1
|
Ren Y, Wang G, Su Y, Li J, Zhang H, Ma G, Han J. Effect of CeO 2, TiO 2 and SiO 2 nanoparticles on the growth and quality of model medicinal plant Salvia miltiorrhiza by acting on soil microenvironment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116552. [PMID: 38850694 DOI: 10.1016/j.ecoenv.2024.116552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
In this study, a six-month pot experiment was conducted to explore the effects of nanoparticles (NPs), including CeO2, TiO2 and SiO2 NPs at 200 and 800 mg/kg, on the growth and quality of model medicinal plant Salvia miltiorrhiza. A control group was implemented without the application of NPs. Results showed that NPs had no significant effect on root biomass. Treatment with 200 mg/kg of SiO2 NPs significantly increased the total tanshinone content by 44.07 %, while 200 mg/kg of CeO2 NPs were conducive to a 22.34 % increase in salvianolic acid B content. Exposure to CeO2 NPs induced a substantial rise in the MDA content in leaves (176.25 % and 329.15 % under low and high concentration exposure, respectively), resulting in pronounced oxidative stress. However, TiO2 and SiO2 NPs did not evoke a robust response from the antioxidant system. Besides, high doses of CeO2 NP-amended soil led to reduced nitrogen, phosphorus and potassium contents. Furthermore, the NP amendment disturbed the carbon and nitrogen metabolism in the plant rhizosphere and reshaped the rhizosphere microbial community structure. The application of CeO2 and TiO2 NPs promoted the accumulation of metabolites with antioxidant functions, such as D-altrose, trehalose, arachidonic acid and ergosterol. NPs displayed a notable suppressive effect on pathogenic fungi (Fusarium and Gibberella) in the rhizosphere, while enriching beneficial taxa with disease resistance, heavy metal antagonism and plant growth promotion ability (Lysobacter, Streptomycetaceae, Bacillaceae and Hannaella). Correlation analysis indicated the involvement of rhizosphere microorganisms in plant adaptation to NP amendments. NPs regulate plant growth and quality by altering soil properties, rhizosphere microbial community structure, and influencing plant and rhizosphere microbe metabolism. These findings were beneficial to deepening the understanding of the mechanism by which NPs affect medicinal plants.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jinfeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guoxu Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
2
|
Liu W, Zhang L, Karrar E, Wu D, Chen C, Zhang Z, Li J. A cooperative combination of non-targeted metabolomics and electronic tongue evaluation reveals the dynamic changes in metabolites and sensory quality of radish during pickling. Food Chem 2024; 446:138886. [PMID: 38422641 DOI: 10.1016/j.foodchem.2024.138886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Pickled radish is a traditional fermented food with a unique flavor after long-term preservation. This study analyzed the organoleptic and chemical characteristics of pickled radish from different years to investigate quality changes during pickling. The results showed that the sourness, saltiness, and aftertaste-bitterness increased after pickling, and bitterness and astringency decreased. The levels of free amino acids, soluble sugars, total phenols, and total flavonoids initially decreased during pickling but increased with prolonged pickling. The diversity of organic acids also increased over time. Through non-targeted metabolomics analysis, 349 differential metabolites causing metabolic changes were identified to affect the quality formation of pickled radish mainly through amino acid metabolism, phenylpropane biosynthesis and lipid metabolism. Correlation analysis showed that L*, soluble sugars, lactic acid, and acetic acid were strongly associated with taste quality. These findings provide a theoretical basis for standardizing and scaling up traditional pickled radish production.
