1
|
Bai Y, Fang X, Jiang Y, Xu J, Wu L, Li Q, Cao F, Zhao L. Sequential fermentation of Ginkgo biloba seeds by Bacillus subtilis natto and Lactobacillus plantarum enhanced nutrition, flavor and lipid-lowering activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39540367 DOI: 10.1002/jsfa.14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/12/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Ginkgo biloba seeds (GBS) are rich in flavonoids, proteins and reducing sugar, and have been consumed as food and medicinal nuts for thousands of years. However, the presence of ginkgotoxins and their poor palatability limit people's consumption of them. RESULTS This study used solid-state fermentation with Bacillus subtilis natto and Lactobacillus plantarum to enhance the safety and benefits of GBS. Optimized fermentation conditions increased the content of beneficial components like total flavonoids, soluble protein and reducing sugar while eliminating unpleasant odors (isoamyl aldehyde and hexanal) and reducing the toxin 4'-O-methylpyridoxine by 91.17%. Fermentation of GBS powder can significantly enhance its anti-inflammatory and antioxidant activities in vitro (P < 0.001). Furthermore, it exhibits a dose-dependent effect within a certain concentration range. Mixed fermentation (FBnLp) was evaluated for its effects on obesity and metabolic syndrome in mice fed a high-fat diet. FBnLp significantly reduced body and liver weight gain, prevented dyslipidemia and decreased inflammatory and oxidative stress compared to unfermented GBS. Histological analysis showed that FBnLp improved liver health by reducing fat accumulation and preventing non-alcoholic fatty liver disease. Meanwhile, it was found that feeding FBnLp increased the expression of CPT-1α, which regulates energy expenditure and fat breakdown, and downregulated the expression of SREBP-1c, FAS and ACC, which regulate fat synthesis. CONCLUSION This research provides new insights and technological support for the application and development of FBnLp as a functional product, addressing key issues in its use and industry growth. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun Bai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jinpu Research Institute, Nanjing Forestry University, Nanjing, China
| | - Xianying Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jinpu Research Institute, Nanjing Forestry University, Nanjing, China
| | - Yunpeng Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jiahui Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Lulu Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jinpu Research Institute, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Zhang Y, Qi B, Li Q, Yang C, Yu P, Yang X, Li T. Dynamic changes on sensory property, nutritional quality and metabolic profiles of green kernel black beans during Eurotium cristatum-based solid-state fermentation. Food Chem 2024; 455:139846. [PMID: 38833863 DOI: 10.1016/j.foodchem.2024.139846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Eurotium cristatum, a unique probiotic in Fu brick tea, is widely used in food processing to enhance added values. Here, green kernel black beans (GKBBs) were solid-fermented with E. cristatum and dynamic changes in flavour, chemical composition and metabolites during fermentation were investigated. As results, E. cristatum fermentation altered aroma profiles and sensory attributes of GKBBs, especially reduced sourness. After fermentation, total polyphenolic and flavonoid contents in GKBBs were elevated, while polysaccharides, soluble proteins and short-chain fatty acids contents were decreased. E. cristatum fermentation also induced biotransformation of glycosidic isoflavones into sapogenic isoflavones. During fermentation, dynamic changes in levels of 17 amino acids were observed, in which 3 branched-chain amino acids were increased. Non-targeted metabolomics identified 51 differential compounds and 10 related metabolic pathways involved in E. cristatum fermentation of GKBBs. This study lays foundation for the development of green kernel black bean-based functional food products with E. cristatum fermentation.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Bangran Qi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Qiannan Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Pinglian Yu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
3
|
Seong J, Lee HY, Jeong JB, Cho DY, Kim DH, Lee JH, Lee GY, Jang MY, Lee JH, Cho KM. Comparison in Bioactive Compounds and Antioxidant Activity of Cheonggukjang Containing Mountain-Cultivated Ginseng Using Two Bacillus Genus. Foods 2024; 13:3155. [PMID: 39410190 PMCID: PMC11475840 DOI: 10.3390/foods13193155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
In this study, the nutrients, phytochemicals (including isoflavone and ginsenoside derivatives), and antioxidant activities of cheonggukjang with different ratios (0%, 2.5%, 5%, and 10%) of mountain-cultivated ginseng (MCG) were compared and analyzed using microorganisms isolated from traditional cheonggukjang. The IDCK 30 and IDCK 40 strains were confirmed as Bacillus licheniformis and Bacillus subtilis, respectively, based on morphological, biological, biochemical, and molecular genetic identification, as well as cell wall fatty acid composition. The contents of amino acids and fatty acids showed no significant difference in relation to the ratio of MCG. After fermentation, isoflavone glycoside (such as daidzin, glycitin, and genistin) contents decreased, while aglycone (daidzein, glycitein, and genistein) contents increased. However, total ginsenoside contents were higher according to the ratio of MCG. After fermentation, ginsenoside Rg2, F2, and protopanaxadiol contents of cheonggukjang decreased. Conversely, ginsenoside Rg3 (2.5%: 56.51 → 89.43 μg/g, 5.0%: 65.56 → 94.71 μg/g, and 10%: 96.05 → 166.90 μg/g) and compound K (2.5%: 28.54 → 69.43 μg/g, 5.0%: 41.63 → 150.72 μg/g, and 10%: 96.23 → 231.33 μg/g) increased. The total phenolic and total flavonoid contents were higher with increasing ratios of MCG and fermentation (fermented cheonggukjang with 10% MCG: 13.60 GAE and 1.87 RE mg/g). Additionally, radical scavenging activities and ferric reducing/antioxidant power were significantly increased in fermented cheonggukjang. This study demonstrates that the quality of cheonggukjang improved, and cheonggukjang with MCG as natural antioxidants may be useful in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Jina Seong
