1
|
Zhao C, Liu X, Tian H, Li Z. Integrated characterization of arabica coffee husk tea using flavoromics, targeted screening, and in silico approaches. Food Chem X 2024; 23:101556. [PMID: 39007118 PMCID: PMC11245994 DOI: 10.1016/j.fochx.2024.101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
This study aimed to identify the key volatile compounds in two types of processed arabica coffee husk tea, elucidate their olfactory characteristics, and investigate their antioxidant and anti-inflammatory activities. Sensory evaluation indicated differences between the two groups. A total of 64 and 99 compounds were identified in the C and FC groups, respectively, with 5 identified as key aroma compounds (ROAV≥1). Molecular simulations indicated that four common key aroma compounds were successfully docked with OR1A1 and OR5M3 receptors, forming stable complexes. Furthermore, 14 volatile compounds interacted with 140 targets associated with oxidation and inflammation, linking to 919 gene ontology (GO) terms and 135 kyoto encyclopedia of genes and genomes (KEGG) pathways. Molecular simulations revealed that these volatile components showed antioxidant and anti-inflammatory effects by interacting with core receptors through several forces, including van der Waals, Pi-alkyl, and Pi-cation interactions and hydrogen bonds.
Collapse
Affiliation(s)
- Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiuwei Liu
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| | - Hao Tian
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| | - Zelin Li
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Günaydın S, Çetin N, Sağlam C, Karaman K. Change of bioactive properties, spectral reflectance, and color characteristics of European cranberry (Viburnum opulus L.) juice as affected by foam mat drying technique. Sci Rep 2024; 14:22974. [PMID: 39363007 PMCID: PMC11449938 DOI: 10.1038/s41598-024-74541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024] Open
Abstract
The European cranberry bush, known for its health benefits, can only be consumed through fermentation. This study aimed to develop a fruit leather made from European cranberry bush using quince seed gel and the foam drying method. For this purpose, quince seed gel was added to European cranberry juice to increase consistency. Then, European cranberry fruit leather was obtained by drying at 70, 80, and 90 °C air temperatures using foam mat drying technology. Spectral reflectance, color, drying kinetics, anthocyanin, ascorbic acid, and total phenolic content, antiradical activity, and macro-micronutrient concentrations of the resulting fruit pulp were investigated. The foam mat drying process at 90 °C had the greatest values of ascorbic acid (0.996 mg g- 1), anthocyanin (275.9 mg kg- 1), DPPH (47.77%), and ABTS.+ (68.76 µg TE g- 1). In addition, the highest value of total phenolic content (37.75 mg g- 1) was obtained in the foam mat drying process at 80 °C. The highest concentration of P, Na, Mg, K, Ca, and Mn in fruit leather was obtained at 70 °C, and the highest concentration of S, Cu, and Zn was obtained at 90 °C. The lowest spectral reflectance values were measured at 90 °C. In conclusion, the present study explored the fact that adding quince seed gel, extremely rich in biochemical content, significantly enhanced the bioactivity properties of European cranberry bush fruit leather.
Collapse
Affiliation(s)
- Seda Günaydın
- Department of Biosystems Engineering, Faculty of Agriculture, Erciyes University, Kayseri, Türkiye.
| | - Necati Çetin
- Department of Agricultural Machinery and Technologies Engineering, Faculty of Agriculture, Ankara University, Ankara, Türkiye
| | - Cevdet Sağlam
- Department of Biosystems Engineering, Faculty of Agriculture, Erciyes University, Kayseri, Türkiye
| | - Kevser Karaman
- Department of Agricultural Biotechnology, Faculty of Agriculture, Erciyes University, Kayseri, Türkiye
- Genome Cell Center, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
3
|
Sun W, Feng S, Bi P, Han J, Li S, Liu X, Zhang Z, Long F, Guo J. Simultaneous inoculation of non-Saccharomyces yeast and lactic acid bacteria for aromatic kiwifruit wine production. Food Microbiol 2024; 123:104589. [PMID: 39038894 DOI: 10.1016/j.fm.2024.104589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
To further explore strain potential and develop an aromatic kiwifruit wine fermentation technique, the feasibility of simultaneous inoculation by non-Saccharomyces yeast and lactic acid bacteria was investigated. Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, and Limosilactobacillus fermentum, which have robust β-glucosidase activity as well as good acid and ethanol tolerance, were inoculated for simultaneous fermentation with Zygosaccharomyces rouxii and Meyerozyma guilliermondii, respectively. Subsequently, the chemical compositions and sensory characteristics of the wines were comprehensively evaluated. The results showed that the majority of the simultaneous protocols effectively improved the quality of kiwifruit wines, increasing the content of polyphenols and volatile compounds, thereby enhancing sensory acceptability compared to the fermentation protocols inoculated with non-Saccharomyces yeast individually. Particularly, the collaboration between Lacp. plantarum and Z. rouxii significantly increased the diversity and content of esters, alcohols, and ketones, intensifying floral and seeded fruit odors, and achieving the highest overall acceptability. This study highlights the potential significance of simultaneous inoculation in kiwifruit wine production.
