1
|
Chen C, Liu Z, Xiong W, Yao Y, Li J, Wang L. Effect of alkaline treatment duration on rapeseed protein during pH-shift process: Unveiling physicochemical properties and enhanced emulsifying performance. Food Chem 2024; 459:140280. [PMID: 38991445 DOI: 10.1016/j.foodchem.2024.140280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
This study aims to investigate the influence of alkaline treatment duration (0-5 h) on the physicochemical properties and emulsifying performance of rapeseed protein during pH-shift process. Results showed that a 4-h alkaline treatment significantly reduced the particle size of rapeseed protein and led to a notable decrease in disulfide bond content, as well as alterations in subunit composition. Moreover, solubility of rapeseed protein increased from 18.10 ± 0.13% to 40.44 ± 1.74% post-treatment, accompanied by a ∼ 40% enhancement in emulsifying properties. Morphological analysis revealed superior plasticity and sharper contours in 4-h alkali-treated rapeseed protein emulsions compared to untreated counterparts. Rheological analysis indicated higher viscosity and elasticity in the alkali-treated group. Overall, 4-h alkaline treatment markedly enhanced the multifaceted functional attributes of rapeseed protein during pH-shift process, rendering it a promising emulsifier in the food industry.
Collapse
Affiliation(s)
- Chao Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, 210023, China
| | - Zihua Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, 210023, China
| | - Wenfei Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, 210023, China
| | - Yijun Yao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, 210023, China
| | - Jing Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, 210023, China
| | - Lifeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
2
|
Xu X, Fan L, Li J. Freeze-thaw stability of high-internal-phase emulsion stabilized by chickpea protein microgel particles and its application in surimi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8621-8633. [PMID: 39011982 DOI: 10.1002/jsfa.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/12/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Future applications of high-internal-phase emulsions (HIPEs) are highly regarded, but poor freeze-thaw stability limits their utilization in frozen products. This study aimed to characterize the structure of chickpea protein microgel particles (HCPI) induced by NaCl and to assess its impact on the freeze-thaw stability of HIPEs. RESULTS The results showed that NaCl induction (0-400 mmol L-1) increased the surface hydrophobicity (175.9-278.9) and interfacial adsorbed protein content (84.9%-91.3%) of HCPI. HIPEs prepared with HCPI induced by high concentration of NaCl exhibited superior flocculation index and centrifugal stability, and their freeze-thaw stability was better than that of natural chickpea protein. The increase in NaCl concentration reduced the droplet aggregation and coalescence index of the freeze-thaw emulsions, diminishing the precipitation of oil from the emulsion. Linear and nonlinear rheology showed that the strengthened gel structure (higher G' values) restricted water flow and counteracted the damage to the interfacial film by ice crystals at 100-400 mmol L-1 NaCl, thus improving the viscoelasticity of the freeze-thaw emulsions. Finally, the thawing loss of surimi gel with HCPI-200 HIPE was reduced by 2.04% compared to directly adding oil. CONCLUSION This study provided a promising strategy to improve the freeze-thaw stability of HIPEs and reduce the thawing loss of frozen products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyun Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Santoso T, Ho TM, Vinothsankar G, Jouppila K, Chen T, Owens A, Lazarjani MP, Farouk MM, Colgrave ML, Otter D, Kam R, Le TT. Effects of Laccase and Transglutaminase on the Physicochemical and Functional Properties of Hybrid Lupin and Whey Protein Powder. Foods 2024; 13:2090. [PMID: 38998597 PMCID: PMC11241515 DOI: 10.3390/foods13132090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Plant-based protein is considered a sustainable protein source and has increased in demand recently. However, products containing plant-based proteins require further modification to achieve the desired functionalities akin to those present in animal protein products. This study aimed to investigate the effects of enzymes as cross-linking reagents on the physicochemical and functional properties of hybrid plant- and animal-based proteins in which lupin and whey proteins were chosen as representatives, respectively. They were hybridised through enzymatic cross-linking using two laccases (laccase R, derived from Rhus vernicifera and laccase T, derived from Trametes versicolor) and transglutaminase (TG). The cross-linking experiments were conducted by mixing aqueous solutions of lupin flour and whey protein concentrate powder in a ratio of 1:1 of protein content under the conditions of pH 7, 40 °C for 20 h and in the presence of laccase T, laccase R, or TG. The cross-linked mixtures were freeze-dried, and the powders obtained were assessed for their cross-linking pattern, colour, charge distribution (ζ-potential), particle size, thermal stability, morphology, solubility, foaming and emulsifying properties, and total amino acid content. The findings showed that cross-linking with laccase R significantly improved the protein solubility, emulsion stability and foaming ability of the mixture, whereas these functionalities were lower in the TG-treated mixture due to extensive cross-linking. Furthermore, the mixture treated with laccase T turned brownish in colour and showed a decrease in total amino acid content which could be due to the enzyme's oxidative cross-linking mechanism. Also, the occurrence of cross-linking in the lupin and whey mixture was indicated by changes in other investigated parameters such as particle size, ζ-potential, etc., as compared to the control samples. The obtained results suggested that enzymatic cross-linking, depending on the type of enzyme used, could impact the physicochemical and functional properties of hybrid plant- and animal-based proteins, potentially influencing their applications in food.