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National Univesity, Jinju 52725, Republic of Korea
| | - Hee Yul Lee
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National Univesity, Jinju 52725, Republic of Korea
| | - Jong Bin Jeong
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National Univesity, Jinju 52725, Republic of Korea
| | - Du Yong Cho
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National Univesity, Jinju 52725, Republic of Korea
| | - Da Hyun Kim
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National Univesity, Jinju 52725, Republic of Korea
| | - Ji Ho Lee
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National Univesity, Jinju 52725, Republic of Korea
| | - Ga Young Lee
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National Univesity, Jinju 52725, Republic of Korea
| | - Mu Yeun Jang
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National Univesity, Jinju 52725, Republic of Korea
| | - Jin Hwan Lee
- Department of Life Resource Industry, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Kye Man Cho
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National Univesity, Jinju 52725, Republic of Korea
| |
Collapse
|
4
|
Xiao Y, Chen H, Wang Y, Ma J, Hou A, Wang Y, Chen Y, Lu X. Characterization and discrimination of volatile organic compounds and α-glucosidase inhibitory activity of soybeans ( Glycine max L.) during solid-state fermentation with Eurotium cristatum YL-1. Curr Res Food Sci 2024; 9:100854. [PMID: 39386052 PMCID: PMC11462225 DOI: 10.1016/j.crfs.2024.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/31/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
In this study, the influence of solid-state fermentation (SSF) using probiotic Eurotium cristatum on the change of volatile organic compounds (VOCs) and α-glucosidase inhibition activity of soybeans was investigated. A total of 46 VOCs were characterized via headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), the majority of which were aldehydes (17), alcohols (10), and ketones (7). SSF by E. cristatum drastically affected the flavor characteristics of soybeans, and the levels of unpleasant beany flavor components, such as hexanal-D, 1-octen-3-ol, 1-hexanol-D, 1-hexanol-M, heptanal-M, 1-pentanol, heptanal-D, and 2-pentyl furan were all substantially decreased by 50% after 15 days of SSF, while volatiles with floral, caramel, and desirable flavors such as pentanal-D, methylpropanal, 2-propanol, and propyl acetate drastically (p < 0.05) increased by 1.1-, 19.2-, 3.6-, and 2.6-fold, respectively. Key aroma-active compounds analysis revealed that 18 VOCs (ROAV, relative odor activity value ≥ 1) play a great role in shaping the flavor characteristics of the soybean samples. After 15 days of SSF, the ROAV values of methylpropanal, 2-propanol, and propyl acetate drastically (p < 0.05) increased to 8.48, 63.88, and 11.29, respectively, which greatly contributed to the desirable flavor characteristics of fermented soybeans. Furthermore, E. cristatum greatly improved the α-glucosidase inhibitory activity of soybean by 22.4% after 15 days fermentation, which was closely correlated with the accumulated phenolic compounds during SSF. Molecular docking showed that genistein and daidzein have high binding affinity for α-glucosidase active sites, primarily driven by hydrogen bonds and hydrophobic interactions. These results demonstrated that soybeans fermented with E. cristatum substantially improved the flavor characteristics and α-glucosidase inhibitory effect, and were greatly helpful to promote the application of soybeans in food products.
Collapse
Affiliation(s)
- Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Hui Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yajing Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Jinrong Ma
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Aixiang Hou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Xingjun Lu
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, 418000, China
| |
Collapse
|
5
|
Hu M, Wang J, Gao Y, Fan B, Wang F, Li S. Proteomic Analysis of the Characteristic Flavor Components in Bacillus subtilis BSNK-5-Fermented Soymilk. Foods 2024; 13:2399. [PMID: 39123590 PMCID: PMC11311612 DOI: 10.3390/foods13152399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Fermentation with Bacillus subtilis significantly enhances the physiological activity and bioavailability of soymilk, but the resulting characteristic flavor seriously affects its industrial promotion. The objective of this study was to identify key proteins associated with characteristic flavors in B. subtilis BSNK-5-fermented soymilk using tandem mass tag (TMT) proteomics. The results showed that a total of 765 differentially expressed proteins were identified. Seventy differentially expressed proteins related to characteristic flavor were screened through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. After integrating metabolomics data, fifteen key proteases of characteristic flavor components in BSNK-5-fermented soymilk were further identified, and free ammonia was added. In addition, there were five main formation mechanisms, including the decomposition of urea to produce ammonia; the degradation of glutamate by glutamate dehydrogenase to produce ammonia; the degradation of threonine and non-enzymatic changes to form the derivative 2,5-dimethylpyrazine; the degradation of valine, leucine, and isoleucine to synthesize isovalerate and 2-methylbutyrate; and the metabolism of pyruvate and lactate to synthesize acetate. These results provide a theoretical foundation for the improvement of undesirable flavor in B. subtilis BSNK-5-fermented soy foods.
