1
|
Granja HS, Silva JDOS, Andrade YB, Farrapeira RO, Sussuchi EM, Freitas LS. Emerging carbonaceous material based on residual grape seed applied in selective and sensitive electrochemical detection of fenamiphos. Talanta 2025; 281:126784. [PMID: 39245008 DOI: 10.1016/j.talanta.2024.126784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Fenamiphos (FNP) is a pesticide applied for soil pest control, particularly nematodes, and sucking insects, including aphids and thrips. Despite its use being banned in several countries due to its highly toxic nature for living beings, including mammals, because of its acetylcholine-inhibiting action, it is still marketed for use in agriculture. Therefore, a carbon paste electrode modified with residual grape seed biochar (bSU), served as an electrochemical sensor (E-bSU) for the quantification of fenamiphos in grape juice, tap water, and river water samples. The bSU underwent comprehensive characterization employing elemental, morphological, and spectroscopic analysis techniques. The impact of electrode modification and the electrochemical behavior of the FNP were systematically assessed through cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry. The biochar manifested a microporous surface adorned with dispersed functional groups, enhancing its affinity for organic compounds, particularly the investigated pesticide. Electrode modification and the optimization of analysis parameters resulted in a notable 6-fold amplification of the electrochemical signal of FNP relative to initial conditions, underscoring the efficacy of the E-bSU. The developed methodology attained limits of detection and quantification of 0.3 and 0.9 nmol L⁻1, respectively. Repeatability and reproducibility assays demonstrated relative standard deviations below 5%, underscoring the reliability of the applied electrode. The sensor showcased recoveries ranging from 99.75% to 109.9% across the analyzed samples, highlighting the utility of this selective, stable, and reproducible sensor for fenamiphos determination.
Collapse
Affiliation(s)
- Honnara S Granja
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe, Av. Marcelo Déda Chagas, S/n - Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| | - Jonatas de Oliveira S Silva
- Programa de Pós-Graduação Em Química, Instituto de Química, Universidade Federal da Bahia, R. Barão de Jeremoabo, S/n - Ondina, Salvador, BA, 40170-280, Brazil.
| | - Yasmine B Andrade
- Programa de Pós-Graduação Em Biotecnologia Industrial, Universidade Tiradentes, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil.
| | - Rafael O Farrapeira
- NUESC - Núcleo de Estudos Em Sistemas Coloidais - ITP, Universidade Tiradentes, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil.
| | - Eliana M Sussuchi
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe, Av. Marcelo Déda Chagas, S/n - Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| | - Lisiane S Freitas
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe, Av. Marcelo Déda Chagas, S/n - Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| |
Collapse
|
2
|
Bhandari S, Parihar VS, Kellomäki M, Mahato M. Highly selective and flexible silver nanoparticles-based paper sensor for on-site colorimetric detection of paraquat pesticide. RSC Adv 2024; 14:28844-28853. [PMID: 39257667 PMCID: PMC11386213 DOI: 10.1039/d4ra04557b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Paper-based sensors or paper-based analytical devices (PADs) have recently emerged as the cost-efficient, and portable, on-site detection tools for various biological and environmental analytes. However, paper-based sensors often suffer from poor selectivity. Here, a single-step paper-based flexible sensor platform has been developed for the on-site detection of paraquat (PQ) pesticide in real samples, utilizing chitosan and citrate-capped silver nanoparticles integrated with a flexible paper. The nanocomposite paper film was thoroughly characterized using UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The composite paper platform demonstrated a color change with a reaction time within a few minutes (6-7 min) in the presence of PQ pesticide. The trace level PQ pesticide has been detected with a limit of detection (LOD) of 10 μM and a linear range (LR) of 10-100 μM. The sensor shows 3× more selective signal towards PQ pesticide compared to other similar pesticides. The relative standard deviation (RSD) was found to be 5% for repeatability, 4% for reproducibility, 2% for interference, and 3.5% for real sample analysis, indicating high precision sensing and within the WHO limit of RSD (20%). The present work will open up new avenues for the advancements in flexible paper sensors; cost-effective, portable, on-site sensors, and sustainable device development.