Collapse
Affiliation(s)
- Wenliang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Lingyu Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Emad Karrar
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Daren Wu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Chaoxiang Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Zhengxiao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Jian Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China.
| |
Collapse
|
3
|
Li R, Wang T, Bo N, Wang Q, Chen Q, Liang Z, Guan Y, Jiang B, Ma Y, Zhao M. The carbohydrate metabolism and expression of carbohydrate-active enzyme genes in Aspergillus luchuensis fermentation of tea leaves. Front Microbiol 2024; 15:1408645. [PMID: 38894966 PMCID: PMC11183108 DOI: 10.3389/fmicb.2024.1408645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Carbohydrates, which make up 20 to 25% of tea beverages, are responsible for their flavor and bioactivity. Carbohydrates of pu-erh tea change during microbial fermentation and require further research. In this study, we examined the carbohydrate metabolism and expression of carbohydrate-active enzyme genes during the fermentation of tea leaves with Aspergillus luchuensis. Methods Widely targeted metabolomics analysis, high-performance anion-exchange chromatography measurements, and transcriptomics were used in this study. Results After fermentation, the levels of soluble sugar, hemicellulose, lignin, eight monosaccharides, and seven sugar alcohols increased. Meanwhile, the relative contents of polysaccharides, D-sorbitol, D-glucose, and cellulose decreased. High expression of 40 genes encoding 16 carbohydrate enzymes was observed during fermentation (FPKM>10). These genes encode L-iditol 2-dehydrogenase, pectinesterase, polygalacturonase, α-amylase, glucoamylase, endoglucanase, β-glucosidase, β-galactosidase, α-galactosidase, α-glucosidase, and glucose-6-phosphate isomerase, among others. Discussion These enzymes are known to break down polysaccharides and cell wall cellulose, increasing the content of monosaccharides and soluble sugars.
Collapse
Affiliation(s)
- Ruoyu Li
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Teng Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Nianguo Bo
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qi Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiuyue Chen
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhengwei Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yanhui Guan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bin Jiang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan Ma
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ming Zhao
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Lei X, Na B, Zhou T, Qian Y, Xie Y, Zheng Y, Cheng Q, Li P, Chen C, Sun H. Effects of Dried Tea Residues of Different Processing Techniques on the Nutritional Parameters, Fermentation Quality, and Bacterial Structure of Silaged Alfalfa. Microorganisms 2024; 12:889. [PMID: 38792719 PMCID: PMC11123680 DOI: 10.3390/microorganisms12050889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
The effects of dried tea residues on the nutritional parameters and fermentation quality, microbial community, and in vitro digestibility of alfalfa silage were investigated. In this study, dried tea residues generated from five different processing techniques (green tea, G; black tea, B; white tea, W; Pu'er raw tea, Z; Pu'er ripe tea, D) were added at two addition levels (5% and 10% fresh weight (FW)) to alfalfa and fermented for 90 days. The results showed that the tea residues increased the crude protein (CP) content (Z10: 23.85%), true protein nitrogen (TPN) content, DPPH, and ABST radical scavenging capacity, total antioxidant capacity (T-AOC), and in vitro dry matter digestibility (IVDMD) of the alfalfa silage. Moreover, the pH, ammonia-N (NH3-N) content, and acetic acid (AA) content decreased (p < 0.05). The effects of tea residues were promoted on these indicators with increasing tea residue addition. In addition, this study revealed that the influence of dried tea residues on the nutritional quality of alfalfa silage was greater than that on fermentation quality. Based on the nutrient composition, the addition of B or G to alfalfa silage can improve its silage quality, and these tea byproducts have the potential to be used as silage additives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hong Sun
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.L.); (B.N.); (T.Z.); (Y.Q.); (Y.X.); (Y.Z.); (Q.C.); (P.L.); (C.C.)
