1
|
Qin L, Yang L, Shiraiwa M, Faiola F, Yang Y, Liu S, Liu G, Zheng M, Jiang G. Formation of persistent free radicals from epigallocatechin Gallate in tea processing and their implications on DNA damage and cell cytotoxicity. Food Chem 2024; 458:140241. [PMID: 38944926 DOI: 10.1016/j.foodchem.2024.140241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Tea is widely consumed in both beverages and food. Epigallocatechin gallate (EGCG) is the most crucial active ingredient in tea. Currently, knowledges on transformation processes of EGCG during tea processing are lacking. Understanding the chemical reactions of EGCG and its products during tea processing is important for assessing the safety of tea-containing food. Here, we revealed the formation of persistent free radicals (PFRs) from EGCG under the influence of heating and light irradiation, which was substantiated with evidence. These PFRs exhibited stability for >30 min in simulated gastric fluid. Furthermore, we observed potential effects of these PFRs on DNA damage and cell cytotoxicity in vitro. By combining electron paramagnetic resonance spectrometer with Fourier transform ion cyclotron resonance mass spectrometry, we elucidated the pathways involved in free radical formation. These findings are expected to contribute to a comprehensive understanding of free radical chemistry in tea-containing food.
Collapse
Affiliation(s)
- Linjun Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China.
| | - Manabu Shiraiwa
- Department of Chemistry, University of California - Irvine, Irvine, 92697, USA
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Yujue Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Shuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
2
|
Chen X, Yang D, Huang L, Li M, Gao J, Liu C, Bao X, Huang Z, Yang J, Huang H, Zhang D, Xu R. Comparison and identification of aroma components in 21 kinds of frankincense with variety and region based on the odor intensity characteristic spectrum constructed by HS-SPME-GC-MS combined with E-nose. Food Res Int 2024; 195:114942. [PMID: 39277220 DOI: 10.1016/j.foodres.2024.114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Frankincense is an important seasoning and spice known for its distinctive and intricate flavor profile. Considering the considerable variation in the aromatic quality of frankincense due to geographical origin, species diversity and cultivation conditions, frankincense from major global origins was characterized holistically for the first time. The electronic nose (E-nose) with headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and sensory evaluation were implemented to characterize the aroma components of 21 commercial varieties of frankincense from around the world. The results showed that a total of 149 volatile organic compounds (VOCs) of 10 categories were identified in frankincense, among which the numbers of alcohols, terpenes and esters compounds accounted for 22.15 %, 18.79 % and 15.44 % of the total VOCs of frankincense, respectively. The PLS-DA model effectively distinguished frankincense from Oman/Somalia and other origins. Furthermore, the study identified two differential VOCs with VIP > 1 in three Asian countries and five in six African countries. The total VOCs content and sensory characteristic score of "Lemon/Citrus" in Oman frankincense is significantly higher than other regions. The OAV results showed that 61 substances (e.g., Diacety, alpha-Pinene, Camphene, Myrcene) as key aroma compounds and OICS model indicated that p-Cymenol was found to contribute significantly to the citrus aroma in frankincense. This study identified the fundamental components of frankincense flavor and revealed different flavor descriptors of frankincense, which are crucial for reconstructing frankincense flavor and improving flavor quality.
Collapse
Affiliation(s)
- Xinming Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dandan Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Lin Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengqi Li
- Pharmacy Department, Sichuan Nursing Vocational College, Chengdu 610100, China
| | - Jihai Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Can Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoming Bao
- Shimadzu Enterprise Management (China) Co. Ltd, Chengdu 610023, China
| | | | - Jinhui Yang
- Sichuan Tianfu Aromatherapy Health Technology Research Institute Co., Ltd, Pengzhou 611930, China
| | - Haozhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Pengzhou 611900, China.
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Wang JQ, Gao Y, Feng ZH, Deng SH, Chen JX, Wang F, Li YF, Zhang YB, Yin JF, Zeng L, Zhou WB, Xu YQ. Chemometrics and sensomics-assisted identification of key odorants responsible for retort odor in shelf-stored green tea infusion: A case study of Biluochun. Food Res Int 2024; 195:114953. [PMID: 39277260 DOI: 10.1016/j.foodres.2024.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
The deterioration of aroma quality in tea beverages during the shelf life is a significant issue. In this study, sensomics techniques were employed to identify the characteristic factor contributing to aroma degradation in green tea infusion. Samples A (no/faint retort odor) and B (high intensity retort odor) were selected based on their retort-like odor intensity after heat treatment simulating shelf-life conditions. The key odorants were identified through a combination of chemometrics analysis, comparative aromatic extract dilution analysis (cAEDA), detection frequency analysis (DFA), and odor-specific magnitude estimation (OSME). Subsequently, eight odorants, including linalool (892.451 μg/L), (E)-β-damascenone (5.105 μg/L), phenylacetaldehyde (27.720 μg/L), nonanal (2201.439 μg/L), α-terpineol (7.166 μg/L), geraniol (0.499 μg/L), theaspirane (0.044 μg/L), and 2-hydroxy-5-methylacetophenone (2.973 μg/L), were identified as the key substances contributing to the retort-like odor in sample B. Aroma recombination and omission test further demonstrated that elevated concentrations of nonanal, geraniol, phenylacetaldehyde, and theaspirane might be the primary reasons for the retort odor observed in samples.
Collapse
Affiliation(s)
- Jie-Qiong Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China; College of Food Science, Southwest University, Chongqing 400715, China
| | - Ying Gao
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China.
| | - Zhi-Hui Feng
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Si-Han Deng
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Jian-Xin Chen
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Fang Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Yi-Fan Li
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Ying-Bin Zhang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Wei-Biao Zhou
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, 117542 Singapore, Singapore
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China.
| |
Collapse
|
4
|
Meng X, Wang F, Fu CH, Zeng L, Chen ZH, Du Q, Feng ZH, Yin JF, Xu YQ. Effect of osmanthus hydrolat on the aroma quality and volatile components of osmanthus black tea. Food Chem X 2024; 23:101564. [PMID: 39007119 PMCID: PMC11239476 DOI: 10.1016/j.fochx.2024.101564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Osmanthus fragrans is an evergreen shrub with a pleasant fragrance and a wide range of applications in many fields. The condensed hydrolat obtained during the drying process of its fresh flowers was collected in a low-temperature vacuum environment and its sensory evaluation and volatile components were studied. The main aroma compounds in Osmanthus fragrans were dihydro-β-ionone, nonanal, β-cyclocitral, β-ionone, benzaldehyde, α-ionone, and 6-methyl-5-hepten-2-one, whose contents were used as the main evaluation criteria, and the hydrolats obtained under different scenting and drying times were compared. This process can effectively collect the aroma components in Osmanthus fragrans and the optimal drying conditions were 50 °C for 5 h. The hydrolat was used to provide the scent of osmanthus black tea, which had a fresher and mellower taste, while the fragrance of osmanthus was abundant. These results show that osmanthus hydrolat can be used to provide the scent of floral black tea. Chemical compounds studied in this article (-)-Catechin (PubChem CID: 1203); (-)-epigallocatechin gallate (PubChem CID: 65064); (-)-epicatechin gallate (PubChem CID: 367141); (-)-epigallocatechin (PubChem CID: 72277); (-)-epicatechin (PubChem CID: 72276); (-)-gallocatechin gallate (PubChem CID: 199472); (-)-catechin gallate (PubChem CID: 6419835); (-)-gallocatechin (PubChem CID: 9882981).
Collapse
Affiliation(s)
- Xin Meng
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
- The College of Food and Health, Zhejiang A & F University, Hangzhou, 311300, China
| | - Fang Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Chao-Hong Fu
- Pan’an Ecological Agriculture Development Co., LTD, Jinhua, 322305, China
| | - Lin Zeng
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Zhen-Hua Chen
- Guangzhou Chali Group Co., LTD, Guangzhou, 510315, China
| | - Qizhen Du
- The College of Food and Health, Zhejiang A & F University, Hangzhou, 311300, China
| | - Zhi-Hui Feng
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| |
Collapse
|
5
|
Liang Y, Wang Z, Zhang L, Dai H, Wu W, Zheng Z, Lin F, Xu J, Huang Y, Sun W. Characterization of volatile compounds and identification of key aroma compounds in different aroma types of Rougui Wuyi rock tea. Food Chem 2024; 455:139931. [PMID: 38850976 DOI: 10.1016/j.foodchem.2024.139931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
In this study, we characterized the aroma profiles of different Rougui Wuyi rock tea (RGWRT) aroma types and identified the key aroma-active compounds producing these differences. The roasting process was found to have a considerable effect on the aroma profiles. Eleven aroma compounds, including linalool, β-ionone, geraniol, indole, and (E)-nerolidol, strongly affected the aroma profiles. An RGWRT aroma wheel was constructed. The rich RGWRT aroma was found to be dominated by floral, cinnamon-like, and roasty aromas. Human olfaction was correlated with volatile compounds to determine the aromatic characteristics of these compounds. Most key aroma-active compounds were found to have floral, sweet, and herbal aromas (as well as some other aroma descriptors). The differences in key compounds of different aroma types were found to result from the methylerythritol phosphate, mevalonic acid and shikimate metabolic pathways and the Maillard reaction. Linalool, geraniol, and (E,E)-2,4-heptadienal were found to spontaneously bind to olfactory receptors.
Collapse
Affiliation(s)
- Yilin Liang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingzhi Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haomin Dai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiwei Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqiang Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fuming Lin
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362406, China
| | - Jie Xu
- Wuyi Star Tea Industrial Company Limited, Wuyishan 354301, China
| | - Yan Huang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362406, China.
