microwave sterilization and biological preservatives significantly inhibited spoilage, as evidenced by the total viable count (4.15 log CFU/g) after 3 days of room temperature storage, which satisfied the transit time of most logistics companies in China. Changes in pH and TVB-N were also significantly inhibited in the MSBP group compared with those in the CK and MS groups. More than 30 new volatile compounds were produced in the CK groups during room temperature storage. However, in the MSBP groups, the volatile compounds were almost unchanged. The correlations between the microbial composition and volatile compounds suggested that specific bacterial species with metabolic activities related to amino acid, energy, cofactor, and vitamin metabolism, as well as xenobiotics biodegradation and metabolism, were responsible for the changes in volatile compounds. These bacteria included Psychrobacter, Arthrobacter, Facklamia, Leucobacter, Corynebacterium, Erysipelothrix, Devosia, Dietzia, and Acidovorax. Overall, our findings provide a foundation for the development of strategies to inhibit spoilage in precooked crayfish tails stored at room temperature.
Collapse
Affiliation(s)
- Banghong Wei
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (B.W.); (Y.G.); (Y.Z.)
| | - Yan Gao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (B.W.); (Y.G.); (Y.Z.)
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yao Zheng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (B.W.); (Y.G.); (Y.Z.)
| | - Jinxiang Yu
- Aquatic Conservation and Rescue Center of Jiangxi Province, Nanchang 330029, China (X.F.)
| | - Xuejun Fu
- Aquatic Conservation and Rescue Center of Jiangxi Province, Nanchang 330029, China (X.F.)
| | - Hairong Bao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Quanyou Guo
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (B.W.); (Y.G.); (Y.Z.)
| | - Huogen Hu
- Aquatic Conservation and Rescue Center of Jiangxi Province, Nanchang 330029, China (X.F.)
| |
Collapse
|
3
|
Zhang W, Zhang C, Cao L, Liang F, Xie W, Tao L, Chen C, Yang M, Zhong L. Application of digital-intelligence technology in the processing of Chinese materia medica. Front Pharmacol 2023; 14:1208055. [PMID: 37693890 PMCID: PMC10484343 DOI: 10.3389/fphar.2023.1208055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Processing of Chinese Materia Medica (PCMM) is the concentrated embodiment, which is the core of Chinese unique traditional pharmaceutical technology. The processing includes the preparation steps such as cleansing, cutting and stir-frying, to make certain impacts on the quality and efficacy of Chinese botanical drugs. The rapid development of new computer digital technologies, such as big data analysis, Internet of Things (IoT), blockchain and cloud computing artificial intelligence, has promoted the rapid development of traditional pharmaceutical manufacturing industry with digitalization and intellectualization. In this review, the application of digital intelligence technology in the PCMM was analyzed and discussed, which hopefully promoted the standardization of the process and secured the quality of botanical drugs decoction pieces. Through the intellectualization and the digitization of production, safety and effectiveness of clinical use of traditional Chinese medicine (TCM) decoction pieces were ensured. This review also provided a theoretical basis for further technical upgrading and high-quality development of TCM industry.
Collapse
Affiliation(s)
- Wanlong Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Changhua Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Nanchang Research Institute, Sun Yat-sen University, Nanchang, Jiangxi, China
| | - Lan Cao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Fang Liang
- College of Physical Culture, Yuzhang Normal University, Nanchang, Jiangxi, China
| | - Weihua Xie
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liang Tao
- Nanchang Research Institute, Sun Yat-sen University, Nanchang, Jiangxi, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Ming Yang
- Key Laboratory of Modern Chinese Medicine Preparation of Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Lingyun Zhong
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Zhang W, Zhang C, Cao L, Liang F, Xie W, Tao L, Chen C, Yang M, Zhong L. Application of digital-intelligence technology in the processing of Chinese materia medica. Front Pharmacol 2023; 14. [DOI: https:/doi.org/10.3389/fphar.2023.1208055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2024] Open
Abstract
Processing of Chinese Materia Medica (PCMM) is the concentrated embodiment, which is the core of Chinese unique traditional pharmaceutical technology. The processing includes the preparation steps such as cleansing, cutting and stir-frying, to make certain impacts on the quality and efficacy of Chinese botanical drugs. The rapid development of new computer digital technologies, such as big data analysis, Internet of Things (IoT), blockchain and cloud computing artificial intelligence, has promoted the rapid development of traditional pharmaceutical manufacturing industry with digitalization and intellectualization. In this review, the application of digital intelligence technology in the PCMM was analyzed and discussed, which hopefully promoted the standardization of the process and secured the quality of botanical drugs decoction pieces. Through the intellectualization and the digitization of production, safety and effectiveness of clinical use of traditional Chinese medicine (TCM) decoction pieces were ensured. This review also provided a theoretical basis for further technical upgrading and high-quality development of TCM industry.