| |
Collapse
|
5
|
Chen JQ, Miao W, Liu Y, Zhou J, Han J, Zhang L, Bian XQ, Zhong T, Wu JL, Li N. Structural characterization, molecular dynamic simulation, and conformational visualization of a water-soluble glucan with high molecular weight from Gastrodia elata Blume. Int J Biol Macromol 2024; 263:130207. [PMID: 38365156 DOI: 10.1016/j.ijbiomac.2024.130207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Polysaccharides have been widely used in the development of natural drugs and health food. However, polysaccharide characterization lags due to inherently complicated features and the limitations of existing detection approaches. We aimed to provide new insight into the fine structure and conformational visualization of polysaccharides from Gastrodia elata Blume, a medicinal and edible plant. A water-soluble polysaccharide (GEP2-6) with the high molecular weight of 2.7 × 106 Da was first obtained, and its purity reached 99.2 %. Chemical and spectroscopic analyses jointly revealed that GEP2-6 was a glucan linked by α-(1 → 4) and α-(1 → 6) glycosidic bonds. After enzymolysis, the local structure of GEP2-6 included α-1,4-Glcp, α-1,6-Glcp, α-1,4,6-Glcp, and α-1-Glcp at a molar ratio of 31.27∶1.32∶1.08∶0.93. The glycosidic linkage pattern of repeating units was further simulated by a glycan database and spatial examination software. The good dissolution performance was interpreted by dynamics simulation and practical molecular characteristics. Spherical flexible chains and the porous stable conformation were corroborated using atomic force microscopy. In addition, GEP2-6 could effectively scavenge DPPH and hydroxyl radicals as a promising natural antioxidant. These efforts will contribute to the expansion of clinical applications of this G. elata polysaccharide and the structural elucidation for macromolecular polysaccharides combined with traditional and modern analysis techniques.
Collapse
Affiliation(s)
- Jia-Qian Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Wen Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Ying Liu
- School of Basic Medicinal Sciences and Nursing, Chengdu University, Chengdu 610106, PR China
| | - Jie Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Jie Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Li Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Xi-Qing Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao.
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao.
| |
Collapse
|
6
|
Wang B, Duan Y, Wang C, Liu C, Wang J, Jia J, Wu Q. Combined volatile compounds and non-targeted metabolomics analysis reveals variation in flavour characteristics, metabolic profiles and bioactivity of mulberry leaves after Monascus purpureus fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3294-3305. [PMID: 38087418 DOI: 10.1002/jsfa.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Mulberry leaves (MLs) are widely used in food because of their nutritional and functional characteristics. However, plant cell walls and natural bitterness influence nutrient release and the flavor properties of MLs. Liquid-state fermentation using Monascus purpureus (LFMP) is a common processing method used to improve food properties. The present study used headspace solid-phase micro extraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and non-targeted metabolomics to examine changes in volatile and non-volatile metabolites in MLs. The transformation mechanism of LFMP was investigated by microscopic observation and dynamic analysis of enzyme activity, and changes in the biological activity of MLs were analyzed. RESULTS LFMP significantly increased total phenolics, total flavonoids, free amino acids and soluble sugars in MLs, at the same time as decreasing phytic acid levels. In total, 92 volatile organic compounds (VOCs) were identified and quantified. VOCs such as (2R,3R)-(-)-2,3-butanediol, terpineol and eugenol showed some improvement in the flavour characteristics of MLs. By using non-targeted metabolomics, 124 unique metabolites in total were examined. LFMP altered the metabolic profile of MLs, mainly in plant secondary metabolism, lipid metabolism and amino acid metabolism. Microscopic observation and dynamic analysis of enzyme activity indicated that LFMP promoted cell wall degradation and biotransformation of MLs. In addition, LFMP significantly increased the angiotensin I-converting enzyme and α-glucosidase inhibitory activity of MLs. CONCLUSION LFMP altered the flavour characteristics, metabolite profile and biological activity of MLs. These findings will provide ideas for the processing of MLs into functional foods. In addition, they also provide useful information for biochemical studies of fermented MLs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Biao Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yichen Duan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Chengmo Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Chun Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Junqiang Jia
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qiongying Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
7
|