Collapse
Affiliation(s)
- Wangsheng Sun
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Sinuo Feng
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Pengfei Bi
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Jia Han
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Shiqi Li
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Xu Liu
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Zhe Zhang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Jing Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Moyano L, Varo MÁ, Núñez L, López-Toledano A, Serratosa MP. Discovering the volatilome fingerprint of selected traditional Cuban wines elaborated with native grapes, tropical fruits, and rice using DHS-TD-GC-MS. J Food Sci 2024; 89:4926-4940. [PMID: 38980995 DOI: 10.1111/1750-3841.17235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
Cuban wine is a traditional alcoholic beverage elaborated with a wide variety of raw materials, such as native grapes, tropical fruits, and rice, and different winemaking processes. Research on Cuban wines is almost nonexistent, and therefore, a study of these wines is necessary to improve their quality. Dynamic headspace (DHS)-TD-gas chromatography-mass spectrometry (GC-MS) analysis was carried out to establish the different aroma fingerprints of different Cuban wines. A total of 42 volatile aroma metabolites (VAMs) were identified, including esters, alcohols, aldehydes, acids, volatile phenols, terpenes, and lactones. The odorant activity values (OAV) of each VAM were obtained, and the esters were the most relevant group due to their highest OAV. Ethyl octanoate, hexanoate, and butanoate stand out and are considered key odorants in the aromatic fingerprint. The VAMs were grouped into seven aromatic series. Fruity series showed the highest OAVs due to the contribution of ethyl esters and acetates. Principal component analysis was used to identify the specific parameters most accurately reflecting the differences between the wines. Showing that fruity, spicy, and chemical aromatic series allow distinguishing the wines into three aroma types. These results may provide useful information for the selection of raw materials and optimization of the traditional winemaking processes of Cuban wines. PRACTICAL APPLICATION: This research contributes to knowledge of the aroma and the oenological parameters of traditional and selected Cuban wines (rice wine, tropical fruit wine, and native grape varieties). The establishing of the aroma fingerprint of these wines provides useful information for the industrial development of a quality product that may then be promoted in other areas of the world.
Collapse
Affiliation(s)
- Lourdes Moyano
- Department of Agricultural Chemistry, Soil Science and Microbiology, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Cordoba, Cordoba, Spain
| | - M Ángeles Varo
- Department of Agricultural Chemistry, Soil Science and Microbiology, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Cordoba, Cordoba, Spain
| | - Lázaro Núñez
- Department of Agricultural Chemistry, Soil Science and Microbiology, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Cordoba, Cordoba, Spain
| | - Azahara López-Toledano
- Department of Agricultural Chemistry, Soil Science and Microbiology, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Cordoba, Cordoba, Spain
| | - María P Serratosa
- Department of Agricultural Chemistry, Soil Science and Microbiology, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Cordoba, Cordoba, Spain
| |
Collapse
|
5
|
Yıkmış S, Duman Altan A, Türkol M, Gezer GE, Ganimet Ş, Abdi G, Hussain S, Aadil RM. Effects on quality characteristics of ultrasound-treated gilaburu juice using RSM and ANFIS modeling with machine learning algorithm. ULTRASONICS SONOCHEMISTRY 2024; 107:106922. [PMID: 38805887 PMCID: PMC11150969 DOI: 10.1016/j.ultsonch.2024.106922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Gilaburu (Viburnum opulus L.) is a red-colored fruit with a sour taste that grows in Anatolia. It is rich in various antioxidant and bioactive compounds. In this study, bioactive compounds and ultrasound parameters of ultrasound-treated gilaburu water were optimized by response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS). As a result of RSM optimization, the independent ultrasound parameters were determined as an ultrasound duration of 10.7 min and an ultrasound amplitude of 53.3, respectively. The R2 values of the RSM modeling level were 99.93%, 98.54%, and 99.80%, respectively, and the R2 values of the ANFIS modeling level were 99.99%, 98.89%, and 99.87%, respectively. Some quality parameters of gilaburu juice were compared between ultrasound-treated gilaburu juice (UT-GJ), thermal pasteurized gilaburu juice (TP-GJ), and control group (C-GJ). The quality parameters include bioactive compounds, phenolic compounds, minerals, and sensory evaluation. Bioactive compounds in the samples increased after ultrasound application compared to C-GJ and TP-GJ samples. The content of 15 different phenolic compounds was determined in Gilaburu juice samples, and the phenolic compound of UT-GJ samples increased compared to TP-GJ and C-GJ samples, except for gentisic acid. Ultrasound treatment applied to gilaburu juice enabled its bioactive compounds to hold more in the juice.