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Wang JQ, Tang BM, Gao Y, Chen JX, Wang F, Yin JF, Zeng L, Zhou WB, Xu YQ. Impact of heat treatment on the flavor stability of Longjing green tea beverages: Metabolomic insights and sensory correlations. Food Res Int 2024; 193:114867. [PMID: 39160050 DOI: 10.1016/j.foodres.2024.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024]
Abstract
The flavor stability of tea beverages during storage has long been a concern. The study aimed to explore the flavor stability of Longjing green tea beverage using accelerated heat treatment trials, addressing the shortage of lengthy storage trials. Sensory evaluations revealed changes in bitterness, umami, overall harmonization, astringency, and ripeness as treatment duration increased. Accompanied by a decrease in L-values, ΔE and an increase in a and b-values. Seventeen non-volatile metabolites and three volatile metabolites were identified differential among samples by metabolomics, with subsequent correlation analysis indicating associations between sensory attributes and specific metabolites. Umami was linked to epigallocatechin 3,5-digallate and alpha-D-glucopyranose, astringency was correlated with ellagic acid and 1-ethyl-1H-pyrrole. Ripeness showed associations with ellagic acid, 6,7-dihydroxycoumarin, heptanal, and benzaldehyde, and overall harmonization was linked to 6,7-dihydroxycoumarin, β-myrcene, α-terpineol, and heptanal. A series of verification tests confirmed the feasibility of accelerated heat treatment trials to replace traditional storage trials. These results offer valuable insights into unraveling the complex relationship between sensory and chemical profiles of green tea beverages.
Collapse
Affiliation(s)
- Jie-Qiong Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China; College of Food Science, Southwest University, Chongqing 400715, China
| | - Bang-Ming Tang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Ying Gao
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Jian-Xin Chen
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Fang Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Wei-Biao Zhou
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, 117542 Singapore, Singapore
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China.
| |
Collapse
|
7
|
Jiao H, Guan Q, Dong R, Ran K, Wang H, Dong X, Wei S. Metabolomics Analysis of Phenolic Composition and Content in Five Pear Cultivars Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:2513. [PMID: 39273997 PMCID: PMC11396794 DOI: 10.3390/plants13172513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
Phenolic compounds are the predominant chemical constituents in the secondary metabolites of plants and are commonly found in pears. In this study, we focused on the analysis of the phenolic composition and antioxidant activity of leaves from five pear cultivars (Cuiguan, Chaohong, Kuerle, Nanguoli, and Yali) and tea leaves (Fudingdabai as the control) using ultra-performance liquid chromatography coupled with electrospray ionization triple quadrupole mass spectrometry. The results indicated significant differences in the amount and composition of phenolic metabolites between tea and pear leaves, as well as among the five pear varieties. Only approximately one-third of the metabolites exhibited higher levels in pear leaves compared to that in tea leaves. The total phenol content in the Yali cultivar was higher than that in the other pear cultivars. Furthermore, specific phenolic metabolites with high expression were identified in the leaves of different groups. The levels of delphinidin 3-glucoside, aesculin, prunin, cosmosiin, quercetin 3-galactoside, isorhamnetin-3-O-glucoside, nicotiflorin, narcissin, chlorogenic acid, and cryptochlorogenic acid were relatively high among the five pear cultivars. (-)-Gallocatechin gallate, 6-methylcoumarin, aesculetin, hesperidin, kaempferol, and caftaric acid were identified as specific metabolic substances unique to each type of pear leaf. Most of the differential metabolites showed positive correlations and were primarily enriched in the flavonoid biosynthesis, flavone and flavonol biosynthesis, and phenylpropanoid biosynthesis pathways. DPPH (1,1-Diphenyl-2-picrylhydrazyl radical) analysis indicated that the Yali cultivar exhibited the highest antioxidant activity compared to other varieties. This systematic analysis of the differences in phenolic metabolite composition and antioxidant activity between pear and tea leaves provides a theoretical foundation for the development and utilization of pear leaf resources.
Collapse
Affiliation(s)
- Huijun Jiao
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Longtan Road No. 66, Taian 271000, China
| | - Qiuzhu Guan
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Longtan Road No. 66, Taian 271000, China
| | - Ran Dong
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Longtan Road No. 66, Taian 271000, China
| | - Kun Ran
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Longtan Road No. 66, Taian 271000, China
| | - Hongwei Wang
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Longtan Road No. 66, Taian 271000, China
| | - Xiaochang Dong
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Longtan Road No. 66, Taian 271000, China
| | - Shuwei Wei
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Longtan Road No. 66, Taian 271000, China
| |
Collapse
|
8
|
Wang Z, Liang Y, Wu W, Gao C, Xiao C, Zhou Z, Lin F, Sun W. The effect of different drying temperatures on flavonoid glycosides in white tea: A targeted metabolomics, molecular docking, and simulated reaction study. Food Res Int 2024; 190:114634. [PMID: 38945623 DOI: 10.1016/j.foodres.2024.114634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Drying is an important stage used to improve the quality of white tea (WT). However, the effect of the drying temperature on the key taste compounds in WT remains unclear. In this study, targeted metabolomics, molecular docking, and a simulated reaction were used to investigate the transformation mechanism of flavonoid glycosides (FGs) in WT during drying at 60, 80, and 100 °C and its impact on taste. There were 45 differential FGs in WT at three drying temperatures. Compared with the withering samples for 48 h, the total FGs contents at three drying temperatures showed a decreasing trend, with quercetin-3-O-galactoside and kaempferol-3-O-glucoside showing the most degradation. These results were confirmed via a simulated drying reaction of FGs standards. Drying at 80 and 100 °C contributed to the formation of flavonoid-C-glycosides, but only trace amounts of these compounds were observed. In addition, nine key taste FGs were selected using dose-over-threshold values. These FGs regulated the taste of WT, mainly by binding to taste receptors via hydrogen bond, hydrophobic and electrostatic interactions. Finally, the taste acceptability of WT dried at 60 °C was found to be the highest, as this method could properly reduce the contents of FGs, weaken the bitterness and astringency, and retain the sweet and umami taste. This study revealed for the first time the transformation mechanism of sensory-active FGs affected by drying temperature, which provides a novel perspective for the analysis of the formation mechanism of the unique flavor of WT and the optimization of this process.
Collapse
Affiliation(s)
- Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fuzhou 350002, China
| | - Yilin Liang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fuzhou 350002, China
| | - Weiwei Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fuzhou 350002, China
| | - Chenxi Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fuzhou 350002, China
| | - Chunyan Xiao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fuzhou 350002, China
| | - Zhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fuzhou 350002, China
| | - Fuming Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fuzhou 350002, China.
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fuzhou 350002, China.
| |
Collapse
|
9
|
Yu J, Li J, Lin Z, Zhu Y, Feng Z, Ni D, Zeng S, Zeng X, Wang Y, Ning J, Zhang L, Wan X, Zhai X. Dynamic changes and the effects of key procedures on the characteristic aroma compounds of Lu'an Guapian green tea during the manufacturing process. Food Res Int 2024; 188:114525. [PMID: 38823888 DOI: 10.1016/j.foodres.2024.114525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
As a kind of green tea with unique multiple baking processes, the flavor code of Lu'an Guapian (LAGP) has recently been revealed. To improve and stabilize the quality of LAGP, further insight into the dynamic changes in odorants during the whole processing is required. In this study, 50 odorants were identified in processing tea leaves, 14 of which were selected for absolute quantification to profile the effect of processes. The results showed that spreading is crucial for key aroma generation and accumulation, while these odorants undergo significant changes at the deep baking stage. By adjusting the conditions of the spreading and deep baking, it was found that low-temperature (4 °C) spreading for 6 h and low-temperature with long-time baking (final leaf temperature: 102 °C, 45 min) could improve the overall aroma quality. These results provide a new direction for enhancing the quality of LAGP green tea.
Collapse
Affiliation(s)
- Jieyao Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China; Collaborative Innovation Center for Agricultural and Forestry Characteristics Industry in Dabie Mountain Area, Hefei 230036, China
| | - Jingzhe Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhihui Feng
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Xuehong Zeng
- Huiliu Tea Industrial Co., Limited, Lu'an 237000, China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China; Collaborative Innovation Center for Agricultural and Forestry Characteristics Industry in Dabie Mountain Area, Hefei 230036, China.
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China; Collaborative Innovation Center for Agricultural and Forestry Characteristics Industry in Dabie Mountain Area, Hefei 230036, China.
| |
Collapse
|
10
|
Soetanto DA, Li F, Boateng ID, Yang XM. Thermal fixation technologies affect phenolic profile, ginkgolides, bilobalide, product quality, and ginkgolic acids in Ginkgo biloba leaf tea. J Food Sci 2024; 89:4093-4108. [PMID: 38783591 DOI: 10.1111/1750-3841.17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Ginkgo biloba leaves (GBLs) contain high phytoconstituents, but ginkgolic acids (GAs, the main toxic compound in GBLs) have limited its applications. Processing Ginkgo biloba dark tea (GBDT) using fixation technology could decrease the toxic compounds; retain flavonoids, ginkgolides, and bilobalide; and improve the product quality. For the first time, various thermal fixations (hot air fixation [HAF], iron pot fixation [IPF], and boiled water fixation [BWF]) followed by rolling, fermentation, and drying were applied to produce GBDT. A comprehensive analysis of the toxicants (GAs), main bioactive compounds (ginkgolides and bilobalide, flavonoids, antioxidants, and phenolic profiles), and product qualities (moisture content, reducing sugar [RS], free amino acids [FAAs], enzyme activity, color properties, antioxidant capacity, etc.) were evaluated. The results revealed that thermal fixations BWF and HAF significantly reduced the GA contents (41.1%-34.6%). Most terpene lactones showed significant differences in control, IPF, and HAF. The HAF had lower total flavonoid content (TFC) than BWF and IPF. The control group (unfixated) had the highest toxic components (GA), terpene trilactones, and TFC compared with various fixations. Adding different fixations to rolling, fermentation, and drying had various impacts on GBDT, and principal component analysis supported the results. Among four thermal fixations, HAF yielded the best results in RS, FAA, total phenolic content, and antioxidant activities, while IPF had the highest TFC. BWF had the lowest content for GA. In conclusion, HAF (6) was chosen as the best technique for producing GBDT since it preserved GBDT's bioactive components while lowering its toxic components.