Feng X, Deng H, Huang L, Teng J, Wei B, Xia N, Pang B. Degradation of Cell Wall Polysaccharides during Traditional and Tank Fermentation of Chinese Liupao Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4195-4206. [PMID: 38354398 DOI: 10.1021/acs.jafc.3c07447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The increase of polysaccharides in the dark tea pile process is thought to be connected to the cell wall polysaccharides' breakdown. However, the relationship between tea polysaccharides (TPSs) and tea cell wall polysaccharides has not been further explored. In this study, the structural changes in the cell wall polysaccharides [e.g., cellulose, hemicellulose (HC), and pectin] in Liupao tea were characterized before and after traditional fermentation and tank fermentation. Additionally, the degradation mechanism of tea cell wall polysaccharides during fermentation was assessed. The results showed that cellulose crystallinity decreased by 11.9-49.6% after fermentation. The molar ratio of monosaccharides, such as arabinose, rhamnose, and glucose in HC, was significantly reduced, and the molecular weight decreased. The esterification degree and linearity of water-soluble pectin (WSP) were reduced. TPS content increases during pile fermentation, which may be due to HC degradation and the increase in WSP caused by cell wall structure damage. Microorganisms were shown to be closely associated with the degradation of cell wall polysaccharides during fermentation according to correlation analyses. Traditional fermentation had a greater effect on the cellulose structure, while tank fermentation had a more noticeable impact on HC and WSP.
Collapse
Affiliation(s)
- Xiang Feng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Haichao Deng
- Baihui Pharmaceutical Group Co, Ltd, Nanning, Guangxi 530003, China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Jianwen Teng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Baoyao Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Ning Xia
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Bowen Pang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
8
|
He S, Deng X, Han Y, Gong Z, Wang J, Tao X, Tong H, Chen Y. Metabolites and metagenomic analysis reveals the quality of Pu-erh "tea head". Food Chem 2023; 429:136992. [PMID: 37516054 DOI: 10.1016/j.foodchem.2023.136992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Tea head, a derivative product of Pu-erh tea, are tight tea lumps formed during pile-fermentation. The aim of this study was to reveal the differences of quality-related metabolites and microbial communities between ripened Pu-erh tea (PE-21) and tea heads (CT-21). Compared with PE-21, CT-21 showed a more mellow and smooth taste with slight bitterness and astringency, and can withstand multiple infusions. Metabolites analysis indicated CT-21 had more abundant water-soluble substances (47.39%) and showed significant differences with PE-21 in the main compositions of amino acids, catechins and saccharides which contributed to the viscosity of tea liquor, mellow taste and the tight tea lumps formation. Microbial communities and COG annotation analysis revealed CT-21 had lower abundance of Bacteria (84.05%), and higher abundance of Eukaryota (15.10%), carbohydrate transport and metabolism (8.28%) and glycoside hydrolases (37.36%) compared with PE-21. The different microbial communities may cause metabolites changes, forming distinct flavor of Pu-erh.
Collapse
Affiliation(s)
- Shiqiang He
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Xinyi Deng
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxin Han
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Zhengli Gong
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Jian Wang
- Ice Island Mountain Tea Company, Mengku Town, Shuangjiang Autonomous County, Yunnan Province, China
| | - Xiaoqi Tao
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Huarong Tong
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yingjuan Chen
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Yu S, Hu W, Ma L, Luo Y, Zeng X, Tian S. Elucidation of the effects of autochthonous starter on nitrogen-containing compounds during fermentation of Yujiangsuan by metabolomics. Food Sci Nutr 2023; 11:7546-7554. [PMID: 38107150 PMCID: PMC10724583 DOI: 10.1002/fsn3.3674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/30/2023] [Accepted: 08/22/2023] [Indexed: 12/19/2023] Open
Abstract
To understand the role of microorganisms in nitrogen (N)-containing compound changes during the processing of Yujiangsuan by autochthonous starter cultures, the GC-TOF-MS-based metabolomics method was adopted to investigate the effects of Weissella cibaria and Lactobacillus plantarum. The results demonstrated that inoculation of autochthonous strains led to differential metabolites, such as fatty acids, organic oxygen compounds, and carboxylic acids on day 4 to day 12 of fermentation. The N-containing compounds under the inoculated fermentation group showed a faster relative concentration change. Nucleotide metabolism and arginine and proline metabolism exerted an influence on the formation of N-containing compounds. Apart from that, the effect of W. cibaria and L. plantarum on the hydrolysis of macromolecules was the main factor causing differences in major N-containing compounds.