Collapse
Affiliation(s)
- Miao Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (M.H.); (J.W.); (Y.G.); (B.F.)
| | - Jiao Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (M.H.); (J.W.); (Y.G.); (B.F.)
| | - Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (M.H.); (J.W.); (Y.G.); (B.F.)
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (M.H.); (J.W.); (Y.G.); (B.F.)
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (M.H.); (J.W.); (Y.G.); (B.F.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (M.H.); (J.W.); (Y.G.); (B.F.)
| |
Collapse
|
6
|
Miao X, Niu H, Sun M, Dong X, Hua M, Su Y, Wang J, Li D. A comparative study on the nutritional composition, protein structure and effects on gut microbiota of 5 fermented soybean products (FSPs). Food Res Int 2024; 183:114199. [PMID: 38760132 DOI: 10.1016/j.foodres.2024.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 05/19/2024]
Abstract
In this study, we conducted an analysis of the differences in nutrient composition and protein structure among various fermented soybean products and their impacts on the gut microbiota of rats. Conventional physicochemical analysis was employed to analyze the fundamental physicochemical composition of the samples. Additionally, we utilized high-performance liquid chromatography and ELISA techniques to quantify the presence of antinutritional compounds. Fourier infrared spectroscopy was applied to delineate the protein structure, while 16 s rRNA gene sequencing was conducted to evaluate alterations in gut microbiota abundance. Subsequently, KEGG was utilized for metabolic pathway analysis. Our findings revealed that fermented soybean products improved the nutritional profile of soybeans. Notably, Douchi exhibited the highest protein content at 52.18 g/100 g, denoting a 26.58 % increase, whereas natto showed a 24.98 % increase. Douchi and natto demonstrated the most substantial relative amino acid content, comprising 50.86 % and 49.04 % of the total samples, respectively. Moreover, the levels of antinutritional factors markedly decreased post-fermentation. Specifically, the α-helix content in doujiang decreased by 13.87 %, while the random coil content in soybean yogurt surged by 132.39 %. Rats that were fed FSP showcased notable enhancements in gut microbiota and associated metabolic pathways. A strong correlation was observed between nutrient composition, protein structure, and gut microbiota abundance. This study furnishes empirical evidence supporting the heightened nutritional attributes of FSPs.
Collapse
Affiliation(s)
- Xinyu Miao
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Honghong Niu
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Mubai Sun
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Xin Dong
- Center for Disease Control and Prevention of Hinggan League, Hinggan League 137400, China
| | - Mei Hua
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Ying Su
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Jinghui Wang
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China.
| | - Da Li
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China.
| |
Collapse
|
7
|
Rocchi R, Zwinkels J, Kooijman M, Garre A, Smid EJ. Development of novel natto using legumes produced in Europe. Heliyon 2024; 10:e26849. [PMID: 38463896 PMCID: PMC10923668 DOI: 10.1016/j.heliyon.2024.e26849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Natto is a traditional Japanese fermented product consisting of cooked soybeans fermented with Bacillus subtilis var. natto. We assessed three different B. subtilis strains and investigated their impact on product quality aspects, such as microbial quality, textural quality (poly-γ-glutamate strand formation), free amino acids (FAA), and volatile organic compounds (VOCs), but also the vitamin K1, K2 and B1 content, and presence of nattokinase. Using Bayesian contrast analysis, we conclude that the quality attributes were influenced by both the substrate and strain used, without significant differences in bacterial growth between strain or substrate. Overall, all the tested European legumes, except for brown beans, are adequate substrates to produce natto, with comparable or higher qualities compared to the traditional soy. Out of all the tested legumes, red lentils were the most optimal fermentation substrate. They were fermented most consistently, with high concentrations of vitamin K2, VOCs, FAA.
Collapse
Affiliation(s)
- Rebecca Rocchi
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Jasper Zwinkels
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Merit Kooijman
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Alberto Garre
- Department of Agricultural Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Spain
| | - Eddy J. Smid
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
8
|
Mun BG, Hussain A, Park YG, Kang SM, Lee IJ, Yun BW. The PGPR Bacillus aryabhattai promotes soybean growth via nutrient and chlorophyll maintenance and the production of butanoic acid. FRONTIERS IN PLANT SCIENCE 2024; 15:1341993. [PMID: 38439982 PMCID: PMC10909845 DOI: 10.3389/fpls.2024.1341993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) colonize plant roots, establish a mutualistic relationship with the plants and help them grow better. This study reports novel findings on the plant growth-promoting effects of the PGPR Bacillus aryabhattai. Soil was collected from a soybean field, PGPR were isolated, identified, and characterized for their ability to promote plant growth and development. The bacterium was isolated from the soybean rhizosphere and identified as B. aryabhattai strain SRB02 via 16s rRNA sequencing. As shown by SEM, the bacterium successfully colonized rice and soybean roots within 2 days and significantly promoted the growth of the GA-deficient rice cultivar Waito-C within 10 days, as well as the growth of soybean plants with at least six times longer shoots, roots, higher chlorophyll content, fresh, and dry weight after 10 days of inoculation. ICP analysis showed up to a 100% increase in the quantity of 18 different amino acids in the SRB02-treated soybean plants. Furthermore, the 2-DE gel assay indicated the presence of several differentially expressed proteins in soybean leaves after 24 hrs of SRB02 application. MALDI-TOF-MS identified β-conglycinin and glycinin along with several other proteins that were traced back to their respective genes. Analysis of bacterial culture filtrates via GCMS recorded significantly higher quantities of butanoic acid which was approximately 42% of all the metabolites found in the filtrates. The application of 100 ppm butanoic acid had significantly positive effects on plant growth via chlorophyll maintenance. These results establish the suitability of B. aryabhattai as a promising PGPR for field application in various crops.