Collapse
Affiliation(s)
- Seydi Yıkmış
- Department of Food Technology, Tekirdag Namık Kemal University, 59830 Tekirdag, Turkiye.
| | - Aylin Duman Altan
- Department of Industrial Engineering, Tekirdag Namık Kemal University, 59860 Tekirdağ, Turkiye
| | - Melikenur Türkol
- Nutrition and Dietetics, Faculty of Health Sciences, Halic University, 34060, Istanbul, Turkiye
| | - Göktuğ Egemen Gezer
- Nutrition and Dietetics, Faculty of Health Sciences, Tekirdag Namık Kemal University, 59030, Tekirdag, Turkiye
| | - Şennur Ganimet
- Nutrition and Dietetics, Faculty of Health Sciences, Tekirdag Namık Kemal University, 59030, Tekirdag, Turkiye
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| | - Shahzad Hussain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
6
|
Yuan X, Wang T, Sun L, Qiao Z, Pan H, Zhong Y, Zhuang Y. Recent advances of fermented fruits: A review on strains, fermentation strategies, and functional activities. Food Chem X 2024; 22:101482. [PMID: 38817978 PMCID: PMC11137363 DOI: 10.1016/j.fochx.2024.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Fruits are recognized as healthy foods with abundant nutritional content. However, due to their high content of sugar and water, they are easily contaminated by microorganisms leading to spoilage. Probiotic fermentation is an effective method to prevent fruit spoilage. In addition, during fermentation, the probiotics can react with the nutrients in fruits to produce new derived compounds, giving the fruit specific flavor, enhanced color, active ingredients, and nutritional values. Noteworthy, the choice of fermentation strains and strategies has a significant impact on the quality of fermented fruits. Thus, this review provides comprehensive information on the fermentation strains (especially yeast, lactic acid bacteria, and acetic acid bacteria), fermentation strategies (natural or inoculation fermentation, mono- or mixed-strain inoculation fermentation, and liquid- or solid-state fermentation), and the effect of fermentation on the shelf life, flavor, color, functional components, and physiological activities of fruits. This review will provide a theoretical guidance for the production of fermented fruits.
Collapse
Affiliation(s)
- Xinyu Yuan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhu Qiao
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, Henan Province 463000, China
| | - Hongyu Pan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yujie Zhong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
7
|
Zhang X, Zheng Y, Zhou C, Cao J, Zhang Y, Wu Z, Pan D, Cai Z, Xia Q. Combining thermosonication microstress and pineapple peel extract addition to achieve quality and post-acidification control in yogurt fermentation. ULTRASONICS SONOCHEMISTRY 2024; 105:106857. [PMID: 38552299 PMCID: PMC10995858 DOI: 10.1016/j.ultsonch.2024.106857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
This work investigated the effects of the combined use of thermosonication-preconditioned lactic acid bacteria (LAB) with the addition of ultrasound-assisted pineapple peel extracts (UU group) on the post-acidification potential, physicochemical and functional qualities of yogurt products, aimed at achieving prolonged preservation and enhancing functional attributes. Accordingly, the physical-chemical features, adhesion properties, and sensory profiles, acidification kinetics, the contents of major organic acids, and antioxidant activities of the differentially processed yogurts during refrigeration were characterized. Following a 14-day chilled storage process, UU group exhibited acidity levels of 0.5-2 oT lower than the control group and a higher lactose content of 0.07 mg/ml as well as unmodified adhesion potential, indicating that the proposed combination method efficiently inhibited post-acidification and delayed lactose metabolism without leading to significant impairment of the probiotic properties. The results of physicochemical analysis showed no significant changes in viscosity, hardness, and color of yogurt. Furthermore, the total phenolic content of UU-treated samples was 98 μg/mL, 1.78 times higher than that of the control, corresponding with the significantly lower IC50 values of DPPH and ABTS radical scavenging activities of the UU group than those of the control group. Observations by fluorescence inverted microscopy demonstrated the obvious adhesion phenomenon with no significant difference found among differentially prepared yogurts. The results of targeted metabolomics indicated the proposed combination strategy significantly modified the microbial metabolism, leading to the delayed utilization of lactose and the inhibited conversion into glucose during post-fermentation, as well as the decreased lactic acid production and a notable shift towards the formation of relatively weak acids such as succinic acid and citric acid. This study confirmed the feasibility of thermosonication-preconditioned LAB inocula, in combination with the use of natural active components from fruit processing byproducts, to alleviate post-acidification in yogurt and to enhance its antioxidant activities as well as simultaneously maintaining sensory features.