Collapse
Affiliation(s)
- Shirui Yu
- Department of Food Science and EngineeringMoutai InstituteRenhuaiChina
| | - Wenkang Hu
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
| | - Lina Ma
- Department of Food Science and EngineeringMoutai InstituteRenhuaiChina
| | - Yin Luo
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
| | - Xuefeng Zeng
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
| | - Shanjun Tian
- College of AgricultureGuizhou UniversityGuiyangChina
| |
Collapse
|
10
|
Sun Y, Yuan X, Luo Z, Cao Y, Liu S, Liu Y. Metabolomic and transcriptomic analyses reveal comparisons against liquid-state fermentation of primary dark tea, green tea and white tea by Aspergillus cristatus. Food Res Int 2023; 172:113115. [PMID: 37689883 DOI: 10.1016/j.foodres.2023.113115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Liquid-state fermentation (LSF) of tea leaves is a promising way to obtain tea-based nutraceutical products rich in various bioactive compounds. In the study, the changes of bioactive compounds, tea pigments and complex metabolites from LSF of primary dark tea, green tea and white tea infusions with Aspergillus cristatus were determined. Chemical analyses revealed that soluble sugars, monosaccharide composition, total polyphenols, total flavonoids, free amino acids, soluble proteins and tea pigments were changed in different ways. An untargeted metabolomic analysis and ribonucleic acid sequencing (RNA-seq) based transcriptomic analysis were performed to investigate the metabolic differentiation and clarify the key differentially expressed genes (DEGs, fold change >2 and p < 0.05), showing that amino acid metabolism, carbohydrate metabolism and lipid metabolism were the most enriched pathways during A. cristatus fermentation of primary dark tea, green tea and white tea infusions. In addition, glycerophospholipid metabolism, linoleic acid metabolism and phenylalanine metabolism were greatly accumulated in the fermentation of primary dark tea and white tea infusions; Pyruvate metabolism, glycolysis/gluconeogenesis, fatty acid degradation, tyrosine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis and valine and leucine, isoleucine degradation were greatly accumulated in the fermentation of primary dark tea and green tea infusions; Starch and sucrose metabolism was greatly accumulated in the fermentation of green tea and white tea infusions; Galactose metabolism was significantly enhanced in the fermentation of primary dark tea infusion; Amino sugar and nucleotide sugar metabolism, sphingolipid metabolism and alanine, aspartate and glutamate metabolism were significantly enhanced in the fermentation of green tea infusion. Besides, some other pathways involving aminobenzoate degradation, biosynthesis of cofactors, pyrimidine metabolism, benzoxazinoid biosynthesis and phenazine biosynthesis, tropane, piperidine and pyridine alkaloid biosynthesis and flavone and flavonol biosynthesis also differed from each other. These findings support that A. cristatus plays a vital role in the biochemical and genetic regulation of metabolite profile, and could be considered a potential prospect for better use of A. cristatus on different kinds of tea materials.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, PR China.
| | - Xushuang Yuan
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Zhaojun Luo
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yungang Cao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Shuai Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, PR China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, PR China.