Collapse
Affiliation(s)
- Sanjeev Bhandari
- Physics Division, Department of Basic Sciences and Social Sciences, School of Technology, North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Vijay Singh Parihar
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University 33720 Tampere Finland
| | - Minna Kellomäki
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University 33720 Tampere Finland
| | - Mrityunjoy Mahato
- Physics Division, Department of Basic Sciences and Social Sciences, School of Technology, North-Eastern Hill University Shillong Meghalaya 793022 India
| |
Collapse
|
3
|
Yuan C, Tang C, Zhan X, Zhou M, Zhang L, Chen WT, Abdukayum A, Hu G. ZIF-67 based CoS 2 self-assembled on graphitic carbon nitride microtubular for sensitive electrochemical detection of paraquat in fruits. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133715. [PMID: 38359763 DOI: 10.1016/j.jhazmat.2024.133715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Paraquat (PQ) is a widely used and harmful herbicide that must be detected in the environment. This study reports a novel composite (CoS2-GCN) prepared by assembling cobalt disulfide (CoS2) derived from metal-organic frameworks (MOFs) on graphitic carbon nitride (GCN). An electrochemical sensor (CoS2-GCN/ glassy carbon electrode (GCE)) was successfully prepared by modifying CoS2-GCN onto a GCE to sensitively detect PQ. Different concentrations of PQ were detected using square-wave voltammetry, and the CoS2-GCN/GCE electrochemical sensor showed remarkable response signals for PQ in the range of 20 - 1000 nM and 1 - 13 μM, with a detection limit of 4.13 nM (S/N = 3). The CoS2-GCN/GCE electrochemical sensor exhibited high stability, reproducibility, and immunity to interference, which were attributed to the synergistic effects of CoS2 and GCN. In addition, the CoS2-GCN/GCE electrochemical sensor showed high applicability for the analysis of fruit samples. Therefore, the proposed sensor has potential applications in PQ detection.
Collapse
Affiliation(s)
- Chenghu Yuan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Cui Tang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Xuejia Zhan
- School of Agriculture and Biology & Key Laboratory of Urban Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Menglin Zhou
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Lei Zhang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China.
| | - Wen-Tong Chen
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, China
| | - Abdukader Abdukayum
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; Southwest United Graduate School, Kunming 650092, China.
| |
Collapse
|
4
|
Silva JDOS, Dos Santos JF, Granja HS, Almeida WS, Loeser TFL, Freitas LS, Bergamini MF, Marcolino-Junior LH, Sussuchi EM. Simultaneous determination of carbendazim and carbaryl pesticides in water bodies samples using a new voltammetric sensor based on Moringa oleifera biochar. CHEMOSPHERE 2024; 347:140707. [PMID: 37972866 DOI: 10.1016/j.chemosphere.2023.140707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/03/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
For the first time, a modified electrochemical sensor based on carbon paste was developed using biochar derived from the husks of Moringa oleifera pods to detect successfully and simultaneously carbendazim (CBZ) and carbaryl (CBR) pesticides. Biochar was obtained via pyrolysis at 400 °C, which required no additional activation or modification processes. The incorporation of the biochar modifier enabled the preconcentration of both pesticides under open potential circuit conditions, resulting in a significant enhancement in sensitivity compared to bare electrode. Under the optimized experimental conditions, the developed sensor exhibited excellent sensitivity to the target analytes, showing a linear relationship within the concentration range of 0.29-6.00 μM for CBZ and 29.9-502 μM for CBR. The limits of detection were calculated to be 0.12 μM for CBZ and 10.4 μM for CBR. The proposed method demonstrated remarkable selectivity for analytes even in the presence of diverse organic and inorganic species. Furthermore, the method was successfully applied to the determination of CBZ and CBR pesticides in various water matrices, including river, sea, drinking, and groundwater samples, without the need for any sample pretreatment, such as extraction or filtration. The observed recoveries ranged from 87% to 111%, indicating the efficiency and reliability of this method.