Collapse
Affiliation(s)
- Xiaohui Zhang
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Changyu Zhou
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Yifeng Zhang
- Department of Food Safety and Health, School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| | - Zhen Wu
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Zhendong Cai
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| | - Qiang Xia
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
8
|
Saud S, Xiaojuan T, Fahad S. The consequences of fermentation metabolism on the qualitative qualities and biological activity of fermented fruit and vegetable juices. Food Chem X 2024; 21:101209. [PMID: 38384684 PMCID: PMC10878862 DOI: 10.1016/j.fochx.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Fermentation of fruit and vegetable juices with probiotics is a novel nutritional approach with potential health benefits. Lactic acid fermentation-based biotransformation results in changes in the profile and nature of bioactive compounds and improves the organoleptic properties, shelf life and bioavailability of vitamins and minerals in the fermented juices. This process has been shown to enrich the phenolic profile and bioactivity components of the juices, resulting in a new type of functional food with improved health benefits. Fruits and vegetables are the ideal substrate for microbial growth, and fruit and vegetable juice will produce rich nutrients and a variety of functional activities after fermentation, so that the high-quality utilization of fruits and vegetables is realized, and the future fermented fruit and vegetable juice products have a wide application market. This paper explores the typical fermentation methods for fruit and vegetable juices, investigates the bioactive components, functional activities, and the influence of fermentation on enhancing the quality of fruit and vegetable juices. The insights derived from this study carry significant implications for guiding the development of fermented fruit and vegetable juice industry.
Collapse
Affiliation(s)
- Shah Saud
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Tang Xiaojuan
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
9
|
Xu H, Feng L, Ba W, Miao Y, Wang X, Wang F. The effect of adding pomace on the bioactive composition and flavor volatiles in fermented orange juice with Lactobacillus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2130-2141. [PMID: 37922378 DOI: 10.1002/jsfa.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/05/2023]
Abstract
BACKGROUND The consumption of oranges generates huge amounts of pomaces, which are the potential raw materials to increase the nutritional value of the products. RESULTS In this study, the bioactive composition and flavor volatiles in Lactobacillus fermented orange juice with added pomaces were researched. Results showed that the orange juices blended with pomaces were favorable substrates for Lactobacillus growth and the colony counts reached above 9.0 log CFU mL-1 , total phenolics, total flavonoids, and the antioxidant activity in orange juices were increased significantly after adding pomaces. Some amino acids, such as threonine (P < 0.0001), isoleucine (P < 0.01), and glycine (P < 0.01) were markedly higher in fermented orange juices with pomaces. The flavonoid diversity was more abundant by adding pomace fermentation and most flavonoids showed higher levels in fermented juices with the pomace, Lactobacillus fermentum 252 may transform some flavonoids through deglycosylation and reduction reaction. Furthermore, orange pomace mainly improved the flavor volatiles by increasing terpenoids and alcohol, such as d-limonene and benzyl alcohol, and decreasing volatile acids. CONCLUSION This study presented a novelty in elevating the nutritional value of juice by the utilization of pomaces, its findings can provide a new way to mine the bioactive ingredient from Citrus by Lactobacillus, and can be used as a guide for the development of new Citrus processing technologies and functional foods. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haiyan Xu
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Lingxing Feng
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Wenjia Ba
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yuzhi Miao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xiaoyan Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Fang Wang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| |
Collapse
|
10
|
Tian M, Lin K, Yang L, Jiang B, Zhang B, Zhu X, Ren D, Yu H. Characterization of key aroma compounds in gray sufu fermented using Leuconostoc mesenteroides subsp. Mesenteroides F24 as a starter culture. Food Chem X 2023; 20:100881. [PMID: 37767060 PMCID: PMC10520528 DOI: 10.1016/j.fochx.2023.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Gray sufu is a traditional fermented bean product with strong flavor in China, but traditional fermentation methods often lead to its off-flavor. This study was performed to investigate the flavor quality characteristics of gray sufu fermented using L. mesenteroides F24. Results showed 220 volatile compounds in gray sufu, among which alcohols and esters were the main volatiles. Inoculation with L. mesenteroides F24 considerably affected the contents of flavor substances in gray sufu and substantially increased the main flavor compounds. In addition, 29 kinds of key volatile compounds were identified by analyzing the ROAVs. Four unique key flavor substances were found in gray sufu inoculated with L. mesenteroides F24. This study is the first report on the feasibility of L. mesenteroides F24 as a promising starter culture to improve the flavor quality of gray sufu. The results provide a theoretical basis for improving the processing and quality control of gray sufu.