Collapse
Affiliation(s)
- Bong-Gyu Mun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - Adil Hussain
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Agriculture, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yeon-Gyeong Park
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
9
|
Luo H, Bao Y, Zhu P. Enhancing the functionality of plant-based Yogurt: Integration of lycopene through dual-stage fermentation of soymilk. Food Chem 2024; 434:137511. [PMID: 37742554 DOI: 10.1016/j.foodchem.2023.137511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
Well-defined compositional assemblies of plant-based yogurt are of fast-growing awareness for world population concerning environmental sustainability, economic burdens and health risks. Soybean is an attractive candidate for plant yogurt, suffering from poor flavor, limited nutrition, and undesired allergens to offer healthy-functional segments. Herein, we deciphered a novel lycopene-soy yogurt by efficient two-stage fermentation of engineered B. subtilis and LAB. The fortified sogurt was ensured with redundant lycopene of 22.67 ± 2.95 mg/g DCW by engineered B. subtilis and enriched soy isoflavone from synergistic effects of engineered B. subtilis and LAB, possessing strong antioxidant capacity for upgrading functionality. Moreover, the desired pH, accelerated protein hydrolysis, enhanced amino acid availability, and expected sensory attributes cooperatively conferred lycopene-soy yogurt as healthy functional food. High potential is firstly ascribed to sequential dual culture of engineered B. subtilis and LAB in lycopene-soy yogurt, in which flavorful, hypoallergenic and antioxidative ingredients enabled functionalities for plant-based yogurt.
Collapse
Affiliation(s)
- Hao Luo
- College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Yihong Bao
- College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210014, Jiangsu, China.
| |
Collapse
|
10
|
Yan D, Huang L, Mei Z, Bao H, Xie Y, Yang C, Gao X. Untargeted metabolomics revealed the effect of soybean metabolites on poly(γ-glutamic acid) production in fermented natto and its metabolic pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1298-1307. [PMID: 37782527 DOI: 10.1002/jsfa.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/17/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Natto mucus is mainly composed of poly(γ-glutamic acid) (γ-PGA), which affects the sensory quality of natto and has some effective functional activities. The soybean metabolites that cause different γ-PGA contents in different fermented natto are unclear. RESULTS In this study, we use untargeted metabolomics to analyze the metabolites of high-production γ-PGA natto and low-production γ-PGA natto and their fermented substrate soybean. A total of 257 main significantly different metabolites with the same trend among the three comparison groups were screened, of which 114 were downregulated and 143 were upregulated. Through the enrichment of metabolic pathways, the metabolic pathways with significant differences were purine metabolism, nucleotide metabolism, fructose and mannose metabolism, anthocyanin biosynthesis, isoflavonoid biosynthesis and the pentose phosphate pathway. CONCLUSION For 114 downregulated main significantly different metabolites with the same trend among the three comparison groups, Bacillus subtilis (natto) may directly decompose them to synthesize γ-PGA. Adding downregulated substances before fermentation or cultivating soybean varieties with the goal of high production of such substances has a great effect on the production of γ-PGA by natto fermentation. The enrichment analysis results showed the main pathways affecting the production of γ-PGA by Bacillus subtilis (natto) using soybean metabolites, which provides a theoretical basis for the production of γ-PGA by soybean and promotes the diversification of natto products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Delin Yan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhiqing Mei
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Han Bao
- College of Food Engineering, Beibu Gulf University, Qinzhou, China
| | - Yaman Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Cunyi Yang
- Guangdong Provincial Key Laboratory of Molecular Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiangyang Gao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Muradova M, Proskura A, Canon F, Aleksandrova I, Schwartz M, Heydel JM, Baranenko D, Nadtochii L, Neiers F. Unlocking Flavor Potential Using Microbial β-Glucosidases in Food Processing. Foods 2023; 12:4484. [PMID: 38137288 PMCID: PMC10742834 DOI: 10.3390/foods12244484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Aroma is among of the most important criteria that indicate the quality of food and beverage products. Aroma compounds can be found as free molecules or glycosides. Notably, a significant portion of aroma precursors accumulates in numerous food products as nonvolatile and flavorless glycoconjugates, termed glycosidic aroma precursors. When subjected to enzymatic hydrolysis, these seemingly inert, nonvolatile glycosides undergo transformation into fragrant volatiles or volatiles that can generate odor-active compounds during food processing. In this context, microbial β-glucosidases play a pivotal role in enhancing or compromising the development of flavors during food and beverage processing. β-glucosidases derived from bacteria and yeast can be utilized to modulate the concentration of particular aroma and taste compounds, such as bitterness, which can be decreased through hydrolysis by glycosidases. Furthermore, oral microbiota can influence flavor perception by releasing volatile compounds that can enhance or alter the perception of food products. In this review, considering the glycosidic flavor precursors present in diverse food and beverage products, we underscore the significance of glycosidases with various origins. Subsequently, we delve into emerging insights regarding the release of aroma within the human oral cavity due to the activity of oral microbial glycosidases.
