1
|
Luo X, Tan J, Yao Y, Wu N, Chen S, Xu L, Zhao Y, Tu Y. Effects of different temperatures on the physicochemical characteristics, microstructure and protein structure of preserved egg yolk. Food Chem X 2024; 22:101278. [PMID: 38524781 PMCID: PMC10957459 DOI: 10.1016/j.fochx.2024.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
To clarify the mechanism of lower temperatures promoted the solidification of preserved egg yolk, the effects of temperature (4 °C, 10 °C and 25 °C) on the physicochemical properties, microstructure and protein structure of preserved egg yolk were studied. Results showed that the exterior egg yolk (EEY) exhibited higher pH, hardness and free sulfhydryl content at low-temperature pickling. The microstructure showed that the EEY gradually formed a denser gel network structure at lower temperatures. Electrophoresis results and Fourier transform infrared spectroscopy (FTIR) indicated that there were different degrees of protein degradation and cross-linking of proteins in the IEY (the interior egg yolk) and EEY and the decrease of β-sheets in the secondary structure was accompanied by an increase of β-turns during the formation of egg yolk gels. These results indicated that egg yolk solidification was faster and denser gel structure at 4 °C and 10 °C.
Collapse
Affiliation(s)
- Xianlong Luo
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| | - Ji'en Tan
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Nanchang 330045, China
| |
Collapse
|
2
|
Zhang W, Yang Y, Su Y, Gu L, Chang C, Li J. Investigating the mechanism of antioxidants as egg white powder flavor modifiers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2621-2629. [PMID: 37985210 DOI: 10.1002/jsfa.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND The uses of egg white powder (EWP) are restricted because of its odor. It is necessary to find a method to improve its flavor. In this paper, three different antioxidants - green tea extract (GTE), sodium ascorbate (SA), and glutathione (GSH) - were selected to modify the flavor. The physicochemical and structural properties of EWP were investigated to study the mechanism of the formation and release of volatile compounds. RESULTS Antioxidants can modify the overall flavor of EWP significantly, inhibiting the generation or release of nonanal, 3-methylbutanal, heptanal, decanal, geranyl acetone, and 2-pemtylfuran. A SA-EWP combination showed the lowest concentration of 'off' flavor compounds; GTE-EWP and GSH-EWP could reduce several 'off' flavor compounds but increased the formation of geranyl acetone and furans. The changes in the carbonyl content and the amino acid composition confirmed the inhibition of antioxidants with the oxidative degradation of proteins or characteristic amino acids. The results of fluorescence spectroscopy and Fourier transform infrared (FTIR) spectroscopy provided structural information regarding EWP, which showed the release of volatile compounds decreased due to structural changes. For example, the surface hydrophobicity increased and the protein aggregation state changed. CONCLUSIONS Antioxidants reduce the 'off' flavor of EWP in two ways: they inhibit protein oxidation and Maillard reactions (they inhibit formation of 3-methylbutanal and 2-pemtylfuran) and they enhance the binding ability of heat-denatured proteins (reducing the release of nonanal, decanal, and similar compounds). © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weijian Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China
| |
Collapse
|
3
|
Chen R, Jin H, Pan J, Zeng Q, Lv X, Xia J, Ma J, Shi M, Jin Y. Underlying mechanisms of egg white thinning in hot spring eggs during storage: Weak gel properties and quantitative proteome analysis. Food Res Int 2023; 172:113157. [PMID: 37689846 DOI: 10.1016/j.foodres.2023.113157] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
As a weakly gelling protein, hot spring egg white underwent thinning during storage. This study explored the mechanism of thinning in hot spring egg white from the perspective of "gel structure and protein composition" using quantitative proteomics, SEM, SDS-PAGE, and other techniques. Quantitative proteomics analysis showed that there were 81 (44 up-regulated and 21 down-regulated) key proteins related to thinning of hot spring egg white. The changes in the relative abundance of proteins such as ovalbumin-related Y, mucin-6, lysozyme, ovomucoid, and ovotransferrin might be important reasons for thinning in hot spring egg white. SEM results indicated that the gel network gradually became regular and uniform, with large pores appearing on the cross-section and being pierced. Along with the decrease in intermolecular electrostatic repulsion, protein molecules gradually aggregated. The particle size gradually increased from 139.1 nm to 422.5 nm. Meanwhile, the surface hydrophobicity, and disulfide bond content gradually increased. These changes might be the reasons for thinning in hot spring egg white during storage. It can provide a new perspective for studying the thinning mechanism of weakly gelling egg whites.