Collapse
Affiliation(s)
- Jonatas de Oliveira S Silva
- Grupo de Pesquisa em Sensores Eletroquímicos e Nano(Materiais) - SEnM, Laboratório de Corrosão e Nanotecnologia - LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil.
| | - José Felipe Dos Santos
- Grupo de Pesquisa em Sensores Eletroquímicos e Nano(Materiais) - SEnM, Laboratório de Corrosão e Nanotecnologia - LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil.
| | - Honnara S Granja
- Grupo de Pesquisa em Sensores Eletroquímicos e Nano(Materiais) - SEnM, Laboratório de Corrosão e Nanotecnologia - LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil; Laboratório de Análises Cromatográficas - LAC, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil.
| | - Wandson S Almeida
- Grupo de Pesquisa em Sensores Eletroquímicos e Nano(Materiais) - SEnM, Laboratório de Corrosão e Nanotecnologia - LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil
| | - Thiago F L Loeser
- Laboratório de Análises Cromatográficas - LAC, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil.
| | - Lisiane S Freitas
- Laboratório de Análises Cromatográficas - LAC, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil.
| | - Márcio F Bergamini
- Laboratório de Sensores Eletroquímicos - LabSensE, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal do Paraná - UFPR, Curitiba, PR, 81530-000, Brazil.
| | - Luiz H Marcolino-Junior
- Laboratório de Sensores Eletroquímicos - LabSensE, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal do Paraná - UFPR, Curitiba, PR, 81530-000, Brazil.
| | - Eliana Midori Sussuchi
- Grupo de Pesquisa em Sensores Eletroquímicos e Nano(Materiais) - SEnM, Laboratório de Corrosão e Nanotecnologia - LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil.
| |
Collapse
|
5
|
Xiao X, Li L, Deng H, Zhong Y, Deng W, Xu Y, Chen Z, Zhang J, Hu X, Wang Y. Biomass-derived 2D carbon materials: structure, fabrication, and application in electrochemical sensors. J Mater Chem B 2023; 11:10793-10821. [PMID: 37910389 DOI: 10.1039/d3tb01910a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Biomass, a renewable hydrocarbon, is one of the favorable sources of advanced carbon materials owing to its abundant resources and diverse molecular structures. Biomass-based two-dimensional carbon nanomaterials (2D-BC) have attracted extensive attention due to their tunable structures and properties, and have been widely used in the design and fabrication of electrochemical sensing platforms. This review embarks on the thermal conversion process of biomass from different sources and the synthesis strategy of 2D-BC materials. The affinity between 2D-BC structure and properties is emphasized. The recent progress in 2D-BC-based electrochemical sensors for health and environmental monitoring is also presented. Finally, the challenges and future development directions related to such materials are proposed in order to promote their further application in the field of electrochemical sensing.
Collapse
Affiliation(s)
- Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Hui Deng
- Rotex Co., Ltd., Chengdu, Sichuan 610043, China
| | - Yuting Zhong
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Wei Deng
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Zhiyu Chen
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, Chengdu, 610044, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
6
|
Zhou J, Zhao Z, Zhao X, Toan S, Wang L, Wågberg T, Hu G. Copper nanoparticle-decorated nitrogen-doped carbon nanosheets for electrochemical determination of paraquat. Mikrochim Acta 2023; 190:252. [PMID: 37286788 DOI: 10.1007/s00604-023-05812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/21/2023] [Indexed: 06/09/2023]
Abstract
A new strategy to prepare copper (Cu) nanoparticles anchored in nitrogen-doped carbon nanosheets (Cu@CN) has been designed and the nanomaterial applied to the determination of paraquat (PQ). The nanocomposite materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and several other techniques. We found that the Cu nanoparticles are uniformly distributed on the carbon materials, providing abundant active sites for electrochemical detection. The electrochemical behavior of the Cu@CN-based PQ sensor was investigated by square-wave voltammetry (SWV). Cu@CN exhibited excellent electrochemical activity and PQ detection performance. The Cu@CN-modified glassy carbon electrode (Cu@CN/GCE) exhibited excellent stability, favorable sensitivity, and high selectivity under optimized conditions (enrichment voltage -0.1 V and enrichment time 400 s) of the SWV test. The detection range reached 0.50 nM to 12.00 μM, and the limit of detection was 0.43 nM with high sensitivity of 18 μA·μM-1·cm-2. The detection limit is 9 times better than that of the high-performance liquid chromatography method. The Cu@CN electrochemical sensor demonstrated excellent sensitivity and selectivity also in environmental water and fruit samples enabling its use in practical, rapid trace-level detection of PQ in environmental samples.