| |
Collapse
|
11
|
Li HY, Huang SY, Zhou DD, Xiong RG, Luo M, Saimaiti A, Han MK, Gan RY, Zhu HL, Li HB. Theabrownin inhibits obesity and non-alcoholic fatty liver disease in mice via serotonin-related signaling pathways and gut-liver axis. J Adv Res 2023; 52:59-72. [PMID: 36639024 PMCID: PMC10555776 DOI: 10.1016/j.jare.2023.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/30/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) with obesity seriously threats public health. Our previous studies showed that dark tea had more potential on regulating lipid metabolism than other teas, and theabrownin (TB) was considered to be a main contributor to the bioactivity of dark tea. OBJECTIVES This in vivo study aims to reveal the effects and molecular mechanisms of TB on NAFLD and obesity, and the role of the gut-liver axis is explored. METHODS The histopathological examinations, biochemical tests, and nuclear magnetic resonance were applied to evaluate the effects of TB on NAFLD and obesity. The untargeted metabolomics was used to find the key molecule for further exploration of molecular mechanisms. The 16S rRNA gene sequencing was used to assess the changes in gut microbiota. The antibiotic cocktail and fecal microbiota transplant were used to clarify the role of gut microbiota. RESULTS TB markedly reduced body weight gain (67.01%), body fat rate (62.81%), and hepatic TG level (51.35%) in the preventive experiment. Especially, TB decreased body weight (32.16%), body fat rate (42.56%), and hepatic TG level (42.86%) in the therapeutic experiment. The mechanisms of action could be the improvement of fatty acid oxidation, lipolysis, and oxidative stress via the regulation of serotonin-related signaling pathways. Also, TB increased the abundance of serotonin-related gut microbiota, such as Akkermansia, Bacteroides and Parabacteroides. Antibiotics-induced gut bacterial dysbiosis disrupted the regulation of TB on serotonin-related signaling pathways in liver, whereas the beneficial regulation of TB on target proteins was regained with the restoration of gut microbiota. CONCLUSION We find that TB has markedly preventive and therapeutic effects on NAFLD and obesity by regulating serotonin level and related signaling pathways through gut microbiota. Furthermore, gut microbiota and TB co-contribute to alleviating NAFLD and obesity. TB could be a promising medicine for NAFLD and obesity.
Collapse
Affiliation(s)
- Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Mu-Ke Han
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu 610213, China.
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
12
|
Wang G, Xie L, Huang Z, Xie J. Recent advances in polysaccharide biomodification by microbial fermentation: production, properties, bioactivities, and mechanisms. Crit Rev Food Sci Nutr 2023:1-25. [PMID: 37740706 DOI: 10.1080/10408398.2023.2259461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Polysaccharides are natural chemical compounds that are extensively employed in the food and pharmaceutical industries. They exhibit a wide range of physical and biological properties. These properties are commonly improved by using chemical and physical methods. However, with the advancement of biotechnology and increased demand for green, clean, and safe products, polysaccharide modification via microbial fermentation has gained importance in improving their physicochemical and biological activities. The physicochemical and structural characteristics, biological activity, and modification mechanisms of microbially fermented polysaccharides were reviewed and summarized in this study. Polysaccharide modifications were categorized and discussed in terms of strains and fermentation techniques. The effects of microbial fermentation on the physicochemical characteristics of polysaccharides were highlighted. The impact of modification of polysaccharides on their antioxidant, immune, hypoglycemic, and other activities, as well as probiotic digestive enhancement, were also discussed. Finally, we investigated a potential enzyme-based process for polysaccharide modification via microbial fermentation. Modification of polysaccharides via microbial fermentation has significant value and application potential.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Feng L, Gao S, Liu P, Wang S, Zheng L, Wang X, Teng J, Ye F, Gui A, Xue J, Zheng P. Microbial Diversity and Characteristic Quality Formation of Qingzhuan Tea as Revealed by Metagenomic and Metabolomic Analysis during Pile Fermentation. Foods 2023; 12:3537. [PMID: 37835190 PMCID: PMC10572444 DOI: 10.3390/foods12193537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
In order to analyze the changes in the microbial community structure during the pile fermentation of Qingzhuan tea and their correlation with the formation of quality compounds in Qingzhuan tea, this study carried out metagenomic and metabolomic analyses of tea samples during the fermentation process of Qingzhuan tea. The changes in the expression and abundance of microorganisms during the pile fermentation were investigated through metagenomic assays. During the processing of Qingzhuan tea, there is a transition from a bacterial dominated ecosystem to an ecosystem enriched with fungi. The correlation analyses of metagenomics and metabolomics showed that amino acids and polyphenol metabolites with relatively simple structures exhibited a significant negative correlation with target microorganisms, while the structurally complicated B-ring dihydroxy puerin, B-ring trihydroxy galloyl puerlin, and other compounds showed a significant positive correlation with target microorganisms. Aspergillus niger, Aspergillus glaucus, Penicillium in the Aspergillaceae family, and Talaromyces and Rasamsonia emersonii in Trichocomaceae were the key microorganisms involved in the formation of the characteristic qualities of Qingzhuan tea.
