1
|
Gang F, Xu M, Zhang S, Zhang C, He J, Xiao Y, Wang H, Liu Z, Sun X, Zhang J. Biodegradable active composite hydrogel packaging for postharvest climacteric bananas preservation. Food Chem 2024; 442:138494. [PMID: 38266413 DOI: 10.1016/j.foodchem.2024.138494] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Climacteric bananas are susceptible to endogenous ethylene and temperature, resulting in dehydration, accelerated senescence and deterioration. The widely-used plastic cling films is particularly complicated due to their high consumption and non-degradability. Herein, this study proposed to fabricate a carboxymethyl cellulose/polyvinyl alcohol/pyrazoic acid (CPP) hydrogel for postharvest banana preservation. The hydrogel demonstrated excellent potential as a packaging film, including natural degradability (complete degradation within 50 days), high tensile performance, transparent visibility and biosafety. As a validation experiment, bananas in a 30 °C environment confirmed the effectiveness of CPP hydrogels in banana postharvest preservation. Compared with the blank control and CP hydrogel, CPP packaging film delayed the processes of browning, dehydration, softening, nutrients loss, ripening and senescence in bananas, thereby maintaining their commercial value. Accordingly, this study demonstrates the potential of hydrogel materials as an alternative strategy to climacteric fruit preservation and plastic film.
Collapse
Affiliation(s)
- Fangli Gang
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China.
| | - Mengjie Xu
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China
| | - Shiyu Zhang
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China
| | - Chenyang Zhang
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China
| | - Junjie He
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China
| | - Yi Xiao
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China
| | - Huixiang Wang
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China
| | - Ziyu Liu
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Xiaodan Sun
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jiwen Zhang
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Pang L, Jiang Y, Chen L, Shao C, Li L, Wang X, Li X, Pan Y. Combination of Sodium Nitroprusside and Controlled Atmosphere Maintains Postharvest Quality of Chestnuts through Enhancement of Antioxidant Capacity. Foods 2024; 13:706. [PMID: 38472819 DOI: 10.3390/foods13050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The purpose of this study was to clarify the effect of CA (controlled atmosphere, 2-3% O2 + 3% CO2) and NO (nitric oxide, generated by 0.4 nM sodium nitroprusside), alone or combined (CA + NO), on the physio-chemical properties, enzyme activities and antioxidant capacities of chestnuts during storage at 0 °C for 180 d. Compared with control (CT), CA and CA+NO both improved the storage quality of the samples, but only CA resulted in more ethanol production. Moreover, these improvements were further enhanced and ethanol synthesis was inhibited by the addition of NO. A spectrometer was used to assess the production of phenolic content (TPC) and activities of phenylalanine ammonia-lyase (PAL), superoxide dismutas (SOD), peroxidase (POD), catalase (CAT) and polyphenol oxidase (PPO) as influenced by CA or CA+NO treatments. Higher TPC, PAL, SOD, POD, CAT, and lower PPO were observed in CA alone, and more so in the combination with NO group. The increased antioxidant production and enhanced antioxidant activities contributed to scavenging reactive oxygen species (ROS) and reducing malondialdehyde (MDA). This study unveiled the correlations and differences between the effects of CA and CA+NO on storage quality, providing valuable insights into postharvest preservation and suggesting that the combination (CA+NO) was more beneficial for quality maintenance in chestnuts.