Collapse
Affiliation(s)
- Jie Zhou
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Xue Zhao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Lei Wang
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA.
| | - Thomas Wågberg
- Department of Physics, Umeå University, 90187, Umeå, Sweden
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
| |
Collapse
|
7
|
Fama F, Feltracco M, Moro G, Barbaro E, Bassanello M, Gambaro A, Zanardi C. Pesticides monitoring in biological fluids: Mapping the gaps in analytical strategies. Talanta 2023; 253:123969. [PMID: 36191513 DOI: 10.1016/j.talanta.2022.123969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022]
Abstract
Pesticides play a key-role in the development of the agrifood sector allowing controlling pest growth and, thus, improving the production rates. Pesticides chemical stability is responsible of their persistency in environmental matrices leading to bioaccumulation in animal tissues and hazardous several effects on living organisms. The studies regarding long-term effects of pesticides exposure and their toxicity are still limited to few studies focusing on over-exposed populations, but no extensive dataset is currently available. Pesticides biomonitoring relies mainly on chromatographic techniques coupled with mass spectrometry, whose large-scale application is often limited by feasibility constraints (costs, time, etc.). On the contrary, chemical sensors allow rapid, in-situ screening. Several sensors were designed for the detection of pesticides in environmental matrices, but their application in biological fluids needs to be further explored. Aiming at contributing to the implementation of pesticides biomonitoring methods, we mapped the main gaps between screening and chromatographic methods. Our overview focuses on the recent advances (2016-2021) in analytical methods for the determination of commercial pesticides in human biological fluids and provides guidelines for their application.
Collapse
Affiliation(s)
- Francesco Fama
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy
| | - Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy
| | - Giulia Moro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy.
| | - Elena Barbaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Istituto di Scienze Polari (ISP-CNR), Via Torino 155, 30172, Venezia, Italy
| | - Marco Bassanello
- Health Direction Monastier di Treviso Hospital, Via Giovanni XXIII 7, 31050, Treviso, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Istituto di Scienze Polari (ISP-CNR), Via Torino 155, 30172, Venezia, Italy.
| | - Chiara Zanardi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Institute for the Organic Synthesis and Photosynthesis, Research National Council, 40129, Bologna, Italy
| |
Collapse
|
8
|
Li F, Li Y, Novoselov KS, Liang F, Meng J, Ho SH, Zhao T, Zhou H, Ahmad A, Zhu Y, Hu L, Ji D, Jia L, Liu R, Ramakrishna S, Zhang X. Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine. NANO-MICRO LETTERS 2023; 15:35. [PMID: 36629933 PMCID: PMC9833044 DOI: 10.1007/s40820-022-00993-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
We conceptualize bioresource upgrade for sustainable energy, environment, and biomedicine with a focus on circular economy, sustainability, and carbon neutrality using high availability and low utilization biomass (HALUB). We acme energy-efficient technologies for sustainable energy and material recovery and applications. The technologies of thermochemical conversion (TC), biochemical conversion (BC), electrochemical conversion (EC), and photochemical conversion (PTC) are summarized for HALUB. Microalgal biomass could contribute to a biofuel HHV of 35.72 MJ Kg-1 and total benefit of 749 $/ton biomass via TC. Specific surface area of biochar reached 3000 m2 g-1 via pyrolytic carbonization of waste bean dregs. Lignocellulosic biomass can be effectively converted into bio-stimulants and biofertilizers via BC with a high conversion efficiency of more than 90%. Besides, lignocellulosic biomass can contribute to a current density of 672 mA m-2 via EC. Bioresource can be 100% selectively synthesized via electrocatalysis through EC and PTC. Machine learning, techno-economic analysis, and life cycle analysis are essential to various upgrading approaches of HALUB. Sustainable biomaterials, sustainable living materials and technologies for biomedical and multifunctional applications like nano-catalysis, microfluidic and micro/nanomotors beyond are also highlighted. New techniques and systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed.