Collapse
Affiliation(s)
- Meng Tian
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Soybean Research & Development Centre, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China
| | - Ke Lin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Soybean Research & Development Centre, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China
| | - Liu Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Bin Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Biying Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Xianming Zhu
- Changchun Zhu Laoliu Food Co., Ltd., Changchun, China
| | - Dayong Ren
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Soybean Research & Development Centre, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Soybean Research & Development Centre, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China
| |
Collapse
|
11
|
Zheng Z, Wei L, Zhu M, Qian Z, Liu J, Zhang L, Xu Y. Effect of lactic acid bacteria co-fermentation on antioxidant activity and metabolomic profiles of a juice made from wolfberry and longan. Food Res Int 2023; 174:113547. [PMID: 37986427 DOI: 10.1016/j.foodres.2023.113547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
Lactic acid bacteria (LAB) fermentation is frequently employed to improve the nutritional, functional, and sensory characteristics of foods. Our study explored the effects of co-fermentation with Lacticaseibacillus paracasei ZH8 and Lactococcus lactis subsp. lactis YM313 on the physicochemical properties, antioxidant activity, and metabolomic profiles of wolfberry-longan juice (WLJ). Fermentation was carried out at 35 °C for 15 h. The results suggest that WLJ is a favorable substrate for LAB growth, reaching a total viable count exceeding 8 log CFU/mL after fermentation. LAB fermentation increased acidity, reduced the sugar content, and significantly impacted the juice color. The total phenolic and flavonoid contents of the WLJ and the antioxidant capacities based on 2,2-diphenyl-1-picrylhydrazyl (DPPH), ABTS radical scavenging abilities and FRAP were significantly improved by LAB fermentation. Nontargeted metabolomics analysis suggested that the contents of small molecule substances in WLJ were considerably affected by LAB fermentation. A total of 374 differential metabolites were identified in the juice before and after fermentation, with 193 significantly upregulated metabolites and 181 siginificantly downregulated metabolites. The regulation of metabolites is important for improving the flavor and functions of juices, such as L-eucylproline, Isovitexin, Netivudine, 3-Phenyllactic acid, vanillin, and ethyl maltol, ect. This study provides a theoretical foundation for developing plant-based foods fermented with LAB.
Collapse
Affiliation(s)
- Zhenjie Zheng
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Linya Wei
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Manli Zhu
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Zhenning Qian
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Jiao Liu
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Lili Zhang
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Yunhe Xu
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
12
|
Yuan J, Zhang H, Zeng C, Song J, Mu Y, Kang S. Impact of Fermentation Conditions on Physicochemical Properties, Antioxidant Activity, and Sensory Properties of Apple-Tomato Pulp. Molecules 2023; 28:molecules28114363. [PMID: 37298839 DOI: 10.3390/molecules28114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The aim of the study was to optimize the conditions [inoculum size (4, 6, and 8%), fermentation temperature (31, 34, and 37 °C), and apple: tomato ratio (2:1, 1:1, and 1:2)] on the viable cell count and sensory evaluation in apple-tomato pulp by response surface methodology (RSM), and determine the physicochemical properties, antioxidant activity, and sensory properties during fermentation. The optimal treatment parameters obtained were an inoculum size of 6.5%, a temperature of 34.5 °C, and an apple: tomato ratio of 1:1. After fermentation, the viable cell count reached 9.02 lg(CFU/mL), and the sensory evaluation score was 32.50. During the fermentation period, the pH value, total sugar, and reducing sugar decreased by 16.67%, 17.15%, and 36.05%, respectively. However, the total titratable acid (TTA), viable cell count, total phenol content (TPC), and total flavone content (TFC) increased significantly by 13.64%, 9.04%, 21.28%, and 22.22%, respectively. The antioxidant activity [2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging ability, 2,2'-azino-di(2-ethyl-benzthiazoline-sulfonic acid-6) ammonium salt (ABTS) free-radical scavenging ability, and ferric-reducing antioxidant capacity power (FRAP)] also increased by 40.91%, 22.60%, and 3.65%, respectively, during fermentation. A total of 55 volatile flavour compounds were detected using HS-SPME-GC-MS among the uninoculated samples and fermented samples before and after fermentation. The results showed that fermentation increased the types and total amount of volatile components in apple-tomato pulp, and eight new alcohols and seven new esters were formed. Alcohols, esters, and acids were the main volatile components in apple-tomato pulp, accounting for 57.39%, 10.27%, and 7.40% of the total volatile substances, respectively.