Collapse
Affiliation(s)
| | - Fengnan Li
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Xiao-Ming Yang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Zhou H, Liu Y, Wu Q, Zhang X, Wang H, Lei P. The manufacturing process provides green teas with differentiated nonvolatile profiles and influences the deterioration of flavor during storage at room temperature. Food Chem X 2024; 22:101371. [PMID: 38633742 PMCID: PMC11021834 DOI: 10.1016/j.fochx.2024.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Hundreds of green tea products are available on the tea market and exhibit different characteristics. In the present study, seven types of green tea were processed, and their nonvolatile profiles were analyzed by liquid chromatography-mass spectrometry. Non-spreading green tea contained higher concentrations of catechins and flavonoid glycosides, but lower concentrations of amino acids, caffeine, and theaflavins. Non-rolling green teas with a straight appearance contained higher concentrations of flavonoid glycosides and theaflavins. In contrast, leaf-rolling green teas contained much lower concentrations of flavonoid glycosides and catechins. These seven green tea qualities all decreased following prolonged storage, concurrent with increasing concentrations of proanthocyanidins, catechins dimers, theaflavins, and organic acids. The leaf-rolling green teas exhibited reduced levels of deterioration during storage in terms of their nonvolatile profile and sensory quality. Findings show that moderate destruction on tea leaves during green tea processing is beneficial to both tea flavor and quality maintenance during storage.
Collapse
Affiliation(s)
- Hanchen Zhou
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| | - Yaqin Liu
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| | - Qiong Wu
- Technology Center of Hefei Customs, Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei 230022, China
| | - Xiaolei Zhang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| | - Hui Wang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| | - Pandeng Lei
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| |
Collapse
|
12
|
Li A, Qiu Z, Liao J, Chen J, Huang W, Yao J, Lin X, Huang Y, Sun B, Liu S, Zheng P. The Effects of Nitrogen Fertilizer on the Aroma of Fresh Tea Leaves from Camellia sinensis cv. Jin Xuan in Summer and Autumn. Foods 2024; 13:1776. [PMID: 38891004 PMCID: PMC11172281 DOI: 10.3390/foods13111776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Nitrogen fertilization level and harvesting season significantly impact tea aroma quality. In this study, we analyzed the volatile organic compounds of fresh Jin Xuan (JX) tea leaves under different nitrogen application levels (N0, N150, N300, N450) during summer and autumn. A total of 49 volatile components were identified by gas chromatography-mass spectrometry (GC-MS). Notably, (E)-2-hexenal, linalool, and geraniol were the main contributors to the aroma of fresh JX leaves. The no-nitrogen treatment (N0) presented the greatest quantity and variety of volatiles in both seasons. A greater difference in volatile compounds was observed between nitrogen treatments in summer vs. autumn. The N0 treatment had a greater total volatile concentration in summer, while the opposite was observed in the nitrogen application treatments (N150, N300, N450). Summer treatments appeared best suited to black tea production. The concentration of herbaceous aroma-type volatiles was higher in summer, while the concentration of floral volatiles was higher in autumn. Volatile concentrations were highest in the N0 and N450 treatments in autumn and appeared suitable for making black tea and oolong tea. Overall, this research provides valuable insights into how variations in N application rates across different harvesting seasons impact the aroma characteristics of tea leaves.
Collapse
Affiliation(s)
- Ansheng Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (A.L.); (Z.Q.); (J.C.); (W.H.); (J.Y.); (X.L.); (Y.H.); (B.S.); (S.L.)
| | - Zihao Qiu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (A.L.); (Z.Q.); (J.C.); (W.H.); (J.Y.); (X.L.); (Y.H.); (B.S.); (S.L.)
| | - Jinmei Liao
- Soiland Fertilizer Station of Cenxi City, Wuzhou 543200, China;
| | - Jiahao Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (A.L.); (Z.Q.); (J.C.); (W.H.); (J.Y.); (X.L.); (Y.H.); (B.S.); (S.L.)
| | - Wei Huang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (A.L.); (Z.Q.); (J.C.); (W.H.); (J.Y.); (X.L.); (Y.H.); (B.S.); (S.L.)
| | - Jiyuan Yao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (A.L.); (Z.Q.); (J.C.); (W.H.); (J.Y.); (X.L.); (Y.H.); (B.S.); (S.L.)
| | - Xinyuan Lin
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (A.L.); (Z.Q.); (J.C.); (W.H.); (J.Y.); (X.L.); (Y.H.); (B.S.); (S.L.)
| | - Yuwang Huang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (A.L.); (Z.Q.); (J.C.); (W.H.); (J.Y.); (X.L.); (Y.H.); (B.S.); (S.L.)
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (A.L.); (Z.Q.); (J.C.); (W.H.); (J.Y.); (X.L.); (Y.H.); (B.S.); (S.L.)
| | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (A.L.); (Z.Q.); (J.C.); (W.H.); (J.Y.); (X.L.); (Y.H.); (B.S.); (S.L.)
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (A.L.); (Z.Q.); (J.C.); (W.H.); (J.Y.); (X.L.); (Y.H.); (B.S.); (S.L.)
| |
Collapse
|
13
|
Sun Q, Wu F, Wu W, Yu W, Zhang G, Huang X, Hao Y, Luo L. Identification and quality evaluation of Lushan Yunwu tea from different geographical origins based on metabolomics. Food Res Int 2024; 186:114379. [PMID: 38729702 DOI: 10.1016/j.foodres.2024.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The relationship between the chemical composition and quality of Lushan Yunwu tea (LYT) from different geographical origins is not clear. Sensory evaluation, metabolomics analyses combined with chemometrics were conducted on LYT from 8 different geographical origins, and altitude was identified as the main factor responsible for the differences among LYT. A total of 32 non-volatile and 27 volatile compounds were identified as marker metabolites to distinguish the origins of high altitudes from those of low altitudes. LYT samples from higher altitude areas contained more free amino acids, sugars, and organic acids, and less catechins, which may contribute to the reduction of bitterness and astringency and the enhancement of umami. The contents of geranylacetone, ethyl hexanoate, ethyl caprylate, 3-carene, d-cadinene, linalool, nerol, and nerolidol in high altitude areas were higher than those in low altitude areas, indicating that LYT from high altitude had strong floral and fruity aroma. The altitudes were positively correlated with pH value, total flavonoids, soluble protein, total free amino acids, and the antioxidant capacities of the LYT. This study provided a theoretical basis for the study of the effect of altitude on tea quality.
Collapse
Affiliation(s)
- Qifang Sun
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Furu Wu
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Wei Wu
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Gaowei Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Xueyong Huang
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Yingbin Hao
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
14
|
Ma X, Liu J, Li H, Wang W, Liu L, Wang P, Hu J, Zhang X, Qu F. Greenhouse covering cultivation promotes chlorophyll accumulation of tea plant (Camellia sinensis) by activating relevant gene expression and enzyme activity. BMC PLANT BIOLOGY 2024; 24:455. [PMID: 38789917 PMCID: PMC11127325 DOI: 10.1186/s12870-024-05149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most economically important woody crops. Plastic greenhouse covering cultivation has been widely used in tea areas of northern China. Chlorophyll is not only the crucial pigment for green tea, but also plays an important role in the growth and development of tea plants. Currently, little is known about the effect of plastic greenhouse covering cultivation on chlorophyll in tea leaves. RESULTS To investigate the effect of plastic greenhouse covering cultivation on chlorophyll in tea leaves, color difference values, chlorophyll contents, gene expression, enzyme activities and photosynthetic parameters were analyzed in our study. Sensory evaluation showed the color of appearance, liquor and infused leaves of greenhouse tea was greener than field tea. Color difference analysis for tea liquor revealed that the value of ∆L, ∆b and b/a of greenhouse tea was significantly higher than field tea. Significant increase in chlorophyll content, intracellular CO2, stomatal conductance, transpiration rate, and net photosynthetic rate was observed in greenhouse tea leaves. The gene expression and activities of chlorophyll-metabolism-related enzymes in tea leaves were also activated by greenhouse covering. CONCLUSION The higher contents of chlorophyll a, chlorophyll b and total chlorophyll in greenhouse tea samples were primarily due to higher gene expression and activities of chlorophyll-metabolism-related enzymes especially, chlorophyll a synthetase (chlG), pheophorbide a oxygenase (PAO) and chlorophyllide a oxygenase (CAO) in tea leaves covered by greenhouse. In general, our results revealed the molecular basis of chlorophyll metabolism in tea leaves caused by plastic greenhouse covering cultivation, which had great significance in production of greenhouse tea.
Collapse
Affiliation(s)
- Xueming Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jixian Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haiyan Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenzhuo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lei Liu
- Bureau of Agriculture and Rural Affairs of Laoshan District, Qingdao, 266061, China
| | - Peiqiang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianhui Hu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinfu Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fengfeng Qu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
15
|
Qin M, Zhou J, Luo Q, Zhu J, Yu Z, Zhang D, Ni D, Chen Y. The key aroma components of steamed green tea decoded by sensomics and their changes under different withering degree. Food Chem 2024; 439:138176. [PMID: 38091790 DOI: 10.1016/j.foodchem.2023.138176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Steamed green tea has a long history and unique aroma, but little is known about its key aroma components. In this study, 173 volatiles in steamed green tea were identified using solvent-assisted flavor evaporation and headspace-solid phase microextraction plus two chromatographic columns of different polarities. Aroma extract dilution analysis revealed 48 highly aroma-active compounds with flavor dilution factors 64-1024. Internal standards were used to calculate odorant active value (OAV), and 11 OAV > 1 key aroma compounds were determined. Omission test identified eight substances, including dimethyl sulfide, (E)-β-ionone, cis-jasmone, linalool, nonanal, heptanal, isovaleraldehyde and (Z)-3-hexenol, as the key aroma active compounds of steamed green tea. With the increase of withering degree, the content of these substances increased first and then decreased except for heptanal and cis-jasmone. Moreover, the water content of 62 % was suggested to be an appropriate withering degree during the processing of steamed green tea.