Collapse
Affiliation(s)
- Fanghua Li
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Yiwei Li
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, People's Republic of China
| | - K S Novoselov
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117546, Singapore
- School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - Feng Liang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Jiashen Meng
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Tong Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Hui Zhou
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014, Cordoba, Spain
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Liangxing Hu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Dongxiao Ji
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Litao Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Rui Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Xingcai Zhang
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
9
|
Carboxymethyl-Cellulose-Containing Ag Nanoparticles as an Electrochemical Working Electrode for Fast Hydroxymethyl-Furfural Sensing in Date Molasses. Polymers (Basel) 2022; 15:polym15010079. [PMID: 36616432 PMCID: PMC9824777 DOI: 10.3390/polym15010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Novel biosensors based on carboxymethyl cellulose extract from date palm fronds containing Ag nanoparticles as an electrochemical working electrode for fast hydroxymethylfurfural (HMF) sensing in date molasses were prepared. The morphological, structural, and crystallinity characteristics of the prepared Ag@CMC were described via SEM, DLS, TEM, and XRD. In addition, Raman spectroscopy and UV-VIS spectroscopy were performed, and thermal stability was studied. The investigated techniques indicated the successful incorporation of AgNPs into the CMC polymer. The sensing behavior of the prepared AgNPs@CMC electrode was studied in terms of cyclic voltammetry and linear scan voltammetry at different HMF concentrations. The results indicated high performance of the designed AgNPs@CMC, which was confirmed by the linear behavior of the relationship between the cathodic current and HMF content. Besides, real commercial samples were investigated using the novel AgNPs@CMC electrode.
Collapse
|
10
|
Wu Q, Tao H, Wu Y, Wang X, Shi Q, Xiang D. A Label-Free Electrochemical Aptasensor Based on Zn/Fe Bimetallic MOF Derived Nanoporous Carbon for Ultra-Sensitive and Selective Determination of Paraquat in Vegetables. Foods 2022; 11:foods11162405. [PMID: 36010404 PMCID: PMC9407144 DOI: 10.3390/foods11162405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
Paraquat (PQ) has high acute toxicity, even at low concentrations. For most people, the main pathway of exposure to PQ is through the diet. Therefore, the development of simple and efficient methods for PQ testing is critical for ensuring food safety. In this study, a new electrochemical detection strategy for paraquat is proposed based on the specific binding of PQ to its nucleic acid aptamer. Firstly, the Zn/Fe bimetallic ZIF derived nanoporous carbon (Zn/Fe-ZIF-NPC) and nickel hexacyanoferrate nanoparticles (NiHCF-NPs) were sequentially modified onto the glassy carbon electrode (GCE). NiHCF-NPs served as the signal probes, while Zn/Fe-ZIF-NPC facilitated electron transfer and effectively enhanced the sensing signal of NiHCF-NPs. Au nanoparticles (AuNPs) were then electrodeposited on the NiHCF-NPs/Zn/Fe-ZIF-NPC/GCE and then the thiolated aptamer was assembled on the AuNPs/NiHCF-NPs/Zn/Fe-ZIF-NPC/GCE via Au-S bonding. When incubated with PQ, the formation of PQ–aptamer complexes delayed the interfacial electron transport reaction of NiHCF-NPs, which caused a decrease in the current signals. As a result, simple and highly sensitive detection of PQ can be readily achieved by detecting the signal changes. A linear range was obtained from 0.001 to 100 mg/L with a detection limit as low as 0.34 μg/L. Due to the recognition specificity of the aptamer to its target molecule, the proposed method has excellent anti-interference ability. The prepared electrochemical aptasensor was successfully used for PQ assay in lettuce, cabbage and agriculture irrigation water samples with recoveries ranging from 96.20% to 104.02%, demonstrating the validity and practicality of the proposed method for PQ detection in real samples.