Collapse
Affiliation(s)
- Jing Yuan
- Agricultural Product Storge and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Haiyan Zhang
- Agricultural Product Storge and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Chaozhen Zeng
- Agricultural Product Storge and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Juan Song
- Agricultural Product Storge and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Yuwen Mu
- Agricultural Product Storge and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Sanjiang Kang
- Agricultural Product Storge and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| |
Collapse
|
13
|
Cui L, Zhao X, Zhang D, Liu Y, Guo Y, Feng J, Huang W, Li Y. Isolation and Identification of Lactic Acid Bacteria and Their Effects on the Off-odor of Burdocks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7485-7494. [PMID: 37154417 DOI: 10.1021/acs.jafc.3c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Burdocks have diverse nutritional and pharmacological functions, but their unique odor is unwelcome. Here, the effect and mechanism of lactic acid bacteria fermentation on the off-odor of burdocks were investigated. The sensory evaluation showed that burdocks had earthy, musty, grassy, and pepper odors. 2-Isobutyl-3-methoxypyrazine (IBMP) and 2-secbutyl-3-methoxypyrazine (IPMP) mainly contributed to burdock's unique off-odor and were identified by gas chromatography-mass spectrometry combined with headspace-solid phase microextraction (HS-SPME-GC-MS) and relative odor activity value (ROAV) analysis. Weissella cibaria ZJ-5 from screened strains performed with the strongest ability to remove the off-odor and generate a fragrant odor, as determined by sensory evaluation. When incubated aerobically together with IBMP during fermentation, ZJ-5 degraded IBMP directly from 149.56 ± 0.72 to 71.55 ± 1.81 ng/mL. Additionally, linoleic acid content in fermented burdocks was significantly decreased compared with unfermented burdocks. (E,Z)-2,6-Nonadienal, which mainly contributed to fermented burdock's odor, may have been generated from linoleic acid during ZJ-5 fermentation, through the acid catalysis pathway. It indicated that LAB fermentation could improve burdock odor by degrading off-odor compounds and precursors and by generating new aldehydes.
Collapse
Affiliation(s)
- Li Cui
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
- Key Laboratory of Agro-Products Processing, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xuan Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Danni Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Jin Feng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Ying Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| |
Collapse
|
14
|
Wang D, Deng Y, Chen X, Wang K, Zhao L, Wang Z, Liu X, Hu Z. Elucidating the effects of Lactobacillus plantarum fermentation on the aroma profiles of pasteurized litchi juice using multi-scale molecular sensory science. Curr Res Food Sci 2023; 6:100481. [PMID: 37033736 PMCID: PMC10074505 DOI: 10.1016/j.crfs.2023.100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Three Lactobacillus Plantarum (LP), namely LP28, LP226 and LPC2W, were employed to investigate the effect on the aroma profiles of pasteurized litchi juice using E-nose, GC-IMS, GC-MS, and sensory evaluation. The E-nose results showed that pasteurization weakened the flavor profile of litchi juice, while LP fermentation effectively promoted flavor formation. The GC-MS analysis demonstrated that pasteurization significantly reduced the content of alcohols (28.51%), especially geraniol and citronellol, which give litchi juices a fruity and floral aroma. Different LP fermentation enhances the characteristic aroma and produces some new compounds that give it a strong fruity and citrus-like aroma. Moreover, 37 aroma-active compounds (OAV>1) indicated that the linalool (OAV 7504) was the highest, followed by (Z)-rose oxide (OAV 4265), 1-octen-3-ol (OAV 1055) and geraniol (OAV 764), which jointly form the main characteristic flavor. More esters were identified by GC-IMS, indicating the advantage of the combined approach for a better understanding of the impact of pasteurization and fermentation on the litchi juice. The sensory evaluation confirmed that the aroma attributes of fruity, citrus-like, floral, sweet and litchi-like were stronger for the samples fermented by LP28 than those for the other samples. The combination strategy used in this study would facilitate the awareness of litchi juice aroma and broaden our insight into the deep processing of litchi.