Collapse
Affiliation(s)
- Teguh Santoso
- AUT Centre for Future Foods, Auckland University of Technology, Auckland 1010, New Zealand
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Thao M. Ho
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Geerththana Vinothsankar
- AUT Centre for Future Foods, Auckland University of Technology, Auckland 1010, New Zealand
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Kirsi Jouppila
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Tony Chen
- AUT Centre for Future Foods, Auckland University of Technology, Auckland 1010, New Zealand
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Adrian Owens
- AUT Centre for Future Foods, Auckland University of Technology, Auckland 1010, New Zealand
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | | | - Mustafa M. Farouk
- Food Technology and Processing, Smart Foods & Bioproducts, AgResearch Ltd., Grasslands Research Centre, Palmerston North 4440, New Zealand
| | - Michelle L. Colgrave
- CSIRO Agriculture and Food, 306 Carmody Rd., St. Lucia, QLD 4067, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Don Otter
- DEO Dairy Consulting, Marton 4787, New Zealand
| | - Rothman Kam
- AUT Centre for Future Foods, Auckland University of Technology, Auckland 1010, New Zealand
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Thao T. Le
- AUT Centre for Future Foods, Auckland University of Technology, Auckland 1010, New Zealand
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
4
|
Li X, Pu Q, Xu Y, Yang H, Wu Y, Wang W, Li Y. The masking phenomenon of microplastics additives on oxidative stress responses in freshwater food chains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172156. [PMID: 38588742 DOI: 10.1016/j.scitotenv.2024.172156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024]
Abstract
The variability and intrinsic mechanisms of oxidative stress induced by microplastics at different trophic levels in freshwater food chains are not well understood. To comprehensively assess the oxidative stress induced by polystyrene microplastics (PS-MPs) in freshwater food chains, the present study first quantified the oxidative stress induced by PS-MPs in organisms at different trophic levels using factorial experimental design and molecular dynamics methods. Then focuses on analyzing the variability of these responses across different trophic levels using mathematical statistical analysis. Notably, higher trophic level organisms exhibit diminished responses under PS-MPs exposure. Furthermore, the coexistence of multiple additives was found to mask these responses, with antioxidant plastic additives significantly influencing oxidative stress responses. Mechanism analysis using computational chemistry simulation determines that protein structure and amino acid characteristics are key factors driving PS-MPs induced oxidative stress variation in freshwater organisms at different nutrient levels. Increased hydrophobic additives induce protein helicalization and amino acid residue aggregation. This study systematically reveals the variability of biological oxidative stress response under different nutrient levels, emphasizing the pivotal role of chemical additives. Overall, this study offers crucial insights into PS-MPs' impact on oxidative stress responses in freshwater ecosystems, informing future environmental risk assessment.
Collapse
Affiliation(s)
- Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Yingjie Xu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Yang Wu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Wenwen Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
5
|
Patil ND, Bains A, Sridhar K, Bhaswant M, Kaur S, Tripathi M, Lanterbecq D, Chawla P, Sharma M. Extraction, Modification, Biofunctionality, and Food Applications of Chickpea (Cicer arietinum) Protein: An Up-to-Date Review. Foods 2024; 13:1398. [PMID: 38731769 PMCID: PMC11083271 DOI: 10.3390/foods13091398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Plant-based proteins have gained popularity in the food industry as a good protein source. Among these, chickpea protein has gained significant attention in recent times due to its high yields, high nutritional content, and health benefits. With an abundance of essential amino acids, particularly lysine, and a highly digestible indispensable amino acid score of 76 (DIAAS), chickpea protein is considered a substitute for animal proteins. However, the application of chickpea protein in food products is limited due to its poor functional properties, such as solubility, water-holding capacity, and emulsifying and gelling properties. To overcome these limitations, various modification methods, including physical, biological, chemical, and a combination of these, have been applied to enhance the functional properties of chickpea protein and expand its applications in healthy food products. Therefore, this review aims to comprehensively examine recent advances in Cicer arietinum (chickpea) protein extraction techniques, characterizing its properties, exploring post-modification strategies, and assessing its diverse applications in the food industry. Moreover, we reviewed the nutritional benefits and sustainability implications, along with addressing regulatory considerations. This review intends to provide insights into maximizing the potential of Cicer arietinum protein in diverse applications while ensuring sustainability and compliance with regulations.