Collapse
Affiliation(s)
- Muxue Qin
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jingtao Zhou
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qianqian Luo
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junyu Zhu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
16
|
Teng R, Ao C, Huang H, Shi D, Mao Y, Zheng X, Zhao Y. Research of Processing Technology of Longjing Tea with 'Baiye 1' Based on Non-Targeted Aroma Metabolomics. Foods 2024; 13:1338. [PMID: 38731709 PMCID: PMC11083364 DOI: 10.3390/foods13091338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Longjing tea is favored by consumers due to its refreshing and delicate aroma, as well as its fresh and sweet flavor. In order to study the processing technology of Longjing tea with 'Baiye 1' tea varieties, solid phase microextraction and gas chromatography-mass spectrometry were used to analyze the volatile components of Longjing tea in different process stages. The results revealed the identification of 275 aroma metabolites in the processing samples of Longjing tea. The sensory evaluation and principal component analysis revealed that the leaves of fresh (XY) and spreading (TF) were different from the leaves of first panning (YQ), second panning (EQ), final panning (HG), and fragrance enhancing (TX). The relative contents of geraniol (1199.95 and 1134.51), linalool (745.93 and 793.98), methyl salicylate (485.22 and 314.67), phenylethyl alcohol (280.14 and 393.98), 2-methylfuran (872.28 and 517.96), 2-butenal (56.01 and 154.60), and 2-hexenal (46.22 and 42.24), refreshing and floral substances in the XY and TF stages, were higher than other stages. The aroma contents of 2-methylfuran, furfural, 2-methyl-1-penten-3-one, 3-hexen-2-one, dodecane, hexanoyl hexanoate, 2,5-dimethyl-pyrazine, and methyl-pyrazine were found to be significantly positively correlated with the intensity of chestnut aroma. In conclusion, this study contributes to a better understanding of the composition and formation mechanism of chestnut-like aroma and provides new insights into the processing technology to improve the quality of albino green tea.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yun Zhao
- Tea Research Institute, Hangzhou Academy of Agricultural Science, Hangzhou 310024, China; (R.T.); (C.A.); (H.H.); (D.S.); (Y.M.); (X.Z.)
| |
Collapse
|
17
|
Feng X, Wang H, Zhu Y, Ma J, Ke Y, Wang K, Liu Z, Ni L, Lin CC, Zhang Y, Liu Y. New Insights into the Umami and Sweet Taste of Oolong Tea: Formation of Enhancer N-(1-carboxyethyl)-6-(hydroxymethyl) pyridinium-3-ol (Alapyridaine) in Roasting Via Maillard Reaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8760-8773. [PMID: 38536213 DOI: 10.1021/acs.jafc.3c09011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Roasting is pivotal for enhancing the flavor of Wuyi rock tea (WRT). A study investigated a novel compound that enhances the umami taste of WRT. Metabolomics of Shuixian tea (SXT) and Rougui tea (RGT) under light roasting (LR), medium roasting (MR), and heavy roasting (HR) revealed significant differences in nonvolatiles compounds. Compared LR reducing sugars and amino acids notably decreased in MR and HR, with l-alanine declining by 69%. Taste-guided fractionation identified fraction II-B as having high umami and sweet intensities. A surprising taste enhancer, N-(1-carboxyethyl)-6-(hydroxymethyl) pyridinium-3-ol (alapyridaine), was discovered and identified. It formed via the Maillard reaction, positively correlated with roasting in SXT and RGT. Alapyridaine levels were highest in SXT among the five oolong teas. Roasting tea with glucose increased alapyridaine levels, while EGCG inhibited its formation. HR-WRT exhibited enhanced umami and sweet taste, highlighting alapyridaine's impact on WRT's flavor profile. The formation of alapyridaine during the roasting process provides new insights into the umami and sweet perception of oolong tea.
Collapse
Affiliation(s)
- Xiaoxiao Feng
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haoli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingke Ma
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Ke
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kequn Wang
- Wuyi Mountain Yuanshui Yuantea Tea Culture Co., Ltd., Wuyi Mountain 354300, Fujian, China
| | - Zhibin Liu
- Institute of Food Science &Technology, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Li Ni
- Institute of Food Science &Technology, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan, China
| | - Yin Zhang
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Ma YY, Wang JQ, Gao Y, Cao QQ, Wang F, Chen JX, Feng ZH, Yin JF, Xu YQ. Effect of the type of brewing water on the sensory and physicochemical properties of light-scented and strong-scented Tieguanyin oolong teas. Food Chem X 2024; 21:101099. [PMID: 38235347 PMCID: PMC10792187 DOI: 10.1016/j.fochx.2023.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
Variations in the quality of brewing water profoundly impact tea flavor. This study systematically investigated the effects of four common water sources, including pure water (PW), mountain spring water (MSW), mineral water (MW) and natural water (NW) on the flavor of Tieguanyin tea infusion. Brewing with MW resulted in a flat taste and turbid aroma, mainly due to the low leaching of tea flavor components and complex interactions with mineral ions (mainly Ca2+, Mg2+). Tea infusions brewed with NW exhibited the highest relative contents of total volatile compounds, while those brewed with PW had the lowest. NW and MSW, with moderate mineralization, were conducive to improving the aroma quality of tea infusion and were more suitable for brewing both aroma types of Tieguanyin. These findings offer valuable insights into the effect of brewing water on the sensory and physicochemical properties of oolong teas.
Collapse
Affiliation(s)
- Yuan-Yuan Ma
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie-Qiong Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Qing-Qing Cao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Fang Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Jian-Xin Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Zhi-Hui Feng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| |
Collapse
|
19
|
Li L, Dong S, Cao S, Chen Y, Shen J, Li M, Cui Q, Zhang Y, Huang C, Dai Q, Ning J. E-nose and colorimetric sensor array combining homologous data fusion strategy discriminating the roasting degree of large-leaf yellow tea. Food Chem X 2024; 21:101124. [PMID: 38298355 PMCID: PMC10828643 DOI: 10.1016/j.fochx.2024.101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Different degrees of roasting result in differences in the quality and flavor of large-leaf yellow tea. The current sensory evaluation and chemical detection methods cannot meet the requirement of online differentiation of LYT roasting degree, so an accurate and comprehensive assessment method needs to be developed urgently. First, the two aroma sensing technologies were compared. Two variable screening methods and three recognition algorithms were employed to build discriminant models. The results showed that the discrimination rate of the colorimetric sensor array (CSA) in the prediction set reached 91.89 %, outperforming that of the E-nose. Subsequently, three fusion strategies were applied to improve the discrimination accuracy. The discrimination rate of the middle fusion strategy resulted in an optimal resolution of 94.59 %. The results obtained from the homologous fusion were able to evaluate the roasting degree comprehensively and accurately, which provides a new method and idea for tea aroma quality.
Collapse
Affiliation(s)
| | | | - Shuci Cao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036 Anhui, People's Republic of China
| | - Yurong Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036 Anhui, People's Republic of China
| | - Jingfei Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036 Anhui, People's Republic of China
| | - Menghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036 Anhui, People's Republic of China
| | - Qingqing Cui
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036 Anhui, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036 Anhui, People's Republic of China
| | - Chuxuan Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036 Anhui, People's Republic of China
| | - Qianying Dai
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036 Anhui, People's Republic of China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036 Anhui, People's Republic of China
| |
Collapse
|
20
|
Xu Y, Wang J, Wu Z, Huang J, Li Z, Xu J, Long D, Ye T, Wang G, Yin J, Luo Z, Xu Y. The role of glutathione in stabilizing aromatic volatile organic compounds in Rougui Oolong tea: A comprehensive study from content to mechanisms. Food Chem 2024; 437:137802. [PMID: 37866345 DOI: 10.1016/j.foodchem.2023.137802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Chinese Oolong tea is widely known for its intricate aroma. However, the degradation of volatile organic compounds (VOCs) poses significant challenges for the tea products. In this study, glutathione (GSH) has an excellent preservation effect on VOCs in both the VOCs extract and the tea infusion during storage, specifically slowing the degradation of hexanal (by 66.39% and 35.09%) and heptanal (by 67.46% and 63.50%). Additionally, the addition of GSH maintained higher levels of active ingredients in tea infusion, including epigallocatechin, procyanidin B1, glutamic acid, and L-(+)-arginine, with respective increases of 184.09, 2.92, 4.10, and 6.35 times. The sulfhydryl group of GSH formed a covalent bond with hexanal and 2-methylbutanal, therefore improving the stability of VOCs. These findings provided a valuable insight for developing effective VOC preservation techniques for water-based tea products.