Collapse
|
5
|
Li C, Tu Z, Liu W, Wu C, Hu Y, Wang H. Flavor substances of low-valued red swamp crayfish (Procambarus clarkii) hydrolysates derived from double enzymatic systems. Food Res Int 2023; 165:112461. [PMID: 36869477 DOI: 10.1016/j.foodres.2023.112461] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023]
Abstract
To make better use of low-valued crayfish (Procambarus clarkii), double enzymatic systems containing endopeptidase and Flavourzyme® were applied to investigate their effect on the physicochemical properties and volatile substances of low-valued crayfish. The results demonstrated that the double enzymatic hydrolysis had a positive effect on reduced bitterness and increased umami. Among them, the highest degree of hydrolysis (31.67 %) was obtained using trypsin and Flavourzyme® (TF), which showed 96.32 % of peptides with molecular weight < 0.5 kDa and 101.99 mg/g of free amino acids. The quality and quantity analysis showed that the types and relative contents of volatile compounds especially benzaldehyde, 1-octen-3-ol, nonanal, hexanal, 2-nonanone, 2-undecanonewere increased in the double enzymatic hydrolysis. In addition, the increase of esters and pyrazines was also found in gas chromatography-ion mobility spectrometry (GC-IMS). The results indicated that different enzymatic systems could be performed to enhance the flavor substances of low-valued crayfish. In conclusion, double enzymatic hydrolysis may be used as an advisable technique to promote the high-value utilization of low-valued crayfish and provides valuable information for the shrimp products requiring enzymatic hydrolysis.
Collapse
Affiliation(s)
- Chujun Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Wenyu Liu
- Ji'an Agricultural and Rural Industry Development Service Center, Ji'an 343000, China
| | - Chunlin Wu
- Ji'an Agricultural and Rural Industry Development Service Center, Ji'an 343000, China
| | - Yueming Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
6
|
Chen L, Zhang H, Shi H, Xue C, Wang Q, Yu F, Xue Y, Wang Y, Li Z. The flavor profile changes of Pacific oysters (Crassostrea gigas) in response to salinity during depuration. Food Chem X 2022; 16:100485. [DOI: 10.1016/j.fochx.2022.100485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
|
7
|
Bu X, Song Y, Cai X, Tang L, Huang Q, Wang X, Du Z, Qin C, Qin JG, Chen L. Enhancement of protein deposition and meat quality of male Chinese mitten crab (Eriocheir sinensis): Application of myo-inositol in crustacean nutrition. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Effects of Submerged Macrophytes on the Growth, Morphology, Nutritional Value, and Flavor of Cultured Largemouth Bass ( Micropterus salmoides). Molecules 2022; 27:molecules27154927. [PMID: 35956873 PMCID: PMC9370443 DOI: 10.3390/molecules27154927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
Aquaculture environment plays important roles in regulating the growth, morphology, nutrition, and flavor of aquatic products. The present study investigated growth, morphology, nutrition, and flavor formation in largemouth bass (Micropterus salmoides) cultured in the ponds with (EM group) and without (M group) the submerged macrophytes (Elodea nuttallii). Fish in the EM group showed a significantly greater body length, higher growth rate, and lower hepatosomatic index than those in the M group (p< 0.05). Moreover, compared with fish in the M group, those in the EM group showed improved muscle quality with significantly elevated levels of crude protein, total free and hydrolysable amino acids, and polyunsaturated fatty acids (p < 0.05). Specifically, certain amino acids related to flavor (Glu, Asp, Ala, and Arg) and valuable fatty acids (C18:2, C18:3n3, C20:3n3, and C22:6) were more abundant in the EM group (p < 0.05). In addition, the levels of 19 volatile (p < 0.05) were significantly higher in the EM group than in the M group. Therefore, E. nuttallii significantly improved growth, morphological traits, nutritional components, and characteristic flavor in largemouth bass, indicating the superior nutritional value and palatability of fish cultured with submerged macrophytes.
Collapse
|
9
|
Yano H, Fu W. Effective Use of Plant Proteins for the Development of "New" Foods. Foods 2022; 11:foods11091185. [PMID: 35563905 PMCID: PMC9102783 DOI: 10.3390/foods11091185] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Diversity in our diet mirrors modern society. Affluent lifestyles and extended longevity have caused the prevalence of diabetes and sarcopenia, which has led to the increased demand of low-carb, high-protein foods. Expansion of the global population and Westernization of Asian diets have surged the number of meat eaters, which has eventually disrupted the supply–demand balance of meat. In contrast, some people do not eat meat for religious reasons or due to veganism. With these multiple circumstances, our society has begun to resort to obtaining protein from plant sources rather than animal origins. This “protein shift” urges food researchers to develop high-quality foods based on plant proteins. Meanwhile, patients with food allergies, especially gluten-related ones, are reported to be increasing. Additionally, growing popularity of the gluten-free diet demands development of foods without using ingredients of wheat origin. Besides, consumers prefer “clean-label” products in which products are expected to contain fewer artificial compounds. These diversified demands on foods have spurred the development of “new” foods in view of food-processing technologies as well as selection of the primary ingredients. In this short review, examples of foodstuffs that have achieved tremendous recent progress are introduced: effective use of plant protein realized low-carb, high protein, gluten-free bread/pasta. Basic manufacturing principles of plant-based vegan cheese have also been established. We will also discuss on the strategy of effective development of new foods in view of the better communication with consumers as well as efficient use of plant proteins.
Collapse
|