Collapse
Affiliation(s)
- Lin Feng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Shiwei Gao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Panpan Liu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Shengpeng Wang
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Lin Zheng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Xueping Wang
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Jing Teng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Fei Ye
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Anhui Gui
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Jinjin Xue
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Pengcheng Zheng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| |
Collapse
|
14
|
Wen L, Sun L, Chen R, Li Q, Lai X, Cao J, Lai Z, Zhang Z, Li Q, Song G, Sun S, Cao F. Metabolome and Microbiome Analysis to Study the Flavor of Summer Black Tea Improved by Stuck Fermentation. Foods 2023; 12:3414. [PMID: 37761123 PMCID: PMC10527649 DOI: 10.3390/foods12183414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Tea is the most popular and widely consumed beverage worldwide, especially black tea. Summer tea has a bitter and astringent taste and low aroma compared to spring tea due to the higher content of polyphenols and lower content of amino acids. Microbial fermentation is routinely used to improve the flavor of various foods. This study analyzed the relationship between the quality of black tea, metabolic characteristics, and microbial communities after microbial stuck fermentation in summer black tea. Stuck fermentation decreased the bitterness, astringency sourness, and freshness, and increased the sweetness, mellowness, and smoothness of summer black tea. The aroma also changed from sweet and floral to fungal, with a significant improvement in overall quality. Metabolomics analysis revealed significant changes in 551 non-volatile and 345 volatile metabolites after fermentation. The contents of compounds with bitter and astringent taste were decreased. Sweet flavor saccharides and aromatic lipids, and acetophenone and isophorone that impart fungal aroma showed a marked increase. These changes are the result of microbial activities, especially the secretion of extracellular enzymes. Aspergillus, Pullululanibacillus, and Bacillus contribute to the reduction of bitterness and astringency in summer black teas after stuck fermentation, and Paenibacillus and Basidiomycota_gen_Incertae_sedis contribute positively to sweetness. In addition, Aspergillus was associated with the formation of fungal aroma. In summary, our research will provide a suitable method for the improvement of tea quality and utilization of summer tea, as well as provide a reference for innovation and improvement in the food industry.