Collapse
Affiliation(s)
- Yanqun Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, People's Republic of China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; Food Research Institute, Ever Maple Food Science and Technology Co., Ltd., Hangzhou 311200, People's Republic of China
| | - Jieqiong Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, People's Republic of China
| | - Ziqing Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jing Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhenbiao Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jiayi Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Dan Long
- Food Research Institute, Ever Maple Food Science and Technology Co., Ltd., Hangzhou 311200, People's Republic of China
| | - Tian Ye
- Food Research Institute, Ever Maple Food Science and Technology Co., Ltd., Hangzhou 311200, People's Republic of China
| | - Gennv Wang
- Food Research Institute, Ever Maple Food Science and Technology Co., Ltd., Hangzhou 311200, People's Republic of China
| | - Junfeng Yin
- Food Research Institute, Ever Maple Food Science and Technology Co., Ltd., Hangzhou 311200, People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Yongquan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, People's Republic of China.
| |
Collapse
|
21
|
Wang H, Yang Y, Chen L, Xu A, Wang Y, Xu P, Liu Z. Identifying the structures and taste characteristics of two novel Maillard reaction products in tea. Food Chem 2024; 431:137125. [PMID: 37586230 DOI: 10.1016/j.foodchem.2023.137125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Maillard reaction products (MRPs) produced during thermal processing of tea are intimately related to its flavor. Our recent work revealed that both levels of l-theanine and d-galacturonic acid in tea leaves decreased dramatically during drying, whereas the specific MRPs from l-theanine and d-galacturonic acid remain elusive. Here, the MRPs formed from l-theanine and d-galacturonic acid were investigated and their taste characteristics and the involved mechanisms were explored. Two novel MRPs from l-theanine and d-galacturonic acid were identified as 1-(1-carboxy-4-(ethylamino)-4-oxobutyl)-3-hydroxypyridin-1-ium (MRP 1) and 2-(2-formyl-1H-pyrrole-1-yl) theanine (MRP 2). MRP 1 and MRP 2 accumulated in dark tea and black tea and were associated with sour (threshold, 0.25 mg/mL) and astringent tastes and an umami taste (threshold, 0.18 mg/mL), respectively. Molecular docking revealed that the taste characteristics of MRPs may be due to strong binding to umami taste receptor proteins (CASR, T1R1/T1R3) and the sour taste protein OTOP1 via hydrogen bonds and hydrophobic interactions.
Collapse
Affiliation(s)
- Huajie Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yijun Yang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Lin Chen
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Anan Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Zhonghua Liu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
22
|
Zhang Y, Yan K, Peng Q, Baldermann S, Zhu Y, Dai W, Feng S, Simal-Gandara J, Fu J, Lv H, Lin Z, Shi J. Comprehensive analysis of pigment alterations and associated flavor development in strip and needle green teas. Food Res Int 2024; 175:113713. [PMID: 38128982 DOI: 10.1016/j.foodres.2023.113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Strip/needle green teas (SGT/NGT) processed using innovative technologies are in high demand; however, mechanisms behind their color and flavor have not been comprehensively studied. We aimed to reveal the dynamics of major pigmented components (carotenoids, lipids, flavonoids, and Maillard products) and their contributions to the flavor of green teas. The total content of flavonoids in SGT and NGT were 255 ± 4.51 and 201 ± 3.91 mg·g-1, respectively; these values are slightly lower than that in fresh leaves (FLs), resulting in a fresh and sweet aftertaste. In average, carotene content in SGT/NGT (24.8 μg·g-1) was higher than in FL (17.4 μg·g-1), whilst xanthophyll content (603 μg·g-1) decreased to one-half of that in FL (310 μg·g-1). Among the 218 primary metabolites, glutamine, glutamic acid, and arginine were found to accumulate and were dominate contributors for the umami and sweet taste. Notably, more than 96 volatiles were screened and revealed their correlations with carotenoids, lipids, and amino acids. Overall, the synergism between pigments and their non-enzymatic derivates' contribution to GT characterized flavor was illustrated.
Collapse
Affiliation(s)
- Yongcheng Zhang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Kangni Yan
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Susanne Baldermann
- University of Bayreuth, Food Metabolome, Faculty of Life Sciences: Food, Nutrition, Kulmbach, Germany
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou 310024, China
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E-32004 Ourense, Spain
| | - Jianyu Fu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
23
|
Yu Q, Huang C, Zhu R, Lu D, Liu L, Lai J, Zhong X, Guan J, Zhou S, Tong Y, Wang Z, Chen P, Guo H, Chu Q, Gong S, Fan F. Chemometrics-based investigation of non-volatiles/volatiles flavor of tencha (Camellia sinensis cv. Yabukita, Longjing 43 and Baiye 1). Food Res Int 2023; 173:113461. [PMID: 37803791 DOI: 10.1016/j.foodres.2023.113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
The increasing demand for tea consumption calls for the development of more products with distinct characteristics. The sensory quality of tencha is significantly determined by innate differences among tea cultivars. However, the correlations between the chemical composition and sensory traits of tencha are still unclear. To enhance the understanding of the flavor formation mechanism in tencha and further to develop new cultivars resources, we investigated non-volatiles and volatile metabolites as well as sensory traits in tencha from different tea cultivars (Camellia sinensis cv. Yabukita, Longjing 43 and Baiye 1); the relationships between the flavor traits and non-volatiles/volatiles were further evaluated by partial least squares - discriminate analysis (PLS-DA), multiple factor analysis (MFA) and multidimensional alignment (MDA) analysis. A total of 64 non-volatiles and 116 volatiles were detected in all samples, among which 71 metabolites were identified as key flavor-chemical contributors involving amino acids, flavonol glycosides, flavones, catechins, ketones, alcohols, hydrocarbons, aldehydes, esters and acids. The levels of taste-related amino acids, flavonol glycosides and gallic acid varied significantly among the tencha samples made from different tea cultivars. All the samples exhibited typical quality characteristics of tencha. The tencha from Camellia sinensis cv. Longjing 43 and Camellia sinensis cv. Baiye 1 (cultivated in the open) exhibited higher levels of amino acids and gallic acid, which were associated with the umami taste and mellow taste of tea infusion. Abundant flavonol glycosides were related to the astringency, while partial tri-glycosides specifically quercetin-3-O-galactoside-rhamnoside-glucoside and total of flavonol galactoside-rhamnoside-glucoside were associated with mellow taste. The floral alcohols were identified as significant contributors to the refreshing aroma traits of tencha. The green, almond-like, acidic and fruity odorants were associated with a green and fresh aroma, while the green, cheesy and waxy odorants such as ketones, esters, acids and hydrocarbons were associated with seaweed-like aroma. This study provides insight into sensory-related chemical profiles of tencha from different tea cultivars, supplying valuable information on flavor and quality identification for tencha.
Collapse
Affiliation(s)
- Qiuwen Yu
- Tea Research Institute, College of Agriculture and Biotechnolgy, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chuangsheng Huang
- Tea Research Institute, College of Agriculture and Biotechnolgy, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ruolan Zhu
- Tea Research Institute, College of Agriculture and Biotechnolgy, Zhejiang University, Hangzhou 310058, P.R. China
| | - Debiao Lu
- Zhejiang Agricultural Technical Extension Center, Hangzhou 310020, P.R. China
| | - Liping Liu
- Huzhou Agricultural and Rural Bureau, Huzhou 313000, P.R. China
| | - Jianhong Lai
- Anji Agricultural and Rural Bureau, Anji 313300, P.R. China
| | - Xinyao Zhong
- Changxing Agricultural and Rural Bureau, Changxing 313100, P.R. China
| | - Jueshan Guan
- Zhejiang Teaworld Food Co., Ltd, Changxing 313113, P.R. China
| | - Senjie Zhou
- Tea Research Institute, College of Agriculture and Biotechnolgy, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yilin Tong
- Tea Research Institute, College of Agriculture and Biotechnolgy, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zipei Wang
- Tea Research Institute, College of Agriculture and Biotechnolgy, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ping Chen
- Tea Research Institute, College of Agriculture and Biotechnolgy, Zhejiang University, Hangzhou 310058, P.R. China
| | - Haowei Guo
- Tea Research Institute, College of Agriculture and Biotechnolgy, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnolgy, Zhejiang University, Hangzhou 310058, P.R. China
| | - Shuying Gong
- Tea Research Institute, College of Agriculture and Biotechnolgy, Zhejiang University, Hangzhou 310058, P.R. China.
| | - Fangyuan Fan
- Tea Research Institute, College of Agriculture and Biotechnolgy, Zhejiang University, Hangzhou 310058, P.R. China.
| |
Collapse
|
24
|
Zhang J, Xia D, Li T, Wei Y, Feng W, Xiong Z, Huang J, Deng WW, Ning J. Effects of different over-fired drying methods on the aroma of Lu'an Guapian tea. Food Res Int 2023; 173:113224. [PMID: 37803542 DOI: 10.1016/j.foodres.2023.113224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
Over-fired drying, a crucial process in the production of Lu'an Guapian (LAGP) tea, greatly enriches the tea's aroma. In this study, the aroma compounds of LAGP tea processed through pulley charcoal drying (PCD), roller drying (RD), roller-conveyor drying (RCD), and hot air drying (HD) were analyzed using gas chromatography-mass spectrometry. A subsequent analysis of aroma extraction dilution analysis and odor activity values revealed that (E)-β-ionone, dimethyl sulfide, (E,E)-2,4-heptadienal, geraniol, linalool, benzeneacetaldehyde, coumarin, 2-ethyl-3,5-dimethyl-pyrazine, indole, hexanal, (Z)-jasmone, and (Z)-3-hexen-1-ol were the key contributors to the samples' aroma variation. Moreover, a quantitative descriptive analysis and aroma recombination and omission experiments analysis revealed that (E)-β-ionone is the most critical contributor to the formation of floral aroma in tea processed using PCD, whereas (E,E)-2,4-heptadienal is responsible for the more pronounced fresh aroma in tea processed using HD. In addition, 2-ethyl-3,5-dimethyl-pyrazine contributes to the formation of a roasted aroma in tea processed using RD and RCD. The study results provide a theoretical basis for choosing the processing method, especially for drying, to obtain high-quality LAGP tea.
Collapse
Affiliation(s)
- Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Dongzhou Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Wanzhen Feng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Zhichao Xiong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Junlan Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
25
|
Tu Z, Liu Y, Lin J, Lv H, Zhou W, Zhou X, Qian Y, Zeng X, He W, Ye Y. Comparison of volatile and nonvolatile metabolites in green tea under hot-air drying and four heat-conduction drying patterns using widely targeted metabolomics. Food Chem X 2023; 19:100767. [PMID: 37780330 PMCID: PMC10534119 DOI: 10.1016/j.fochx.2023.100767] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 10/03/2023] Open
Abstract
Hot-air and heat-conduction drying are the most common drying patterns in green tea production. However, the differences between them in terms of the resulting green tea chemical compounds have not been illustrated systematically. In this study, 515 volatile and 204 nonvolatile metabolites were selected to compare the differences between hot-air drying green tea (HAGT) and four heat-conduction drying green teas (HCDGTs) using widely targeted metabolomics. The results showed notable changes in volatile compounds; for example, two kinds of HCDGTs preferred to form chestnut-like and caramel-like key odorants. In addition, 14 flavonol glycosides, 10 catechins, 9 phenolic acids, 8 amino acids, 7 flavonols, and 3 sugars were significantly changed between HAGT and HCDGTs (p < 0.05), presenting a tremendous discrepancy in the transformation of nonvolatile compounds. Our results provide clear guidance for the precise manufacturing of green tea by four common heat-drying patterns and hot air-drying patterns.