Collapse
|
15
|
Effects of lactic acid bacteria fermentation on chemical compounds, antioxidant capacities and hypoglycemic properties of pumpkin juice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Liao W, Shen J, Manickam S, Li S, Tao Y, Li D, Liu D, Han Y. Investigation of blueberry juice fermentation by mixed probiotic strains: regression modeling, machine learning optimization and comparison with fermentation by single strain in the phenolic and volatile profiles. Food Chem 2022; 405:134982. [DOI: 10.1016/j.foodchem.2022.134982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/23/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
17
|
Zhou X, Zhou W, He X, Deng Y, Li L, Li M, Feng X, Zhang L, Zhao L. Effects of post-fermentation on the flavor compounds formation in red sour soup. Front Nutr 2022; 9:1007164. [PMID: 36386903 PMCID: PMC9651139 DOI: 10.3389/fnut.2022.1007164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
Red Sour Soup (RSS) is a traditional fermented food in China. After two rounds of fermentation, sour soup has a mellow flavor. However, the microbial composition and flavor formation processes in post-fermentation in RSS are unclear. This study investigates the bacteria composition of RSS during the post-fermentation stage (0–180 days) using high-throughput sequencing. The results show that lactic acid bacteria (LAB) are dominant during the post-fermentation process, and their abundance gradually increases with fermentation time. Additionally, gas chromatography-mass spectrometry was used to detect volatile flavor compounds in the post-fermentation process. Seventy-seven volatile flavor compounds were identified, including 24 esters, 14 terpenes, 9 aromatic hydrocarbons, 9 alkanes, 6 heterocyclic compounds, 3 alcohols, 3 acids, 3 ketones, 2 phenols, 2 aldehydes, 1 amine, and 1 other. Esters and aromatic hydrocarbons are the main volatile compounds in RSS during the post-fermentation process. Orthogonal partial least squares screening and correlation analysis derived several significant correlations, including 48 pairs of positive correlations and 19 pairs of negative correlations. Among them, Acetobacter spp., Clostridium spp. and Sporolactobacillus spp. have 15, 14, 20 significant correlation pairs, respectively, and are considered the most important bacterial genera post-fermentation. Volatile substances become abundant with increasing fermentation time. LAB are excessive after more than 120 days but cause a drastic reduction in volatile ester levels. Thus, the post-fermentation time should be restricted to 120 days, which retains the highest concentrations of volatile esters in RSS. Overall, these findings provide a theoretical basis to determine an optimal post-fermentation time duration, and identify essential bacteria for manufacturing high-quality starter material to shorten the RSS post-fermentation processing time.
Collapse
Affiliation(s)
- Xiaojie Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Wenhua Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| | - Xiaojie He
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Yaxin Deng
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Liangyi Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| | - Ming Li
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Xuzhong Feng
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- Shenzhen Shanggutang Food Development Co., Ltd., Shenzhen, China
| | - Lin Zhang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
- *Correspondence: Lin Zhang,
| | - Liangzhong Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- Liangzhong Zhao,
| |
Collapse
|
18
|
Qiu L, Zhang M, Chang L. Effects of lactic acid bacteria fermentation on the phytochemicals content, taste and aroma of blended edible rose and shiitake beverage. Food Chem 2022; 405:134722. [DOI: 10.1016/j.foodchem.2022.134722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022]
|
19
|
Zhang X, Zheng Y, Kumar Awasthi M, Zhou C, Barba FJ, Cai Z, Liu L, Rene ER, Pan D, Cao J, Sindhu R, Xia Q. Strategic thermosonication-mediated modulation of lactic acid bacteria acidification kinetics for enhanced (post)-fermentation performance. BIORESOURCE TECHNOLOGY 2022; 361:127739. [PMID: 35940323 DOI: 10.1016/j.biortech.2022.127739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
This study explored the feasibility of thermosonication (TS)-prestressed inoculum with different fermentation patterns for regulating microbial (post)-fermentation acidification kinetics. Through a Box-Behnken design, stimulative (20 min, 400 W, 33 kHz, 25 °C) and inhibitive (10 min, 600 W, 33 kHz, 20 °C) effects on the acidification capability of Lactobacillus plantarum A3 were achieved without observing greatly activated/inactivated strains growth, further confirmed by lactose fermentation performed by Streptococcus thermophilus and Lactobacillus bulgaricus. Lactic acid was the major contributing factor responsible for TS-induced acidification modifications corresponding to the potential fluctuations of CoA biosynthesis, fatty acid degradation and chain elongation pathways to TS prestress. Microscopy observations and quantitative extracellular substance assays showed palpable stress disturbance on microbes, but causing insignificant effects on product characteristics. This investigation demonstrated the potential of controlled sonication prestress strategies to achieve dual engineering effects on microbial metabolic behavior, for alleviating post-acidification problem or enhancing process efficiencies.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi Province, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Zhendong Cai
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Lianliang Liu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau.