Collapse
Affiliation(s)
- Lianghua Wen
- College of Horticulture, South China Agricultural University, Guangzhou 510000, China;
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China;
| | - Guang Song
- Guangzhou Yitang Biotechnology Co., Ltd., Guangzhou 510277, China;
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Fanrong Cao
- College of Horticulture, South China Agricultural University, Guangzhou 510000, China;
| |
Collapse
|
15
|
Wang A, Liu Y, Zeng S, Liu Y, Li W, Wu D, Wu X, Zou L, Chen H. Dietary Plant Polysaccharides for Cancer Prevention: Role of Immune Cells and Gut Microbiota, Challenges and Perspectives. Nutrients 2023; 15:3019. [PMID: 37447345 DOI: 10.3390/nu15133019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Dietary plant polysaccharides, one of the main sources of natural polysaccharides, possess significant cancer prevention activity and potential development value in the food and medicine fields. The anti-tumor mechanisms of plant polysaccharides are mainly elaborated from three perspectives: enhancing immunoregulation, inhibiting tumor cell growth and inhibiting tumor cell invasion and metastasis. The immune system plays a key role in cancer progression, and immunomodulation is considered a significant pathway for cancer prevention or treatment. Although much progress has been made in revealing the relationship between the cancer prevention activity of polysaccharides and immunoregulation, huge challenges are still met in the research and development of polysaccharides. Results suggest that certain polysaccharide types and glycosidic linkage forms significantly affect the biological activity of polysaccharides in immunoregulation. At present, the in vitro anti-tumor effects and immunoregulation of dietary polysaccharides are widely reported in articles; however, the anti-tumor effects and in vivo immunoregulation of dietary polysaccharides are still deserving of further investigation. In this paper, aspects of the mechanisms behind dietary polysaccharides' cancer prevention activity achieved through immunoregulation, the role of immune cells in cancer progression, the role of the mediatory relationship between the gut microbiota and dietary polysaccharides in immunoregulation and cancer prevention are systematically summarized, with the aim of encouraging future research on the use of dietary polysaccharides for cancer prevention.
Collapse
Affiliation(s)
- Anqi Wang
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Ying Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Shan Zeng
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Yuanyuan Liu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Wei Li
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Huijuan Chen
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China
| |
Collapse
|
16
|
Wang H, Teng J, Huang L, Wei B, Xia N. Determination of the variations in the metabolic profile and sensory quality of Liupao tea during fermentation through UHPLC–HR–MS metabolomics. Food Chem 2023; 404:134773. [DOI: 10.1016/j.foodchem.2022.134773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022]
|
17
|
Miao W, Liu X, Li N, Bian X, Zhao Y, He J, Zhou T, Wu JL. Polarity-extended composition profiling via LC-MS-based metabolomics approaches: a key to functional investigation of Citrus aurantium L. Food Chem 2022; 405:134988. [DOI: 10.1016/j.foodchem.2022.134988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
18
|
Miao W, Li N, Wu JL. Food polysaccharides utilization via in vitro fermentation: microbiota, structure, and function. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Xie J, Sun N, Huang H, Xie J, Chen Y, Hu X, Hu X, Dong R, Yu Q. Catabolism of polyphenols released from mung bean coat and its effects on gut microbiota during in vitro simulated digestion and colonic fermentation. Food Chem 2022; 396:133719. [PMID: 35868282 DOI: 10.1016/j.foodchem.2022.133719] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/17/2022] [Accepted: 07/13/2022] [Indexed: 01/10/2023]
Abstract
Mung bean coat is a good source of dietary polyphenols. In this study,in vitro simulated digestion and colonic fermentation were performed to investigate the release of polyphenols from mung bean coat and their bioactivities. Polyphenols released by colonic fermentation were much higher than those released by digestion and reached a peak at 12 h, resulting in higher antioxidant capacities (DPPH, ORAC, FRAP assays). About 49 polyphenols and metabolites including quercetin, vanillin, catechin and p-hydroxybenzoic acid were identified, and possible biotransformation pathways were postulated. Moreover, the relative abundance of beneficial bacteria (such as Lactococcus and Bacteroides) was improved during colonic fermentation. Altogether, gut microbiota could release polyphenols, the released polyphenols and their catabolic metabolites, alongside dietary fiber in mung bean coat selectively regulated the composition of gut microbiota and promoted the synthesis of SCFAs. These findings indicated that polyphenols in mung bean coat potentially contributed to gastrointestinal and colonic health.
Collapse
Affiliation(s)
- Jiayan Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Nan Sun
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Hairong Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaoyi Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Ruihong Dong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
20
|
Liu C, Hua H, Guo Y, Qian H, Liu J, Cheng Y. Study on the hepatoprotective effect of Sporidiobolus pararoseus polysaccharides under the “gut microbiome-amino acids metabolism” network. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|