Collapse
Affiliation(s)
- Nikhil Dnyaneshwar Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (N.D.P.)
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education Deemed to be University, Coimbatore 641021, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 9808579, Japan
- Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (N.D.P.)
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (N.D.P.)
| | | |
Collapse
|
6
|
Zhu H, Wang L, Li X, Shi J, Scanlon M, Xue S, Nosworthy M, Vafaei N. Canola Seed Protein: Pretreatment, Extraction, Structure, Physicochemical and Functional Characteristics. Foods 2024; 13:1357. [PMID: 38731728 PMCID: PMC11083811 DOI: 10.3390/foods13091357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The rapid growth of the global population has led to an unprecedented demand for dietary protein. Canola seeds, being a widely utilized oil resource, generate substantial meal by-products following oil extraction. Fortunately, canola meals are rich in protein. In this present review, foremost attention is directed towards summarizing the characteristics of canola seed and canola seed protein. Afterwards, points of discussion related to pretreatment include an introduction to pulsed electric field treatment (PEF), microwave treatment (MC), and ultrasound treatment (UL). Then, the extraction method is illustrated, including alkaline extraction, isoelectric precipitation, acid precipitation, micellization (salt extraction), and dry fractionation and tribo-electrostatic separation. Finally, the structural complexity, physicochemical properties, and functional capabilities of rapeseed seeds, as well as the profound impact of various applications of rapeseed proteins, are elaborated. Through a narrative review of recent research findings, this paper aims to enhance a comprehensive understanding of the potential of canola seed protein as a valuable nutritional supplement, highlighting the pivotal role played by various extraction methods. Additionally, it sheds light on the broad spectrum of applications where canola protein demonstrates its versatility and indispensability as a resource.
Collapse
Affiliation(s)
- Huipeng Zhu
- Nano-Biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China (L.W.)
| | - Lu Wang
- Nano-Biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China (L.W.)
| | - Xiaoyu Li
- Nano-Biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China (L.W.)
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - John Shi
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - Martin Scanlon
- Faculty of Agricultural and Food Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Sophia Xue
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - Matthew Nosworthy
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - Nazanin Vafaei
- Faculty of Agricultural and Food Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
7
|
Wang J, Zhou X, Ju S, Cai R, Roopesh MS, Pan D, Du L. Influence of atmospheric pressure plasma jet on the structural, functional and digestive properties of chickpea protein isolate. Food Res Int 2023; 174:113565. [PMID: 37986520 DOI: 10.1016/j.foodres.2023.113565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Chickpea protein (CPI) is a promising dietary protein and potential substitute for soy protein in food product development due to its high protein content and low allergenicity. However, CPI possesses denser tertiary and quaternary structures and contains certain amount of anti-nutritional factors, both of which constrain its functional properties and digestibility. The objective of this study was to assess the effectiveness of atmospheric pressure plasma jets (APPJ) as a non-thermal method for enhancing the functional characteristics and digestibility of CPI. In this study, the reactive oxygen and nitrogen species generated by the APPJ treatment led to protein oxidation and increased carbonyl and di-tyrosine contents. At the same time, the secondary, tertiary and microstructural structures of CPI were changed. The solubility, water holding capacity, fat absorption capacity, emulsifying capacity and foaming capacity of CPI were significantly improved after 30 s APPJ treatment, and a higher storage modulus in rheology was observed. Additionally, it was observed that the in vitro protein digestibility (IVPD) of APPJ-treated CPI increased significantly from 44.85 ± 0.6 % to 50.2 ± 0.59 % following in vitro simulated gastric and intestinal digestion, marking a noteworthy improvement of 11.93 %. These findings indicate that APPJ processing can enhance the functional and digestive properties of CPI through structural modification and expand its potential applications within the food industry.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xinyi Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Shilong Ju
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Ruiyi Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton AB T6G 2P5, Canada
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
8
|
Li G, Zuo X, Luo X, Chen Z, Cao W, Lin H, Qin X, Wu L, Zheng H. Functional, physicochemical, and structural properties of the hydrolysates derived from the abalone ( Haliotis discus subsp hannai Ino) foot muscle proteins. Food Chem X 2023; 19:100841. [PMID: 37680759 PMCID: PMC10481181 DOI: 10.1016/j.fochx.2023.100841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/29/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