Collapse
Affiliation(s)
- Mariam Muradova
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Alena Proskura
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Francis Canon
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
| | - Irina Aleksandrova
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Mathieu Schwartz
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
| | - Jean-Marie Heydel
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
| | - Denis Baranenko
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Liudmila Nadtochii
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Fabrice Neiers
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
| |
Collapse
|
12
|
Fu W, Ren J, Li S, Ren D, Li X, Ren C, Zhao X, Li J, Li F. Effect of Peony ( Paeonia ostii) Seed Meal Supplement on Enzyme Activities and Flavor Compounds of Chinese Traditional Soybean Paste during Fermentation. Foods 2023; 12:3184. [PMID: 37685116 PMCID: PMC10486673 DOI: 10.3390/foods12173184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Peony seed meal (PSM) is the by-product obtained from peony seeds after oil extraction. In this study, PSM was incorporated into traditional koji-making, and its impacts on koji enzyme activities and flavor compounds in final products were investigated. In the process of koji fermentation, the optimal addition ratio of PSM to soybean was determined as 7:3. Under this ratio, the maximum enzyme activities of neutral protease, amylase, and glucoamylase were 1177.85, 686.58, and 1564.36 U/g, respectively, and the koji obtained was subjected to maturation. During post-fermentation, changes in the fermentation characteristics of the paste samples were monitored, and it was found that compared to the soybean paste without PSM, the enzyme activities maintained at a relatively good level. The PSM soybean paste contained a total of 80 flavor compounds and 11 key flavor compounds (OAV ≥ 1), including ethyl isovalerate, isovaleric acid, hexanal, phenylacetaldehyde, 3-Methyl-1-butanol 4-heptanone, 2-pentylfuran, methanethiol ester caproate, isoamyl acetate, 3-methyl-4-heptanone, and isovaleraldehyde. These findings could be used to improve the quality of traditional fermented paste, enrich its flavor, and simultaneously promote PSM as a valuable resource for fermented foods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fengjuan Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (W.F.); (J.R.); (S.L.); (D.R.); (X.L.); (C.R.); (X.Z.); (J.L.)
| |
Collapse
|
13
|
Yang W, Yang C, Du Y, Wang Q. Colon-Targeted Release of Turmeric Nonextractable Polyphenols and Their Anticolitis Potential via Gut Microbiota-Dependent Alleviation on Intestinal Barrier Dysfunction in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11627-11641. [PMID: 37470294 DOI: 10.1021/acs.jafc.3c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Solid evidence has emerged supporting the role of nonextractable polyphenols (NEPs) and dietary fibers (DFs) as gut microbiota modulators. This study aims to elucidate gut microbiota-dependent release of turmeric NEPs and examine the possible anti-inflammatory mechanism in the dextran sulfate sodium-induced ulcerative colitis (UC) model. 1.5% DSS drinking water-induced C57BL/6J mice were fed a standard rodent chow supplemented with or without 8% extractable polyphenols (EPs), NEPs, or DFs for 37 days. The bound curcumin, demethoxycurcumin, and bisdemethoxycurcumin in NEPs were released up to 181.5 ± 10.6, 65.2 ± 6.0, and 69.5 ± 7.6 μg/mL by in vitro gut microbiota-simulated fermentation and released into the colon of NEP-supplemented mice by 5.7-, 11.0-, and 7.8-fold higher than pseudo germ-free mice, respectively (p < 0.05). NEPs also enhanced the colonic microbiota-dependent production of short-chain fatty acids in vitro and in vivo (p < 0.05). Interestingly, NEP feeding significantly improved the DSS-caused gut microbiota disorder, epithelial barrier damage, and inflammation of UC mice better than EPs or DFs (p < 0.05). Meanwhile, the pseudo germ-free mice supplemented with NEPs failed to ameliorate UC symptoms. These findings manifest that turmeric NEPs as macromolecular carriers exert the target delivery of polyphenols into the colon for regulating gut microbiota to restore the impaired gut barrier function for alleviation of inflammation.