Collapse
Affiliation(s)
- Linging Pang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Tianjin Gasin-DH Preservation Technologies Co., Ltd., Tianjin 300300, China
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lan Chen
- Shanxi Fruit Industry Cold Chain New Material Co., Ltd., Tongchuan 727100, China
| | - Chongxiao Shao
- Tianjin Gasin-DH Preservation Technologies Co., Ltd., Tianjin 300300, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanfang Pan
- Tianjin Gasin-DH Preservation Technologies Co., Ltd., Tianjin 300300, China
- Institute of Food Science and Technology, Chinese Academic of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Ding J, Liu C, Huang P, Li H, Liu Y, Sameen DE, Zhang Y, Liu Y, Qin W. Effects of konjac glucan-nan/low-acyl gellan edible coatings loaded thymol-β-cyclodextrin microcapsules on postharvest blueberry. Food Chem 2024; 430:137080. [PMID: 37549621 DOI: 10.1016/j.foodchem.2023.137080] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
This study developed an edible antimicrobial coating using a blend of konjac glucomannan (KGM) and low acyl gellan gum (LAG) hydrogel to incorporate thymol nanoparticles (TKL). The optimized TKL formulation (TKL60) comprised 0.22% thymol microcapsules (TMs), 0.075% total polysaccharide content (KGM:LAG = 1:2), and 99.63% distilled water. When applied to blueberries, TKL60 significantly extended their shelf life to 42 d at 2 ± 0.5 °C, tripling that of control fruit. TKL60 reduced decay rate, weight loss, and respiration rate, delayed softening and senescence during cold storage. It preserved the outer epidermis by retaining cuticular waxes, curbing lipid oxidation, and sustaining defense-related enzyme activities. Flavor analysis revealed altered volatile compound concentrations in TKL60-treated berries, including decreased terpenes and benzaldehyde, and increased esters and aldehydes like 2-methylbutanol, 3-methylbutanol, and linalool. Discriminant Analysis highlighted TKL60's efficacy in delaying aroma deterioration by over 21 d. TKL60 exhibits potential as a substitute for synthetic coatings and chemical insecticides.
Collapse
Affiliation(s)
- Jie Ding
- College of Food Science, Sichuan Agricultural University, Ya'an, China; College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Chunyan Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China; College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Peng Huang
- College of Food Science, Sichuan Agricultural University, Ya'an, China; Department of Quality Management and Inspection and Detection, Yibin University, Yibin 644000, China
| | - Hongying Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yan Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yuwei Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China.
| |
Collapse
|
4
|
Adeyemi SB, Akere AM, Orege JI, Ejeromeghene O, Orege OB, Akolade JO. Polymeric nanoparticles for enhanced delivery and improved bioactivity of essential oils. Heliyon 2023; 9:e16543. [PMID: 37484246 PMCID: PMC10360594 DOI: 10.1016/j.heliyon.2023.e16543] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 07/25/2023] Open
Abstract
Essential oils are volatile constituents that give aromatic plants their characteristic odour. The application of these plant actives in food, agriculture, pharmaceutics, and cosmetics has been widely studied. Aromatherapy, a complementary therapy involving the use of essential oils to treat several diseases ranging from microbial infections to metabolic dysfunctions, has been utilised for centuries. Anticancer, antimicrobial, and anti-inflammatory activities are well-established among other pharmacological properties of these aromatic oils. The oils, which are composed mainly of terpene-based compounds, have also been explored as nutraceuticals, alternative green preservatives, and functional additives in foods. However, due to their physicochemical properties, viz high volatility and low aqueous solubility, essential oil delivery to target receptors were challenging when administered as chemotherapeutics. Hence, formulating essential oils with suitable excipients to enhance their delivery and bioavailability, invariably improving their bioactivity and therapeutic efficacy becomes expedient. Nanotechnology presents a unique strategy to develop a particulate delivery system for the controlled, sustained, and extended release of essential oils. In this review, we examine and summarize the trends and developments in the formulation of essential oils using polymeric nanoparticles.