Collapse
Affiliation(s)
- Rong Chen
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haobo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajing Pan
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zeng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiyu Xia
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaxuan Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Manqi Shi
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Xu Y, Yang M, Yang T, Yang W, Wang Y, Zhang J. Untargeted GC-MS and FT-NIR study of the effect of 14 processing methods on the volatile components of Polygonatum kingianum. FRONTIERS IN PLANT SCIENCE 2023; 14:1140691. [PMID: 37223798 PMCID: PMC10200983 DOI: 10.3389/fpls.2023.1140691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023]
Abstract
Introduction Polygonatum kingianum is a traditional medicinal plant, and processing has significantly impacts its quality. Methods Therefore, untargeted gas chromatography-mass spectrometry (GC-MS) and Fourier transform-near-infrared spectroscopy (FT-NIR) were used to analyze the 14 processing methods commonly used in the Chinese market.It is dedicated to analyzing the causes of major volatile metabolite changes and identifying signature volatile components for each processing method. Results The untargeted GC-MS technique identified a total of 333 metabolites. The relative content accounted for sugars (43%), acids (20%), amino acids (18%), nucleotides (6%), and esters (3%). The multiple steaming and roasting samples contained more sugars, nucleotides, esters and flavonoids but fewer amino acids. The sugars are predominantly monosaccharides or small molecular sugars, mainly due to polysaccharides depolymerization. The heat treatment reduces the amino acid content significantly, and the multiple steaming and roasting methods are not conducive to accumulating amino acids. The multiple steaming and roasting samples showed significant differences, as seen from principal component analysis (PCA) and hierarchical cluster analysis (HCA) based on GC-MS and FT-NIR. The partial least squares discriminant analysis (PLS-DA) based on FT-NIR can achieve 96.43% identification rate for the processed samples. Discussion This study can provide some references and options for consumers, producers, and researchers.
Collapse
Affiliation(s)
- Yulin Xu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Meiquan Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Tianmei Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Weize Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jinyu Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
5
|
Zheng M, Chen S, Yao Y, Wu N, Xu M, Zhao Y, Tu Y. A review on the development of pickled eggs: rapid pickling and quality optimization. Poult Sci 2023; 102:102468. [PMID: 36682130 PMCID: PMC9876998 DOI: 10.1016/j.psj.2022.102468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023] Open
Abstract
Pickled eggs enjoy a long processing history with unique flavor and rich nutrition but suffer from long pickling cycle due to the limitations of traditional processing methods. In terms of quality, salted egg whites have the disadvantage of high sodium content, and salted egg yolks have problems such as hard core and black circle around outer layer. Likewise, the quality of preserved eggs is challenged by the black spots (dots) on the eggshells and the high content of heavy metals in the egg contents. The sustainable development of traditional pickled eggs are hindered by these defects and extensive research has been carried out in recent years. Based on the elaboration of the quality formation mechanism of salted eggs and preserved eggs, this paper reviewed the processing principles and applications of rapid pickling technologies like ultrasonic technology, magnetoelectric-assisted technology, water cycle technology, vacuum decompression technology, and pulsed pressure technology, as well as the quality optimization methods such as controlling the sodium content of the salted egg whites, improving the quality of salted egg yolks, promoting the quality of lead-free preserved eggs, and developing heavy metal-free preserved eggs. In the end, the future development trend of traditional pickled eggs was summarized and prospected in order to provide theoretical guidance for the actual production.
Collapse
Affiliation(s)
- Mengting Zheng
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|