Collapse
Affiliation(s)
- Weirong Yang
- Medical School, Xi'an Peihua University, Xi'an 710199, China
- The Faculty of Science, The University of Sydney, Sydney 2006, Australia
| | - Chengcheng Yang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yao Du
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Qiaofeng Wang
- Medical School, Xi'an Peihua University, Xi'an 710199, China
| |
Collapse
|
14
|
Anand Singh T, Nongthombam G, Goksen G, Singh HB, Rajauria G, Kumar Sarangi P. Hawaijar - An ethnic vegan fermented soybean food of Manipur, India: A comprehensive review. Food Res Int 2023; 170:112983. [PMID: 37316061 DOI: 10.1016/j.foodres.2023.112983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
Hawaijar, ethnic vegan fermented soybean food of Manipur, India is culturally and gastronomically important indigenously produced food. It is alkaline, sticky, mucilaginous and slightly pungent and bears similar properties with many fermented soybean foods of Southeast Asia like natto of Japan, douchi of China, thua nao of Thailand, choongkook jang of Korea. The functional microorganism is Bacillus and has numerous health benefits like fibrinolytic enzyme, antioxidant, antidiabetic, and ACE inhibitory activities. It is also very rich in nutrients but unscrupulous production method and sale lead to food safety issues. Huge potential pathogen population upto the level of 107-10 cfu/g Bacillus cereus and Proteus mirabilis were detected. Recent studies revealed presence of enterotoxic and urease gene in microorganisms originated from hawaijar. Improved and regulated food chain will result in hygienic and safe hawaijar. It has scope for functional food and nutraceutical global market and hold potential to provide employment to enhance the overall socioeconomic status of the region. Scientific production of fermented soybean over the traditional methods is summarized in this paper along with food safety and health benefits. Microbiological aspects on fermented soybean along with nutritive values are critically explained inside the paper.
Collapse
Affiliation(s)
| | | | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences, Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Harikesh B Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Gaurav Rajauria
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Tralee V92CX88, Ireland
| | | |
Collapse
|
15
|
An F, Wu J, Feng Y, Pan G, Ma Y, Jiang J, Yang X, Xue R, Wu R, Zhao M. A systematic review on the flavor of soy-based fermented foods: Core fermentation microbiome, multisensory flavor substances, key enzymes, and metabolic pathways. Compr Rev Food Sci Food Saf 2023; 22:2773-2801. [PMID: 37082778 DOI: 10.1111/1541-4337.13162] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
The characteristic flavor of fermented foods has an important impact on the purchasing decisions of consumers, and its production mechanisms are a concern for scientists worldwide. The perception of food flavor is a complex process involving olfaction, taste, vision, and oral touch, with various senses contributing to specific properties of the flavor. Soy-based fermented products are popular because of their unique flavors, especially in Asian countries, where they occupy an important place in the dietary structure. Microorganisms, known as the souls of fermented foods, can influence the sensory properties of soy-based fermented foods through various metabolic pathways, and are closely related to the formation of multisensory properties. Therefore, this review systematically summarizes the core microbiome and its interactions that play an active role in representative soy-based fermented foods, such as fermented soymilk, soy sauce, soybean paste, sufu, and douchi. The mechanism of action of the core microbial community on multisensory flavor quality is revealed here. Revealing the fermentation core microbiome and related enzymes provides important guidance for the development of flavor-enhancement strategies and related genetically engineered bacteria.
Collapse
Affiliation(s)
- Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Guoyang Pan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Ma
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jinhui Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xuemeng Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Ruixia Xue
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
16
|
Knez E, Kadac-Czapska K, Grembecka M. Fermented Vegetables and Legumes vs. Lifestyle Diseases: Microbiota and More. Life (Basel) 2023; 13:life13041044. [PMID: 37109573 PMCID: PMC10141223 DOI: 10.3390/life13041044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Silages may be preventive against lifestyle diseases, including obesity, diabetes mellitus, or metabolic syndrome. Fermented vegetables and legumes are characterized by pleiotropic health effects, such as probiotic or antioxidant potential. That is mainly due to the fermentation process. Despite the low viability of microorganisms in the gastrointestinal tract, their probiotic potential was confirmed. The modification of microbiota diversity caused by these food products has numerous implications. Most of them are connected to changes in the production of metabolites by bacteria, such as butyrate. Moreover, intake of fermented vegetables and legumes influences epigenetic changes, which lead to inhibition of lipogenesis and decreased appetite. Lifestyle diseases' feature is increased inflammation; thus, foods with high antioxidant potential are recommended. Silages are characterized by having a higher bioavailable antioxidants content than fresh samples. That is due to fermentative microorganisms that produce the enzyme β-glucosidase, which releases these compounds from conjugated bonds with antinutrients. However, fermented vegetables and legumes are rich in salt or salt substitutes, such as potassium chloride. However, until today, silages intake has not been connected to the prevalence of hypertension or kidney failure.
Collapse
Affiliation(s)
- Eliza Knez
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Aw. 107, 80-416 Gdansk, Poland
| | - Kornelia Kadac-Czapska
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Aw. 107, 80-416 Gdansk, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Aw. 107, 80-416 Gdansk, Poland
| |
Collapse
|
17
|
Hernalsteens S, Cong HH, Chen XD. Soymilk modification by immobilized bacteria in a soft elastic tubular reactor's wall. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
18
|
Han P, Ma A, Ning Y, Chen Z, Liu Y, Liu Z, Li S, Jia Y. Global gene-mining strategy for searching nonribosomal peptides as antimicrobial agents from microbial sources. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
19
|
Xu M, Qu Y, Li H, Tang S, Chen C, Wang Y, Wang H. Improved Extraction Yield, Water Solubility, and Antioxidant Activity of Lentinan from Lentinula edodes via Bacillus subtilis natto Fermentation. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Lentinan has important applications in the food and medicine fields. Fermenting Lentinula edodes with Bacillus subtilis natto increased the lentinan extraction yield by 87.13% and greatly altered the molecular structure and antioxidant activity of lentinan. The uronic acid content in the lentinan molecular structure increased from 2.08% to 4.33%. The fermentation process did not affect the monosaccharide composition of lentinan, comprised of more than 90% glucose residues. Fermentation significantly reduced the molecular weight of lentinan and altered its apparent structure. The water solubility of fermented lentinan was increased by 165.07%, and the antioxidant activity was significantly improved. Fermentation using soybean as a substrate may be beneficial for enhancing the activity of Bacillus subtilis natto and producing lentinan with different molecular weights.