| |
Collapse
|
20
|
Effect of Six Lactic Acid Bacteria Strains on Physicochemical Characteristics, Antioxidant Activities and Sensory Properties of Fermented Orange Juices. Foods 2022; 11:foods11131920. [PMID: 35804736 PMCID: PMC9265423 DOI: 10.3390/foods11131920] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Six lactic acid bacteria strains were used to study the effects on physicochemical characteristics, antioxidant activities and sensory properties of fermented orange juices. All strains exhibited good growth in orange juice. Of these fermentations, some bioactive compositions (e.g., vitamin C, shikimic acid) and aroma-active compounds (e.g., linalool, 3-carene, ethyl 3-hydroxyhexanoate, etc.) significantly increased in Lactiplantibacillus plantarum and Lactobacillus acidophilus samples. DPPH free radical scavenging rates in L. plantarum and Lacticaseibacillus paracasei samples increased to 80.25% and 77.83%, respectively. Forty-three volatile profiles were identified, including 28 aroma-active compounds. 7 key factors significantly influencing sensory flavors of the juices were revealed, including D-limonene, linalool, ethyl butyrate, ethanol, β-caryophyllene, organic acids and SSC/TA ratio. The orange juice fermented by L. paracasei, with more optimization aroma-active compounds such as D-limonene, β-caryophyllene, terpinolene and β-myrcene, exhibited more desirable aroma flavors such as orange-like, green, woody and lilac incense, and gained the highest sensory score. Generally, L. paracasei fermentation presented better aroma flavors and overall acceptability, meanwhile enhancing antioxidant activities.
Collapse
|
21
|
Erdal B, Yıkmış S, Demirok NT, Bozgeyik E, Levent O. Effects of Non-Thermal Treatment on Gilaburu Vinegar ( Viburnum opulus L.): Polyphenols, Amino Acid, Antimicrobial, and Anticancer Properties. BIOLOGY 2022; 11:biology11060926. [PMID: 35741447 PMCID: PMC9220034 DOI: 10.3390/biology11060926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/31/2022]
Abstract
Simple Summary In this study, traditionally produced vinegar made from gilaburu (C-GV) and thermally pasteurized gilaburu vinegar (P-GV), and (ultrasound-treated gilaburu vinegar (UT-GV) were evaluated. At the same time, ultrasound treatment enriched 11 phenolic compounds (gallic acid, protocatechuic acid, hydroxybenzoic acid, vanillic acid, p-coumaric acid, rutin, ferulic acid, o-coumaric acid, neohesperidin, quercetin, trans-cinnamic). Ultrasound showed different effects on free amino acids and volatile profiles. In general, ultrasound showed more positive results than thermal pasteurization. Six important minerals (Ca, Fe, K, Mg, Mn, and Zn) were detected in gilaburu vinegar, and ultrasound treatment increased the Fe content. Gilaburu vinegar, prepared by different methods, had potential antibacterial and anti-cancer activity. Abstract Gilaburu (Viburnum opulus L.) is an important fruit that has been studied in recent years due to its phytochemicals and health benefits. In this study, traditionally produced vinegar made from gilaburu fruit (C-GV) was evaluated. Vinegar with higher levels of bioactive components optimized by response surface methodology (RSM) was also produced using ultrasound (UT-GV). The maximum optimization result for the bioactive components was achieved at 14 min and 61.2 amplitude. The effectiveness of thermal pasteurization (P-GV) on gilaburu vinegar was evaluated. An increase was detected for every organic acid with ultrasound treatment. In the UT-GV and C-GV samples, arabinose was present, which is useful for stimulating the immune system. Gilaburu vinegar samples contained 29–31 volatile compounds. The smallest amount of volatile compounds was found in P-GV (1280.9 µg/kg), and the largest amounts of volatile compounds were found in C-GV (1566.9 µg/kg) and UT-GV (1244.10 µg/kg). In the UT-GV sample, Fe was increased, but Ca, K, Mg, and Mn were decreased. A total of 15 polyphenols were detected in C-GV, P-GV, and UT-GV samples, and gallic acid was the most common. A total of 17 free amino acids were detected in gilaburu vinegar samples. Ultrasound provided enrichment in total phenolic compounds and total free amino acids. All three vinegar samples had good antimicrobial activity against pathogens. The efficacy of C-GV, P-GV, and UT-GV samples against colon and stomach cancer was determined, but there were no significant differences between them. As a result, ultrasound treatment is notable due to its antimicrobial and anticancer activity, especially for the enrichment of phenolic compounds and amino acids in gilaburu vinegar.
Collapse
Affiliation(s)
- Berna Erdal
- Department of Medical Microbiology, Tekirdag Namik Kemal University, Tekirdag 59830, Turkey;
| | - Seydi Yıkmış
- Department of Food Technology, Tekirdag Namık Kemal University, Tekirdag 59830, Turkey
- Correspondence:
| | - Nazan Tokatlı Demirok
- Department of Nutrition and Dietetics, Tekirdağ Namik Kemal University, Tekirdag 59030, Turkey;
| | - Esra Bozgeyik
- Vocational School of Health Services, Adiyaman University, Adiyaman 02040, Turkey;
| | - Okan Levent
- Department of Food Engineering, Faculty of Engineering, Inonu University, Malatya 44280, Turkey;
| |
Collapse
|