This study was conducted to investigate functional, physicochemical, and structural properties of abalone foot muscle proteins (AFPs) and their hydrolysates (HAFPs) obtained using animal protease (HA), papain (HPP), and Protamex® (HP) at different time points. The HA-hydrolysate obtained after 0.5 h of treatment demonstrated the highest solubility at pH 7.0 (84.19%); the HPP-hydrolysate at 4 h exhibited the highest degree of hydrolysis (11.4%); the HPP-hydrolysate at 0.5 h had the highest oil holding capacity (2.62 g/g) and emulsion stability index (39.73 min), and the HP-hydrolysate at 4 h had the highest emulsifying activity index (93.23 m2/g) and foaming stability (91.45%); Regarding the physicochemical properties, the HPP-hydrolysates revealed the largest particle size, higher absolute zeta potential, and superior interfacial activity. Structural characterization demonstrated the enzymolysis-based changes in the composition and the secondary structure of the AFPs. These results provide practical support for the theoretical basis of the use of AFPs as a source of nutritive proteins in the food industry.
Collapse
Affiliation(s)
- Guiyan Li
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiang Zuo
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinlin Luo
- College of Food Science and Engineering, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Zhongqin Chen
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenhong Cao
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Haisheng Lin
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Qin
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Leiyan Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Huina Zheng
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
9
|
Tao Y, Wang P, Xu X, Chen J, Huang M, Zhang W. Effects of ultrasound treatment on the morphological characteristics, structures and emulsifying properties of genipin cross-linked myofibrillar protein. ULTRASONICS SONOCHEMISTRY 2023; 97:106467. [PMID: 37290150 PMCID: PMC10279922 DOI: 10.1016/j.ultsonch.2023.106467] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/20/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Genipin is a natural crosslinker that improves the functional properties of proteins by modifying its structures. This study aimed to investigate the effects of sonication on the emulsifying properties of different genipin concentration-induced myofibrillar protein (MP) cross-linking. The structural characteristics, solubility, emulsifying properties, and rheological properties of genipin-induced MP crosslinking without sonication (Native), sonication before crosslinking (UMP), and sonication after crosslinking (MPU) treatments were determined, and the interaction between genipin and MP were estimated by molecular docking. The results demonstrated that hydrogen bond might be the main forces for genipin binding to the MP, and 0.5 μM/mg genipin was a desirable concentration for protein cross-linking to improve MP emulsion stability. Ultrasound treatment before and after crosslinking were better than Native treatment to improve the emulsifying stability index (ESI) of MP. Among the three treatment groups at the 0.5 μM/mg genipin treatment, the MPU treatment group showed the smallest size, most uniform protein particle distribution, and the highest ESI (59.89%). Additionally, the highest α-helix (41.96%) in the MPU + G5 group may be conducive to the formation of a stable and multilayer oil-water interface. Furthermore, the free groups, solubility, and protein exposure extent of the MPU groups were higher than those of UMP and Native groups. Therefore, this work suggests that the treatment of cross-linking followed by ultrasound (MPU) could be a desirable approach for improving the emulsifying stability of MP.
Collapse
Affiliation(s)
- Ye Tao
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Peng Wang
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Mingyuan Huang
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Weiyi Zhang
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
10
|
Chen Y, Lan D, Wang W, Zhang W, Wang Y. Effect of transglutaminase-catalyzed crosslinking behavior on the quality characteristics of plant-based burger patties: A comparative study with methylcellulose. Food Chem 2023; 428:136754. [PMID: 37418873 DOI: 10.1016/j.foodchem.2023.136754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023]
Abstract
Transglutaminase (TGase) is gaining increasing recognition as a novel and healthier bio-binder for meat analogs. This work focused on the TGase-induced crosslinking behaviors, and then evaluated the difference in quality characteristics (Texture, water distribution, cooking properties, volatile flavor and protein digestibility) of peanut protein-based burger patties treated with TGase and traditional binder (methylcellulose, MC). TGase-catalyzed crosslinking, enabling amino acids to participate in the formation of covalent bonds rather than non-covalent bonds, and promoted the formation of protein aggregates and dense gel networks by changing the protein structure, ultimately improving the quality characteristics of burger patties. Compared with the TGase treatment, MC-treated burger patties showed a greater texture parameter, lower cooking loss, higher flavor retention but a lower degree of digestibility. The findings will contribute to a better understanding of the roles of TGase and traditional binders in plant-based meat analogs.