Collapse
Affiliation(s)
| | - Aishat Mojisola Akere
- Public Library of Science (PLOS), The Bradfield Centre, 184 Cambridge Science Park, Milton, Cambridge, CB4 0GA, United Kingdom
| | - Joshua Iseoluwa Orege
- Ekiti State University, Ado-Ekiti, PMB 5363, Ekiti State, Nigeria
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Onome Ejeromeghene
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189, PR China
| | | | - Jubril Olayinka Akolade
- Biotechnology Advanced Research Centre, Sheda Science and Technology Complex, Abuja, Nigeria
- Department of Biotechnology, Baze University, Abuja, Nigeria
| |
Collapse
|
5
|
Yu W, Wang Y, Liu Y, Wu Y, Ouyang J. Browning inhibition and shelf life of packaged air‐dried chestnut kernels. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Wenjie Yu
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Yi Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University (BTBU) Beijing China
| | - Yanwen Wu
- Institute of Analysis and Testing Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis) Beijing China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| |
Collapse
|
6
|
Wang Q, Xiang X, Xie Y, Wang K, Wang C, Nie X, Wang P. Maillard reaction between oligopeptides and reducing sugar at body temperature: The putative anti-glycation agents. Front Nutr 2022; 9:1062777. [DOI: 10.3389/fnut.2022.1062777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022] Open
Abstract
Type 2 Diabetes mellitus (T2DM) is one of the most common chronic multifactorial diseases, which is associated with the increased concentration of glucose in the blood. Therefore, the utilization of blood lowering agents is clearly a promising approach which can lead to a suppression of the evaluated blood glucose, and thus curing T2DM and other complication. In this study, we evaluated the glucose lowering effect of a varieties of amino acids (alanine and histidine), dipeptides (carnosine and α-alanine-L-histidine), and tripeptide (glutathione) by reacting with glucose, fructose, and sucrose under 37°C and pH 7.4 to mimic their reaction in physiological condition. By measuring the reduction of reactants and the formation of Maillard reaction products over the course of 21 days’ storage, we found that the glucose lowering effect of carnosine was better than the counterparts. The histidine residue in carnosine may contribute to its glucose lowing effect while β-amino acid β-alanine residue could facilitate the glucose lowering effect of carnosine by maintaining its chemical stability during the storage. These results may open up new avenues for the applications of bioactive peptide carnosine as a natural blood sugar lowering agent to control T2DM.
Collapse
|
7
|
Srisa A, Promhuad K, San H, Laorenza Y, Wongphan P, Wadaugsorn K, Sodsai J, Kaewpetch T, Tansin K, Harnkarnsujarit N. Antibacterial, Antifungal and Antiviral Polymeric Food Packaging in Post-COVID-19 Era. Polymers (Basel) 2022; 14:4042. [PMID: 36235988 PMCID: PMC9573034 DOI: 10.3390/polym14194042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/22/2022] Open
Abstract
Consumers are now more concerned about food safety and hygiene following the COVID-19 pandemic. Antimicrobial packaging has attracted increased interest by reducing contamination of food surfaces to deliver quality and safe food while maintaining shelf life. Active packaging materials to reduce contamination or inhibit viral activity in packaged foods and on packaging surfaces are mostly prepared using solvent casting, but very few materials demonstrate antiviral activity on foods of animal origin, which are important in the human diet. Incorporation of silver nanoparticles, essential oils and natural plant extracts as antimicrobial agents in/on polymeric matrices provides improved antifungal, antibacterial and antiviral properties. This paper reviews recent developments in antifungal, antibacterial and antiviral packaging incorporating natural or synthetic compounds using preparation methods including extrusion, solvent casting and surface modification treatment for surface coating and their applications in several foods (i.e., bakery products, fruits and vegetables, meat and meat products, fish and seafood and milk and dairy foods). Findings showed that antimicrobial material as films, coated films, coating and pouches exhibited efficient antimicrobial activity in vitro but lower activity in real food systems. Antimicrobial activity depends on (i) polar or non-polar food components, (ii) interactions between antimicrobial compounds and the polymer materials and (iii) interactions between environmental conditions and active films (i.e., relative humidity, oxygen and water vapor permeability and temperature) that impact the migration or diffusion of active compounds in foods. Knowledge gained from the plethora of existing studies on antimicrobial polymers can be effectively utilized to develop multifunctional antimicrobial materials that can protect food products and packaging surfaces from SARS-CoV-2 contamination.
Collapse
Affiliation(s)
- Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Horman San
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Kiattichai Wadaugsorn
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Janenutch Sodsai
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Thitiporn Kaewpetch
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Kittichai Tansin
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
8
|
Wang Y, Liu C, Fang Z, Wu Q, Xu Y, Gong B, Jiang X, Lai J, Fan J. A Review of the Stress Resistance, Molecular Breeding, Health Benefits, Potential Food Products, and Ecological Value of Castanea mollissima. PLANTS (BASEL, SWITZERLAND) 2022; 11:2111. [PMID: 36015414 PMCID: PMC9416426 DOI: 10.3390/plants11162111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Chestnut (Castanea spp., Fagaceae family) is an economically and ecologically valuable species. The main goals of chestnut production vary among species and countries and depend on the ecological characteristics of orchards, agronomic management, and the architecture of chestnut trees. Here, we review recent research on chestnut trees, including the effects of fungal diseases (Cryphonectria parasitica and Phytophthora cinnamomi) and insect pests (Dryocosmus kuriphilus Yasumatsu), molecular markers for breeding, ecological effects, endophytic fungi, and extracts with human health benefits. We also review research on chestnut in the food science field, technological improvements, the soil and fertilizer used for chestnut production, and the postharvest biology of chestnut. We noted differences in the factors affecting chestnut production among regions, including China, the Americas, and Europe, especially in the causal agents of disease and pests. For example, there is a major difference in the resistance of chestnut to C. parasitica in Asian, European, and American countries. Our review provides new insights into the integrated disease and pest management of chestnut trees in China. We hope that this review will foster collaboration among regions and help to clarify differences in the direction of breeding efforts among countries.