Collapse
Affiliation(s)
- Zheng Tu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
| | - YueYun Liu
- Yibin Research Institute of Tea Industry, Yibin, Sichuan 644005, China
| | - JiaZheng Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
| | - HaoWei Lv
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
| | - Wei Zhou
- Tea Industry Development Center of Guiding County, No.47, Hong Road, Guiding, Guizhou 551300, China
| | - XiaoFeng Zhou
- Technology Service Station of Tea Science, Wuyi, Zhejiang 321200, China
| | - YuanFeng Qian
- Agricultural Bureau of Songyang County, Lishui, Zhejiang 323400, China
| | - Xu Zeng
- Yibin Research Institute of Tea Industry, Yibin, Sichuan 644005, China
| | - WeiZhong He
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang 323400, China
| | - Yang Ye
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
| |
Collapse
|
26
|
Guo Y, Shen Y, Hu B, Ye H, Guo H, Chu Q, Chen P. Decoding the Chemical Signatures and Sensory Profiles of Enshi Yulu: Insights from Diverse Tea Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:3707. [PMID: 37960063 PMCID: PMC10648715 DOI: 10.3390/plants12213707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Enshi Yulu, a renowned Chinese steamed green tea, is highly valued for its unique sensory attributes. To enhance our comprehensive understanding of the metabolic variation induced by steaming fixation, we investigated the overall chemical profiles and organoleptic quality of Enshi Yulu from different tea cultivars (Longjing 43, Xiapu Chunbolv, and Zhongcha 108). The relationships between sensory traits and non-volatiles/volatiles were evaluated. A total of 58 volatiles and 18 non-volatiles were identified as characteristic compounds for discriminating among the three tea cultivars, and the majority were correlated with sensory attributes. The "mellow" taste was associated with L-aspartic acid, L-asparagine, L-tyrosine, L-valine, EGC, EC, and ECG, while gallic acid and theobromine contributed to the "astringent" taste. "Kokumi" contributors were identified as L-methionine, L-lysine, and GCG. Enshi Yulu displayed a "pure" and "clean and refreshing" aroma associated with similar volatiles like benzyl alcohol, δ-cadinene, and muurolol. The composition of volatile compounds related to the "chestnut" flavor was complex, including aromatic heterocycles, acids, ketones, terpenes, and terpene derivatives. The key contributors to the "fresh" flavor were identified as linalool oxides. This study provides valuable insights into the sensory-related chemical profiles of Enshi Yulu, offering essential information for flavor and quality identification of Enshi Yulu.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China; (Y.G.); (Y.S.); (B.H.); (H.Y.); (H.G.); (Q.C.)
| |
Collapse
|
27
|
Peng Q, Li S, Zheng H, Meng K, Jiang X, Shen R, Xue J, Xie G. Characterization of different grades of Jiuqu hongmei tea based on flavor profiles using HS-SPME-GC-MS combined with E-nose and E-tongue. Food Res Int 2023; 172:113198. [PMID: 37689946 DOI: 10.1016/j.foodres.2023.113198] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
In order to distinguish different grades of Jiuqu hongmei tea (black tea), four different grades of Jiuqu hongmei tea were used as materials in this study: Super Grade (SuG), First Grade (FG), Second Grade (SG), and Third Grade (TG). HS-SPME-GC-MS combined with electronic nose (E-nose) and electronic tongue (E-tongue) technology was used to detect and analyze tea samples. The results showed that 162 volatile substances were identified, mainly alcohols, followed by hydrocarbons, aldehydes, ketones and esters. Twenty-nine volatile compounds were found in all grades of tea samples. The results of heat map analysis showed that the relative contents of five volatile compounds in different grades of Jiuqu hongmei tea were positively correlated with the grades of Jiuqu hongmei tea. By orthogonal partial least squares discriminant analysis (OPLS-DA), 35 different compounds of SuG and FG, 30 different compounds of SG and TG, 34 different compounds of FG and SG were found. Overall, the results indicated that there were significant differences in volatile compounds among different grades of Jiuqu hongmei tea, and the use of HS-SPME-GC-MS combined with E-nose and E-tongue could provide a scientific reference method as an effective tool for detecting flavor characteristics of other types of black tea grades.
Collapse
Affiliation(s)
- Qi Peng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China; National Engineering Research Center for Chinese CRW (Branch Center), Shaoxing University, 900 Chengnan Road, Shaoxing 312000, Zhejiang, China
| | - Shanshan Li
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Huajun Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Kai Meng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Xi Jiang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Rui Shen
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Jingrun Xue
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| |
Collapse
|
28
|
Zhong N, Zhao X, Yu P, Huang H, Bao X, Li J, Zheng H, Xiao L. Characterization of the Sensory Properties and Quality Components of Huangjin Green Tea Based on Molecular Sensory-Omics. Foods 2023; 12:3234. [PMID: 37685167 PMCID: PMC10486783 DOI: 10.3390/foods12173234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Huangjin green tea (HJC) is one of the most famous regional green teas in China, and has gained attention for its unique flavor. Research on HJC has focused mainly on the synthesis of L-theanine, with fewer studies concentrating on sensory characteristics. In this study, molecular sensory science techniques, including color analysis, gas chromatography-ion mobility spectrometry, and E-tongue, were used to characterize the sensory properties of HJC, with Fuding Dabai and Anji Baicha teas used as conventional and high amino acid controls, respectively. The sensory characteristics and main quality components of HJC lie somewhere between these two other teas, and somewhat closer to the conventional control. They were difficult to distinguish by color, but significant differences exist in terms of volatile organic compounds (VOCs), E-tongue values on bitterness and astringency, and their contents of major taste components. VOCs such as (E)-2-octenal, linalool, ethyl acrylate, ethyl acetate, and 2-methyl-3-furanethiol were found to be the main differential components that contributed to aroma, significantly influencing the tender chestnut aroma of HJC. Free amino acids, tea polyphenols, and ester catechins were the main differential components responsible for taste, and its harmonious phenol-to-ammonia ratio was found to affect the fresh, mellow, heavy, and brisk taste of HJC.
Collapse
Affiliation(s)
- Ni Zhong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (N.Z.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Xi Zhao
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Penghui Yu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Hao Huang
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Xiaocun Bao
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Jin Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (N.Z.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Hongfa Zheng
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Lizheng Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (N.Z.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
29
|
Tang P, Wang JQ, Wang YF, Jin JC, Meng X, Zhu Y, Gao Y, Xu YQ. Comparison analysis of full-spectrum metabolomics revealed on the variation of potential metabolites of unscented, Chloranthus spicatus scented, and Osmanthus fragrans (Thunb.) Lour. scented Congou black teas. Front Nutr 2023; 10:1234807. [PMID: 37645629 PMCID: PMC10461629 DOI: 10.3389/fnut.2023.1234807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction In recent years, scented black tea has attracted much attention due to its pleasant floral aroma and mellow flavor, but little research has been carried out on its flavor metabolic profile. Methods In this study, the flavor metabolic profiles of unscented, Chloranthus spicatus scented, and Osmanthus fragrans (Thunb.) Lour. scented Congou black teas were investigated using full-spectrum metabolomics analysis method, the first time that the flavor profiles of scented black tea were characterized in detail. Results and Discussion The results revealed that a total of 3,128 metabolites were detected in the three teas. Based on the criteria of variable importance in the project >1 and fold change ≥2 or ≤ 0.5, 761 non-volatile metabolites and 509 volatile metabolites were filtered as differential metabolites. Many differential non-volatile metabolites belonged to flavonoids, phenolic acids, and terpenoids. Floral, fruity and herbaceous volatile metabolites were significantly up-regulated in Chloranthus spicatus scented Congou black tea while sweet and fruity volatile metabolites were significantly down-regulated in Osmanthus fragrans (Thunb.) Lour. scented Congou black tea. The results contribute to a better understanding of the scenting techniques on the flavor quality of scented black teas and provide some information on the flavor chemistry theory of scented black teas.
Collapse
Affiliation(s)
- Ping Tang
- Hangzhou Vocational & Technical College, Hangzhou, China
| | - Jie-Qiong Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou, China
- College of Food Science, Southwest University, Chongqing, China
| | - Yong-Feng Wang
- Jingdezhen Jin Gui Yuan Agricultural Development Co Ltd, Jingdezhen, China
| | - Jian-Chang Jin
- College of Biological and Environmental Engneering, Zhejiang Shuren University, Hangzhou, China
| | - Xin Meng
- College of Food and Health, Zhejiang A&F University, Hangzhou, China
| | - Yan Zhu
- College of Food and Health, Zhejiang A&F University, Hangzhou, China
| | - Ying Gao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yong-Quan Xu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
30
|
Ke F, Pan A, Liu J, Liu X, Yuan T, Zhang C, Fu G, Peng C, Zhu J, Wan X. Hierarchical camellia-like metal–organic frameworks via a bimetal competitive coordination combined with alkaline-assisted strategy for boosting selective fluoride removal from brick tea. J Colloid Interface Sci 2023; 642:61-68. [PMID: 37001458 DOI: 10.1016/j.jcis.2023.03.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Developing an efficient and easy scale-up adsorbent with excellent fluoride adsorption and selectivity from brick tea is urgently desired. However, the separation of fluoride from tea is particularly challenging due to it contains abundant active compounds. Herein, we report ultrahigh fluoride adsorption from brick tea by a hierarchical camellia-like bimetallic metal-organic frameworks (MOFs). The hierarchical camellia-like Ca2Al1Fu is fabricated via a Ca/Al competitive coordination combined with alkaline-assisted strategy to tailor the morphology and porous structure. Subsequently, we systematically explore how the kinetic, thermodynamic, pH, and coexisting ions parameters employed during fluoride adsorption influence the resulting uptake behavior of Ca2Al1Fu. Further, sensory evaluation of the tea after adsorption is explored to determine the optimal dose that makes Ca2Al1Fu as a practical adsorbent for application. Importantly, the fluoride adsorption capacity of optical CaAlFu with mixed CaAl metals molar ratio of 2:1 is 3.15 and 2.11 times higher than that of pristine CaFu and AlFu, respectively. Theoretical results reveal that the boosting selective fluoride removal can be ascribed to the specific interactions between fluoride and CaAl coordinatively unsaturated bimetallic centers. These results present an effective design strategy for the construction of bimetallic MOFs with hierarchically porous structures for broad prospect in adsorption-based applications.