Collapse
Affiliation(s)
- Ying Chen
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongming Lan
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Weifei Wang
- Sericultural and Agrifood Res Inst, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Weiqian Zhang
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yonghua Wang
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Youmei Institute of Intelligent Bio-manufacturing, Foshan 528225, China.
| |
Collapse
|
11
|
Guo Y, Wang M, Xing K, Pan M, Wang L. Covalent binding of ultrasound-treated japonica rice bran protein to catechin: Structural and functional properties of the complex. ULTRASONICS SONOCHEMISTRY 2023; 93:106292. [PMID: 36669429 PMCID: PMC9868872 DOI: 10.1016/j.ultsonch.2023.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Due to the existence of many disulfide bonds in japonica rice bran protein (JRBP) molecules, their solubility is poor, which seriously affects other functional properties. To improve the functional characteristics of JRBP molecules, they were processed by ultrasound technology, and JRBP-catechin (CC) covalent complex was prepared. The structural and functional properties of indica and japonica rice bran proteins and their complexes were compared; furthermore, the changes in the structural and functional properties of JRBP-CC under different ultrasound conditions were investigated. The results showed that compared with indica rice bran protein (IRBP), the secondary structure of JRBP-CC was very different, the water holding capacity (WHC) was higher, and the emulsification performance was better. Different ultrasound conditions had different effects on the functional properties of JRBP-CC. When the ultrasound power was 200 W, the λmax redshift of the JRBP-CC complex was the most significant, the particle size was the smallest, the absolute value of the zeta potential was the largest, and the hydrophobicity and microstructure of the JRBP-CC complex were the best. Concurrently, the maximum WHC and oil holding capacity (OHC) of JRBP-CC under these conditions were 7.54 g/g and 6.87 g/g, respectively. Moreover, the emulsifying activity index (EAI) and emulsifying stability index (ESI) were 210 m2/g and 47.8 min, respectively, and the scavenging activities of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ABTS+ were 71.96 % and 80.07 %, respectively.
Collapse
Affiliation(s)
- Yanfei Guo
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Minghao Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Kaiwen Xing
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingzhe Pan
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Liqi Wang
- School of Food Science, Harbin University of Commerce, Harbin 150000, China
| |
Collapse
|
12
|
Fu Y, Liu C, Yan X, Jiang G, Dang Q, Wang L, Liu X. Physicochemical and functional properties of the muscle protein fraction of Hypomesus olidus. Food Chem X 2022; 16:100484. [PMID: 36313272 PMCID: PMC9615135 DOI: 10.1016/j.fochx.2022.100484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
The physicochemical and functional properties of myofibrillar protein (MP), sarcoplasmic protein (SP), and myostromin (MY) in Hypomesus olidus muscle were evaluated and reported in this study. These fractions are rich in Glu. Three proteins exhibited significantly different morphologies, colors, and particle sizes. The main protein bands of MP, SP, and MY are 15-220 kDa, 26-60 kDa, and 15-245 kDa, respectively. In particular, MP is more hydrophobic. Three proteins exhibited a maximum UV absorption peak at 270 nm, and all amide I secondary structures were shown to be composed of repetitive units (e.g., α-helices and β-sheets). The three proteins demonstrated a predominantly amorphous halo, with Td values of 52.22 °C, 59.16 °C, and 58.09 °C. Regarding their properties in water/oil absorption, emulsification, and foaming, MP is the most preferred, followed by SP and MY. In conclusion, Hypomesus olidus muscle proteins are novel and potential functional nutrition ingredients for the food industry.
Collapse
Affiliation(s)
- Yuan Fu
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China
| | | | - Xiaohui Yan
- Finance and Taxation College, Jilin Business and Technology College, No. 1666, Kalun Lake Street, Changchun 130102, Jilin, China
| | - Guochuan Jiang
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China
| | - Qiao Dang
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China
| | - Liyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China
- Corresponding authors.
| | - Xuejun Liu
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China
- Corresponding authors.
| |
Collapse
|