Collapse
Affiliation(s)
- Qiaoling Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Han Tao
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-0851-88236895
| | - Yuangen Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xiao Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qili Shi
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Donglin Xiang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Li Y, Xu R, Wang H, Xu W, Tian L, Huang J, Liang C, Zhang Y. Recent Advances of Biochar-Based Electrochemical Sensors and Biosensors. BIOSENSORS 2022; 12:bios12060377. [PMID: 35735525 PMCID: PMC9221240 DOI: 10.3390/bios12060377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 05/17/2023]
Abstract
In the context of accelerating the global realization of carbon peaking and carbon neutralization, biochar produced from biomass feedstock via a pyrolysis process has been more and more focused on by people from various fields. Biochar is a carbon-rich material with good properties that could be used as a carrier, a catalyst, and an absorbent. Such properties have made biochar a good candidate as a base material in the fabrication of electrochemical sensors or biosensors, like carbon nanotube and graphene. However, the study of the applications of biochar in electrochemical sensing technology is just beginning; there are still many challenges to be conquered. In order to better carry out this research, we reviewed almost all of the recent papers published in the past 5 years on biochar-based electrochemical sensors and biosensors. This review is different from the previously published review papers, in which the types of biomass feedstock, the preparation methods, and the characteristics of biochar were mainly discussed. First, the role of biochar in the fabrication of electrochemical sensors and biosensors is summarized. Then, the analytes determined by means of biochar-based electrochemical sensors and biosensors are discussed. Finally, the perspectives and challenges in applying biochar in electrochemical sensors and biosensors are provided.
Collapse
Affiliation(s)
| | - Rui Xu
- Correspondence: (R.X.); (Y.Z.)
| | | | | | | | | | | | | |
Collapse
|
12
|
Suresh R, Rajendran S, Kumar PS, Hoang TKA, Soto-Moscoso M, Jalil AA. Recent developments on graphene and its derivatives based electrochemical sensors for determinations of food contaminants. Food Chem Toxicol 2022; 165:113169. [PMID: 35618108 DOI: 10.1016/j.fct.2022.113169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
The sensing of food contaminants is essential to prevent their adverse health effects on the consumers. Electrochemical sensors are promising in the determination of electroactive analytes including food pollutants, biomolecules etc. Graphene nanomaterials offer many benefits as electrode material in a sensing device. To further improve the analytical performance, doped graphene or derivatives of graphene such as reduced graphene oxide and their nanocomposites were explored as electrode materials. Herein, the advancements in graphene and its derivatives-based electrochemical sensors for analysis of food pollutants were summarized. Determinations of both organic (food colourants, pesticides, drugs, etc.) and inorganic pollutants (metal cations and anions) were considered. The influencing factors including nature of electrode materials and food pollutants, pH, electroactive surface area etc., on the sensing performances of modified electrodes were highlighted. The results of pollutant detection in food samples by the graphene-based electrode have also been outlined. Lastly, conclusions and current challenges in effective real sample detection were presented.
Collapse
Affiliation(s)
- R Suresh
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | | | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia
| |
Collapse
|
13
|
Traiwatcharanon P, Siriwatcharapiboon W, Jongprateep O, Wongchoosuk C. Electrochemical paraquat sensor based on lead oxide nanoparticles. RSC Adv 2022; 12:16079-16092. [PMID: 35733661 PMCID: PMC9150220 DOI: 10.1039/d2ra02034c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
1,1-Dimethyl-4,4-bipyridinium dichloride known as paraquat is a popular well-known herbicide that is widely used in agriculture around the world. However, paraquat is a highly toxic chemical causing damage to vital organs including the respiratory system, liver, heart, and kidneys and death. Therefore, detection of paraquat is still necessary to protect life and the environment. In this work, an electrochemical sensor based on lead oxide nanoparticles (PbO-NPs) modified on a screen-printed silver working electrode (SPE) has been fabricated for paraquat detection at room temperature. The PbO-NPs have been synthesized by using a sparking method via two Pb metal wires. The electrochemical paraquat sensors have been prepared by a simple drop-casting of PbO-NPs solution on the surface of the SPE. The PbO-NPs/SPE sensor exhibits a linear response in the range from 1 mM to 5 mM with good reproducibility and high sensitivity (204.85 μA mM−1 cm−2) for paraquat detection at room temperature. The PbO-NPs/SPE sensor shows high selectivity to paraquat over other popular herbicides such as glyphosate, glufosinate-ammonium and butachlor-propanil. The application of the PbO-NPs/SPE sensor is also demonstrated via the monitoring of paraquat contamination in juice and milk. The PbO nanoparticles-based electrochemical sensor can be integrated into a smartphone for on-site field testing of paraquat with high sensitivity and selectivity.![]()
Collapse
Affiliation(s)
| | - Wilai Siriwatcharapiboon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Oratai Jongprateep
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Chatchawal Wongchoosuk
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|