Collapse
|
31
|
Mei S, Ding J, Chen X. Identification of differential volatile and non-volatile compounds in coffee leaves prepared from different tea processing steps using HS-SPME/GC-MS and HPLC-Orbitrap-MS/MS and investigation of the binding mechanism of key phytochemicals with olfactory and taste receptors using molecular docking. Food Res Int 2023; 168:112760. [PMID: 37120211 DOI: 10.1016/j.foodres.2023.112760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Tea processing steps affected the proximate composition, enzyme activity and bioactivity of coffee leaves; however, the effects of different tea processing steps on the volatiles, non-volatiles, color, and sensory characteristics of coffee leaves have yet been demonstrated. Here the dynamic changes of volatile and non-volatile compounds in different tea processing steps were investigated using HS-SPME/GC-MS and HPLC-Orbitrap-MS/MS, respectively. A total of 53 differential volatiles (alcohol, aldehyde, ester, hydrocarbon, ketone, oxygen heterocyclic compounds, phenol, and sulfur compounds) and 50 differential non-volatiles (xanthone, flavonoid, organic acid, amino acid, organic amine, alkaloid, aldehyde, and purine et al.) were identified in coffee leaves prepared from different processing steps. Kill-green, fermentation, and drying steps significantly influenced the volatiles; however, kill-green, rolling, and drying steps significantly affected the color of coffee leaves and their hot water infusion. The coffee leaf tea that was prepared without the kill-green process was found to have a more pleasant taste as compared to the tea that was prepared with the kill-green process. This can be attributed to the fact that the former contained lower levels of flavonoids, chlorogenic acid, and epicatechin, but had higher levels of floral, sweet, and rose-like aroma compounds. The binding interactions between the key differential volatile and non-volatile compounds and the olfactory and taste receptors were also investigated. The key differential volatiles, pentadecanal and methyl salicylate generate fresh and floral odors by activating olfactory receptors, OR5M3 and OR1G1, respectively. Epicatechin showed a high affinity to the bitter receptors, including T2R16, T2R14, and T2R46. Since the specific content of differential compounds in different samples varies greatly, the dose-effect and structure-function relationships of these key compounds and the molecular mechanism of the odor and taste of coffee leaf tea need to be further studied.
Collapse
Affiliation(s)
- Suhuan Mei
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China.
| | - Jian Ding
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China.
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
32
|
Gui A, Gao S, Zheng P, Feng Z, Liu P, Ye F, Wang S, Xue J, Xiang J, Ni D, Yin J. Dynamic Changes in Non-Volatile Components during Steamed Green Tea Manufacturing Based on Widely Targeted Metabolomic Analysis. Foods 2023; 12:foods12071551. [PMID: 37048372 PMCID: PMC10094149 DOI: 10.3390/foods12071551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023] Open
Abstract
Steamed green tea has unique characteristics that differ from other green teas. However, the alteration patterns of non-volatile metabolites during steamed green tea processing are not fully understood. In this study, a widely targeted metabolomic method was employed to explore the changes in non-volatile metabolites during steamed green tea processing. A total of 735 non-volatile compounds were identified, covering 14 subclasses. Of these, 256 compounds showed significant changes in at least one processing step. Most amino acids, main catechins, caffeine, and main sugars were excluded from the analysis. The most significant alterations were observed during steaming, followed by shaping and drying. Steaming resulted in significant increases in the levels of most amino acids and their peptides, most phenolic acids, most organic acids, and most nucleotides and their derivates, as well as some flavonoids. Steaming also resulted in significant decreases in the levels of most lipids and some flavonoids. Shaping and drying caused significant increases in the levels of some flavonoids, phenolic acids, and lipids, and significant decreases in the levels of some amino acids and their peptides, some flavonoids, and some other compounds. Our study provides a comprehensive characterization of the dynamic alterations in non-volatile metabolites during steamed green tea manufacturing.
Collapse
Affiliation(s)
- Anhui Gui
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shiwei Gao
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Pengcheng Zheng
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhihui Feng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Panpan Liu
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fei Ye
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shengpeng Wang
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jinjin Xue
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jun Xiang
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445002, China
| | - Dejiang Ni
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Junfeng Yin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
33
|
Ye Y, Yan W, Peng L, Zhou J, He J, Zhang N, Cheng S, Cai J. Insights into the key quality components in Se-Enriched green tea and their relationship with Selenium. Food Res Int 2023; 165:112460. [PMID: 36869476 DOI: 10.1016/j.foodres.2023.112460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
Selenium-enriched green tea (Se-GT) is of increasing interest because of its health benefits, but its quality components obtained limited research. In this study, Enshi Se-enriched green tea (ESST, high-Se green tea), Pingli Se-enriched green tea (PLST, low-Se green tea), and Ziyang green tea (ZYGT, common green tea) were subjected to sensory evaluation, chemical analysis, and aroma profiling. Chemical profiles in Se-GT were consistent with the taste attributes of the sensory analysis. 9 volatiles were identified as key odorants of Se-GT based on multivariate analysis. Correlations between Se and quality components were further assessed and highly Se-related compounds contents in these three tea samples were compared. The results showed that most amino acids and non-gallated catechins were highly negatively correlated with Se, while gallated catechins exhibited strong positive correlation with Se. And there were strong and significant associations between the key aroma compounds and Se. Moreover, 11 differential markers were found between Se-GTs and common green tea, including catechin, serine, glycine, threonine, l-theanine, alanine, valine, isoleucine, leucine, histidine, and lysine. These findings provide great potential for quality evaluation of Se-GT.
Collapse
Affiliation(s)
- Yuanyuan Ye
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wei Yan
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, China
| | - Lijun Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, China
| | - Jiaojiao Zhou
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Na Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
34
|
Jiao Y, Song Y, Yan Z, Wu Z, Yu Z, Zhang D, Ni D, Chen Y. The New Insight into the Effects of Different Fixing Technology on Flavor and Bioactivities of Orange Dark Tea. Molecules 2023; 28:molecules28031079. [PMID: 36770746 PMCID: PMC9920512 DOI: 10.3390/molecules28031079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Peach leaf orange dark tea (ODT) is a fruity tea made by removing the pulp from peach leaf orange and placing dry Qingzhuan tea into the husk, followed by fixing them together and drying. Since the quality of traditional outdoor sunlight fixing (SL) is affected by weather instability, this study explored the feasibility of two new fixing methods, including hot air fixing (HA) and steam fixing (ST). Results showed that fixing method had a great impact on ODT shape, aroma, and taste. Compared with SL and ST, HA endowed ODT with higher fruit aroma, mellow taste, better coordination, and higher sensory evaluation score. Physical-chemical composition analysis showed that SL-fixed orange peel was higher than HA- or ST-fixed peel in the content of polyphenols, flavonoids, soluble protein, hesperidin and limonin, while HA has a higher content of volatile substances and contains more alcohols, aldehydes and ketones, and acid and esters than ST and SL. Activity analysis showed that HA was superior to ST or SL in comprehensive antioxidant activity and inhibitory activity against α-glucosidase. Comprehensive results demonstrated that HA has better performance in improving ODT quality and can replace the traditional SL method in production.
Collapse
Affiliation(s)
- Yuanfang Jiao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yulin Song
- Zigui County Agricultural and Rural Bureau, Yichang 443600, China
| | - Zhi Yan
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Zhuanrong Wu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (D.N.); (Y.C.); Tel.: +86-181-7122-7832 (D.N.); +86-186-9616-9236 (Y.C.)
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (D.N.); (Y.C.); Tel.: +86-181-7122-7832 (D.N.); +86-186-9616-9236 (Y.C.)
| |
Collapse
|
35
|
Liu PP, Feng L, Xu YQ, Zheng L, Yin P, Ye F, Gui AH, Wang SP, Wang XP, Teng J, Xue JJ, Gao SW, Zheng PC. Characterization of stale odor in green tea formed during storage: Unraveling improvements arising from reprocessing by baking. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Luo L, Wang J, Li M, Zhang Y, Wang Y, Xu Y, Chen H, Zhu Y, Feng Z, Yin J. Characterization of the key odorants and investigation of the effects of drying methods on the aroma, taste color and volatile profiles of the fruit of Clausena anisum-olens (Blanco) Merr. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Cellulose-Based Light-Management Films with Improved Properties Directly Fabricated from Green Tea. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Tea polyphenols are a phenolic bioactive compound extracted from tea leaves and have been widely used as additives to prepare functional materials used in packaging, adsorption and energy fields. Nevertheless, tea polyphenols should be extracted first from the leaves before use, leading to energy consumption and the waste of tea. Therefore, completely and directly utilizing the tea leaf to fabricate novel composite materials is more attractive and meaningful. Herein, semi-transparent green-tea-based all-biomass light-management films with improved strength, a tunable haze (60–80%) and UV-shielding properties (24.23% for UVA and 4.45% for UVB) were directly manufactured from green tea by adding high-degree polymerization wood pulps to form entanglement networks. Additionally, the green-tea-based composite films can be produced on a large scale by adding green tea solution units to the existing continuous production process of pure cellulose films. Thus, a facile and feasible approach was proposed to realize the valorization of green tea by preparing green-tea-based all-biomass light-management films that have great prospects in flexible devices and energy-efficient buildings.