Collapse
|
20
|
Ding S, Tian M, Yang L, Pan Y, Suo L, Zhu X, Ren D, Yu H. Diversity and dynamics of microbial population during fermentation of gray sufu and their correlation with quality characteristics. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
21
|
Succession and Diversity of Microbial Flora during the Fermentation of Douchi and Their Effects on the Formation of Characteristic Aroma. Foods 2023; 12:foods12020329. [PMID: 36673421 PMCID: PMC9857697 DOI: 10.3390/foods12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
This study aims to understand the development and succession of the microbial community during the production of traditional Aspergillus-type Douchi as well as their effects on the formation and variation of characteristic aroma compounds. High-throughput sequencing technology, solid-phase microextraction, gas chromatography-mass spectrometry, and Spearman correlation analysis were conducted to study the changes in the microbial community and characteristic flavor during the fermentation process. Aspergillus spp. was dominant in the early stage of fermentation, whereas Staphylococcus spp., Bacillus spp., and Millerozyma spp. became dominant later. At the early stage, the main flavor compounds were characteristic soy-derived alcohols and aldehydes, mainly 1-hexanol, 1-octen-3-ol, and nonanal. In the later stage, phenol, 2-methoxy-, and 3-octanone were formed. Correlation analysis showed that six bacterial genera and nine fungal genera were significantly correlated with the main volatile components, with higher correlation coefficients, occurring on fungi rather than bacteria. Alcohols and aldehydes were highly correlated with the relative abundance of bacteria, while that of yeast species such as Millerozyma spp., Kodamaea spp., and Candida spp. was positively correlated with decanal, 3-octanol, 2-methoxy-phenol, 4-ethyl-phenol, 3-octanone, and phenol. The novelty of this work lies in the molds that were dominant in the pre-fermentation stage, whereas the yeasts increased rapidly in the post-fermentation stage. This change was also an important reason for the formation of the special flavor of Douchi. Correlation analysis of fungi and flavor substances was more relevant than that of bacteria. As a foundation of our future focus, this work will potentially lead to improved quality of Douchi and shortening the production cycle by enriching the abundance of key microbes.
Collapse
|
22
|
Isolation of a Novel Anti-Diabetic α-Glucosidase Oligo-Peptide Inhibitor from Fermented Rice Bran. Foods 2023; 12:foods12010183. [PMID: 36613397 PMCID: PMC9818066 DOI: 10.3390/foods12010183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
At present, the incidence rate of diabetes is increasing gradually, and inhibiting α-glucosidase is one of the effective methods used to control blood sugar. This study identified new peptides from rice bran fermentation broth and evaluated their inhibitory activity and mechanism against α-glucosidase. Rice bran was fermented with Bacillus subtilis MK15 and the polypeptides of <3 kDa were isolated by ultrafiltration and chromatographic column, and were then subjected to LC-MS/MS mass spectrometry analysis. The results revealed that the oligopeptide GLLGY showed the greatest inhibitory activity in vitro. Docking studies with GLLGY on human α-glucosidase (PDB ID 5NN8) suggested a binding energy of −7.1 kcal/mol. GLLGY acts as a non-competitive inhibitor and forms five hydrogen bonds with Asp282, Ser523, Asp616, and His674 of α-glucosidase. Moreover, it retained its inhibitory activity even in a simulated digestion environment in vitro. The oligopeptide GLLGY could be developed into a potential anti-diabetic agent.
Collapse
|
23
|
Ibrahim AY, Tawfik A, El-Dissouky A, S Kassem T, Alhajeri NS, Pant D, Khalil TE. Sulphonated graphene catalyst incorporation with sludge enhanced the microbial activities for biomethanization of crude rice straw. BIORESOURCE TECHNOLOGY 2022; 361:127614. [PMID: 35840027 DOI: 10.1016/j.biortech.2022.127614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Biomethanization of crude rice straw (RS) was enhanced by a coupled effectiveness of sulphonated graphene (SGR) with sludge rich anaerobes (SRA). A reduction of 19.2 ± 1.32% for cellulose, 40.8 ± 3.7% for hemicellulose and 30.8 ± 2.4% for lignin was achieved with addition of SRA after fermentation of 60 days. The abundance of hydrolytic microbes in SRA i.e. Acidobacteria, Bacteroidetes, Chloroflexi and Proteobacteria caused RS structure liquefaction and dissolution. The reduction of cellulose, hemicellulose and lignin boosted to 92.3 ± 1.5, 84.9 ± 3.5 and 97.0 ± 1.8% respectively with SGR catalyst addition of 100 mg/gVS. Reducing sugars, phenols and volatile fatty acids (VFAs) were subsequently utilized by bacteria and archaea species of Methanosphaera, Methanocella, Candidatus Methanoregula, Methanolinea and Methanosaeta. The biogas yield was 92 ± 3.1 mL/gRS and methane content amounted to 68 ± 4.6% % at SGR catalyst of 80 mg/gVS. These findings show the potential of using SRA/SGR to improve the RS fermentation with a novel application for biogas productivity.