Collapse
Affiliation(s)
- Yanpeng Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Cuiyu Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhou Fang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Qiang Wu
- Qingyuan Bureau of Natural Resources and Planning, Lishui 323800, China
| | - Yang Xu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Bangchu Gong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xibing Jiang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Junsheng Lai
- Qingyuan Bureau of Natural Resources and Planning, Lishui 323800, China
| | - Jingen Fan
- Lanxi City Nursery of Zhejiang Provence, Lanxi 321100, China
| |
Collapse
|
9
|
Rofeal M, Abdelmalek F, Steinbüchel A. Naturally-Sourced Antibacterial Polymeric Nanomaterials with Special Reference to Modified Polymer Variants. Int J Mol Sci 2022; 23:4101. [PMID: 35456918 PMCID: PMC9030380 DOI: 10.3390/ijms23084101] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advancements in treating bacterial infections, antibiotic resistance (AR) is still an emerging issue. However, polymeric nanocarriers have offered unconventional solutions owing to their capability of exposing more functional groups, high encapsulation efficiency (EE) and having sustained delivery. Natural polymeric nanomaterials (NMs) are contemplated one of the most powerful strategies in drug delivery (DD) in terms of their safety, biodegradability with almost no side effects. Every nanostructure is tailored to enhance the system functionality. For example, cost-effective copper NPs could be generated in situ in cellulose sheets, demonstrating powerful antibacterial prospects for food safety sector. Dendrimers also have the capacity for peptide encapsulation, protecting them from proteolytic digestion for prolonged half life span. On the other hand, the demerits of naturally sourced polymers still stand against their capacities in DD. Hence, Post-synthetic modification of natural polymers could play a provital role in yielding new hybrids while retaining their biodegradability, which could be suitable for building novel super structures for DD platforms. This is the first review presenting the contribution of natural polymers in the fabrication of eight polymeric NMs including particulate nanodelivery and nanofabrics with antibacterial and antibiofilm prospects, referring to modified polymer derivatives to explore their full potential for obtaining sustainable DD products.
Collapse
Affiliation(s)
- Marian Rofeal
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90–924 Lodz, Poland;
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21521, Egypt
| | - Fady Abdelmalek
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90–924 Lodz, Poland;
| | - Alexander Steinbüchel
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90–924 Lodz, Poland;
| |
Collapse
|
10
|
Recent Advancements of Polysaccharides to Enhance Quality and Delay Ripening of Fresh Produce: A Review. Polymers (Basel) 2022; 14:polym14071341. [PMID: 35406215 PMCID: PMC9003407 DOI: 10.3390/polym14071341] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
The freshness of fruits and vegetables plays a significant role in consumers' decision to purchase a product at the supermarket. Fresh-cut products are the latest trend in fulfilling society's restless needs, and the food industry is faced with the challenge of maintaining the quality of fresh produce. The food industry is concerned with the natural maturation and degradation of fruits and vegetables, primarily due to enzymatic reactions. It has been demonstrated that polysaccharide coatings effectively preserve the freshness of these products, extending their shelf life depending on the preservation method used. This review informs readers about the different types of polysaccharides and their novel applications as natural food preservatives in the past five years (2018-2022). The key findings summarized the properties of the antimicrobial agent, the molecular mechanism of action, coating methods, and formulation for the preservation approach. Additionally, we discuss the scientific factors influencing polysaccharide processing and preservation efficacy, allowing it to be used in post-harvest management.
Collapse
|