Collapse
|
38
|
Characterization of volatile composition, aroma-active compounds and phenolic profile of Qingxin oolong tea with different roasting degrees. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Zhao Z, Dai Z, Jiang X, Yu L, Hu M, Peng J, Zhou F. Influence and Optimization of Long-time Superfine Grinding on the Physicochemical Features of Green Tea Powder. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Ouyang W, Yu Y, Wang H, Jiang Y, Hua J, Ning J, Yuan H. Analysis of volatile metabolite variations in strip green tea during processing and effect of rubbing degree using untargeted and targeted metabolomics. Food Res Int 2022; 162:112099. [DOI: 10.1016/j.foodres.2022.112099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
41
|
Li Z, Wang Y, Pan D, Geng F, Zhou C, Cao J. Insight into the relationship between microorganism communities and flavor quality of Chinese dry-cured boneless ham with different quality grades. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Yin P, Kong YS, Liu PP, Wang JJ, Zhu Y, Wang GM, Sun MF, Chen Y, Guo GY, Liu ZH. A critical review of key odorants in green tea: Identification and biochemical formation pathway. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
43
|
Identification of Epigallocatechin-3-Gallate (EGCG) from Green Tea Using Mass Spectrometry. SEPARATIONS 2022. [DOI: 10.3390/separations9080209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In an era where humanity is reinstating its lost hope and expectation on natural products, green tea occupies quite a position for what it has proven to be, in its endeavors for human welfare and health. Epigallocatechin-3-gallate (EGCG) is the key to the vast biological activities of green tea. Green tea is no longer in the backdrop; it has emerged as the most viral, trending bioactive molecule when it comes to health benefits for human beings. This review focuses on the use of various analytical techniques for the analysis of EGCG. That which has been achieved so far, in terms of in vitro, pure component analysis, as well as those spikes in biological fluids and those in vivo in animal and human samples, was surveyed and presented. The use of MS-based techniques for the analysis of EGCG is elaborately reviewed and the need for improvising the applications is explained. The review emphasizes that there is plenty of room to explore matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications in this subject area.
Collapse
|
44
|
Effect of Fixation Methods on Biochemical Characteristics of Green Teas and Their Lipid-Lowering Effects in a Zebrafish Larvae Model. Foods 2022; 11:foods11111582. [PMID: 35681332 PMCID: PMC9180411 DOI: 10.3390/foods11111582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
Fixation is a key process contributing to different flavors of green tea and pan-fire and steam were the common fixation methods applied conventionally. In this study, pan-fired green tea (PGT) and steamed green tea (SGT) produced by different fixation methods were compared in characteristic biochemicals including volatile compounds, amino acids, catechins and alkaloids, together with evaluating their tastes and lipid-lowering effects. PGT and SGT could be distinguished clearly by orthogonal partial least squares discriminant analysis (OPLS-DA) and heatmap. SGT had higher contents of volatile alcohols (44.75%) with green and floral attributes, while PGT had higher contents of volatile esters (22.63%) with fruity and sweet attributes. Results of electronic tongue analysis showed that PGT and SGT had similar taste of strong umami and sweetness, but little astringency and bitterness. In addition, amino acids were more abundant in PGT (41.47 mg/g in PGT, 33.79 mg/g in SGT), and catechins were more abundant in SGT (111.36 mg/g in PGT, 139.68 mg/mg in SGT). Zebrafish larvae high-fat model was applied to study the lipid-lowering effects of PGT and SGT. Results showed that both SGT and PGT had lipid-lowering effects, and the lipid level was decreased to 61.11 and 54.47% at concentration of 300 mg/L compared to high-fat group, respectively. Generally, different fixation methods of pan-fire and steam showed significant effects on aroma and contents of characteristic chemical compounds (amino acids and catechins) of green tea, but no effects on the taste and lipid-lowering activity.
Collapse
|
45
|
Comparative Analysis of Volatile Compounds in Tieguanyin with Different Types Based on HS-SPME-GC-MS. Foods 2022; 11:foods11111530. [PMID: 35681280 PMCID: PMC9180349 DOI: 10.3390/foods11111530] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
Tieguanyin (TGY) is one kind of oolong tea that is widely appreciated for its aroma and taste. To study the difference of volatile compounds among different types of TGY and other oolong teas, solid-phase microextraction−gas chromatography−mass spectrometry and chemometrics analysis were conducted in this experiment. Based on variable importance in projection > 1 and aroma character impact > 1, the contents of heptanal (1.60−2.79 μg/L), (E,E)-2,4-heptadienal (34.15−70.68 μg/L), (E)-2-octenal (1.57−2.94 μg/L), indole (48.44−122.21 μg/L), and (E)-nerolidol (32.64−96.63 μg/L) in TGY were higher than in other varieties. With the increase in tea fermentation, the total content of volatile compounds decreased slightly, mainly losing floral compounds. Heavily fermented tea contained a higher content of monoterpenoids, whereas low-fermentation tea contained higher contents of sesquiterpenes and indole, which could well distinguish the degree of TGY fermentation. Besides, the volatiles analysis of different grades of TGY showed that the special-grade tea contained more aroma compounds, mainly alcohols (28%). (E,E)-2,4-Heptadienal, (E)-2-octenal, benzeneacetaldehyde, and (E)-nerolidol were the key volatile compounds to distinguish different grades of TGY. The results obtained in this study could help enrich the theoretical basis of aroma substances in TGY.
Collapse
|
46
|
Gao Y, Cao QQ, Chen YH, Granato D, Wang JQ, Yin JF, Zhang XB, Wang F, Chen JX, Xu YQ. Effects of the Baking Process on the Chemical Composition, Sensory Quality, and Bioactivity of Tieguanyin Oolong Tea. Front Nutr 2022; 9:881865. [PMID: 35651510 PMCID: PMC9150783 DOI: 10.3389/fnut.2022.881865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Tieguanyin oolong tea (TOT), a semi-oxidized tea originating from Anxi county in China, is categorized into jade TOT, medium-baked TOT, and deep-baked TOT, based on different baking processes. To study the effects of baking, chemical analysis, sensory evaluation, and bioactivity assessments of the three TOTs were conducted. The results indicated that the baking process promoted the formation of colored macromolecules (e.g., theabrownins), which affected the color of tea infusion. Free amino acids underwent the Maillard reaction and generated specific Maillard reaction products, such as 5-hydroxymethylfurfural and furfural, which modified the taste and aroma. Floral and fresh volatiles were remarkably reduced, while multiple new volatiles were produced, forming a typically baked aroma. The antioxidant activity and antibacterial activity were reduced after baking, which might be associated with the decrease of monomeric catechins. These results provide a scientific basis for understanding the changes caused by the baking process.
Collapse
Affiliation(s)
- Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Qing-Qing Cao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Yu-Hong Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Jie-Qiong Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- Jun-Feng Yin,
| | - Xue-Bo Zhang
- National Tea Quality Supervision and Inspection Center, Fujian, China
| | - Fang Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Jian-Xin Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- *Correspondence: Yong-Quan Xu,
| |
Collapse
|
47
|
Liang S, Gao Y, Fu YQ, Chen JX, Yin JF, Xu YQ. Innovative technologies in tea beverage processing for quality improvement. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
48
|
Effects of Hydrogen Peroxide Produced by Catechins on the Aroma of Tea Beverages. Foods 2022; 11:foods11091273. [PMID: 35563996 PMCID: PMC9102859 DOI: 10.3390/foods11091273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Hydrogen peroxide has a significant effect on the flavor of tea beverages. In this study, the yield of hydrogen peroxide in (-)-epigallocatechin gallate (EGCG) solution was first investigated and found to be significantly enhanced under specific conditions, and the above phenomenon was amplified by the addition of linalool. Then, an aqueous hydrogen peroxide solution was added to a linalool solution and it was found that the concentration of linalool was significantly reduced in the above-reconstituted system. These findings were verified by extending the study system to the whole green tea infusions. The results suggested that the production of hydrogen peroxide in tea beverages may be dominated by catechins, with multiple factors acting synergistically, thereby leading to aroma deterioration and affecting the quality of tea beverages. The above results provided a feasible explanation for the deterioration of flavor quality of green tea beverages with shelf life.
Collapse
|
49
|
Tea Infusions as a Source of Phenolic Compounds in the Human Diet. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Phenolic compounds are components with proven beneficial effects on the human body, primarily due to their antioxidant activity. In view of the high consumption of tea and the numerous factors that affect the nutritional value of its infusions, the aim of this study was to identify the effects of tea type and duration of leaf extraction with water on the levels of phenolic compounds and other components that determine biological activity (oxalates, Ca, Na, Cu, and Mn). Based on assays, infusions of red tea prepared for 20 min were found to be the best source of phenolics (202.9 mg/100 mL), whereas the lowest level of these compounds was determined in infusions of black tea extracted from leaves for 30 min (46.9 mg/100 mL). The highest degree of increase in polyphenol content (by approx. 50%) was noted in red and green tea infused for between 10 and 20 min, whereas for black tea, polyphenol levels decreased with time. The biological activity of tea infusions appears to be determined to the greatest extent by the interactions between phenolic compounds and oxalates (r = 0.6209), calcium (r = 0.8516), and sodium (0.8045). A daily intake of three to four mugs (1 L) of tea infusions provides the human body the entire amount of phenolics recommended for health reasons (as regards red tea, this is possible at 1/3 of the volume) and covers the daily requirement for manganese, as well as (partially) copper.
Collapse
|