Collapse
Affiliation(s)
- Aya Y Ibrahim
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Dept., 12622, Dokki, Cairo, Egypt.
| | - A El-Dissouky
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Taher S Kassem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nawaf S Alhajeri
- Department of Environmental Technology Management, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Tarek E Khalil
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
24
|
Zhang Y, Wei R, Azi F, Jiao L, Wang H, He T, Liu X, Wang R, Lu B. Solid-state fermentation with Rhizopus oligosporus RT-3 enhanced the nutritional properties of soybeans. Front Nutr 2022; 9:972860. [PMID: 36159501 PMCID: PMC9493129 DOI: 10.3389/fnut.2022.972860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Fermented soybean products are favorite foods worldwide because of their nutritional value and health effects. In this study, solid-state fermentation (SSF) of soybeans with Rhizopus oligosporus RT-3 was performed to investigate its nutraceutical potential. A rich enzyme system was released during SSF. Proteins were effectively transformed into small peptides and amino acids. The small peptide content increased by 13.64 times after SSF for 60 h. The antioxidant activity of soybeans was enhanced due to the release of phenolic compounds. The soluble phenolic content increased from 2.55 to 9.28 gallic acid equivalent (GAE) mg/g after SSF for 60 h and exhibited high correlations with microbial enzyme activities during SSF. The potential metabolic pathways being triggered during SSF indicated that the improved nutritional composition of soybean attributed to the biochemical reactions catalyzed by microbial enzymes. These findings demonstrated that SSF could evidently improve the nutritional value and prebiotic potential of soybeans.
Collapse
Affiliation(s)
- Yongzhu Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ruicheng Wei
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fidelis Azi
- Chemical Engineering Laboratory, Synthetic Biology and Intelligent Control Unit, Guangdong Technion Isreal Institute of Technology, Shantou, China
| | - Linshu Jiao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Heye Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tao He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xianjin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Ran Wang,
| | - Baiyi Lu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Baiyi Lu,
| |
Collapse
|
25
|
Effects of Drying Methods on the Volatile Compounds of Alliummongolicum Regel. Foods 2022; 11:foods11142080. [PMID: 35885324 PMCID: PMC9317450 DOI: 10.3390/foods11142080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Allium mongolicum Regel (AMR) is a traditional Mongolian food. Various drying methods play an important role in foodstuff flavor. However, the effect of different drying methods on AMR is limited. In this study, freeze drying (FD), vacuum drying (VD), and hot-air drying (HAD) were applied to dry fresh AMR to a moisture content of 8% (wet basis); headspace gas chromatography mass spectrometry was adopted to identify volatile compounds in AMR; and principal component analysis and fingerprint similarity analysis based on the Euclidean distance was used to distinguish the fresh and three dried treatments. In total, 113 peaks were detected and 102 volatile compounds were identified. Drying causes significant changes to the amounts of volatile compounds in AMR, and the drying method plays a key role in determining which volatile compounds appear. Compared to FD, VD and HAD were more appropriate for drying AMR because the volatile compounds after VD and HAD were closer to those of fresh AMR. These findings can provide a scientific basis to help to preserve future seasonal functional food and aid in Mongolian medicine production.
Collapse
|
26
|
Influence of Bacillus Subtilis Fermentation on Content of Selected Macronutrients in Seeds and Beans. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2022. [DOI: 10.2478/aucft-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
In this study, five plant matrices (pea, mung bean, lentils, soy and sunflower) were fermented using Bacillus subtilis var. natto. Then the process influence on the content of fatty acids and proteins was evaluated, depending on the fermentation length. Fermentation was conducted for 144 hours in controlled conditions of temperature and relative humidity (37°C, 75%). Samples for tests were collected every 24 hours. Gas chromatography coupled with triple quadrupole tandem mass spectrometry (GC-MS/MS) was used to evaluate fatty acids content in fermented seeds. Their composition was expressed as a percentage of the total quantity of fatty acids. The protein content in plant matrices was analysed with the modified Bradford protein assay, using the TECAN apparatus with the i-Control software, of the wave length of ʎ=595 nm. Studies showed that the prolonged fermentation time influenced an increase of polyunsaturated fatty acids (PUFA) content in all studied seeds. Promising results were obtained for soy, sunflower, and lentil seeds, amounting to 3.6%; 68.7% and 67.7%, respectively. This proves that the process of seed fermentation can be effectively used to increase their nutritional value.
Collapse
|
27
|
Soft elastic tubular reactor: An unconventional bioreactor for high-solids operations. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|