1
|
Chen Z, Shimizu S, Ji S, Pan J, Wang Y, Feng R. A novel BODIPY-based fluorescent probe for naked-eye detection of the highly alkaline pH. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125083. [PMID: 39260237 DOI: 10.1016/j.saa.2024.125083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
A novel alkaline pH-responsive probe based on an asymmetric aza-BODIPY was synthesized in a one-pot Schiff base formation reaction. This pH-sensitive probe comprises an asymmetric aza-BODIPY as the luminescent core, with a benzothiazole moiety connected via an imine bond serving as the recognition site. The probe exhibits a turn-off fluorescence response upon exposure to alkaline pH (9.6-12.4), while a bathochromic band in the absorption emerges due to its extended π-conjugation system, accompanied by a visible colorimetric change from yellow to orange to red. Furthermore, the probe responds linearly in the highly alkaline region, with a pKa of 11.65. The recognition mechanism of the probe towards alkaline pH relies on the deprotonation of the imine group on the aza-BODIPY core, leading to an enhanced degree of π-electron conjugation. The quenched fluorescence intensity is attributed to the increased non-radiative decay of the deprotonated form of the probe. The probe demonstrates high reliability for practical applications due to its photostability and reversibility. This study provides new insights into the design of probes for detecting high alkaline pH levels.
Collapse
Affiliation(s)
- Zuoxu Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Soji Shimizu
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan; Center for Molecular Systems (CMS), Kyushu University, Fukuoka 819-0395, Japan
| | - Sheng Ji
- Jiangsu Chunlan Clean Energy Academy Co., Ltd., Taizhou 225300, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yue Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ru Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Zhang H, Liu M, Liu Y, Xiao J, Ren Y, Gao X. Portable real-time determination of Escherichia coli O157:H7 and Staphylococcus aureus based on smartphones and hydrogels. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125119. [PMID: 39276468 DOI: 10.1016/j.saa.2024.125119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
The aptamers functionalized orange-emission carbon dots (OCDs) and green-emission carbon dots (GCDs) had dual-emission peaks with single excitation. Tungsten disulfide nanosheets (WS2 NSs)-triggered fluorescence quenching achieved the ratiometric fluorescence determination of Escherichia coli O157:H7 (E. coli O157:H7) and Staphylococcus aureus (S. aureus) with wide ranges of 18-1.8 × 106 and 37-3.7 × 107 CFU/mL and low detection limits of 8 and 20 CFU/mL, respectively. The results in real sample with recoveries of 90-101 % and RSD < 4.12 % were no significant difference from standard plate counting method. Meanwhile, the dual-color CDs were further adopted in the smartphone-assisted hydrogel platform and achieved speedy, sensitive, portable and real-time determination of E. coli O157:H7 and S. aureus in real samples. This work has not only developed ratiometric fluorescence detection and constructed a portable hydrogel platform, but also provided a unique strategy in developing a time-efficient and easy-to-use portable device in food safety monitoring.
Collapse
Affiliation(s)
- Hongmei Zhang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Menglong Liu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Yiyao Liu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Jingyi Xiao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Yi Ren
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Xue Gao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
3
|
Wang C, Gu C, Zhao X, Yu S, Zhang X, Xu F, Ding L, Huang X, Qian J. Self-designed portable dual-mode fluorescence device with custom python-based analysis software for rapid detection via dual-color FRET aptasensor with IoT capabilities. Food Chem 2024; 457:140190. [PMID: 38924915 DOI: 10.1016/j.foodchem.2024.140190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
An innovative aptasensor incorporating MoS2-modified bicolor quantum dots and a portable spectrometer, designed for the simultaneous detection of ochratoxin A (OTA) and aflatoxin B1 (AFB1) in corn was developed. Carbon dots and CdZnTe quantum dots were as nano-donors to label OTA and AFB1 aptamers, respectively. These labeled aptamers were subsequently attached to MoS2 receptors, enabling fluorescence resonance energy transfer (FRET). With targets, the labeled aptamers detached from the nano-donors, thereby disrupting the FRET process and resulting in fluorescence recovery. Furthermore, a portable dual-mode fluorescence detection system, complemented with customized python-based analysis software, was developed to facilitate rapid and convenient detection using this dual-color FRET aptasensor. The developed host program is connected to the spectrometer and transmits data to the cloud, enabling the device to have Internet of Things (IoT) characteristics. Connected to the cloud, this IoT-enabled device offers convenient and reliable fungal toxin detection for food safety.
Collapse
Affiliation(s)
- Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Chengdong Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shanshan Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaorui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Foyan Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lijun Ding
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Hu C, Wang W, Li Q, Liu B, Xiao F, Liu J, Yang S. A Ratiometric Fluorescence Assay for Detection of Ascorbic Acid Based on N,S Co-Doped Carbon Dots Combined With Ce 4. LUMINESCENCE 2024; 39:e4912. [PMID: 39354830 DOI: 10.1002/bio.4912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024]
Abstract
Hence, N,S-CDs with photoluminescent property were simply synthesized via a one-step hydrothermal method. Combined with the commercial reagent Ce4+, a ratiometric fluorescence assay for ascorbic acid (AA) detection was established. Ce4+, possessing oxidization, could directly oxidize o-phenylenediamine (OPD) to form the yellow fluorescent product oxOPD. Under the excitation wavelength of 370 nm, oxOPD had a maximum fluorescence emission at 562 nm. Meanwhile, due to the occurrence of the inner filter effect (IFE), oxOPD quenched the fluorescence of N,S-CDs. However, ascorbic acid (AA) inhibited the oxidation of Ce4+, causing the fluorescence of oxOPD at 562 nm to decrease, accompanied by an increase in the fluorescence belonging to N,S-CDs at 450 nm. Thus, a Ce4+-assisted ratiometric fluorescence method was established for AA detection. The two fluorescence output signals in this method had opposite changing trends, which could reduce system errors and improve the accuracy. This method was successfully applied to the determination of AA in drugs and fruits.
Collapse
Affiliation(s)
- Congcong Hu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, China
- Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Wenjuan Wang
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, China
| | - Qianwen Li
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, China
| | - Bin Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, China
| | - Fubing Xiao
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, China
| | - Jinquan Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, China
| | - Shengyuan Yang
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, China
| |
Collapse
|
5
|
Zeng J, Wu W, Chen X, Wang S, Wu H, El-Kady AA, Poapolathep A, Cifuentes A, Ibañez E, Li P, Zhang Z. A smartphone-assisted photoelectrochemical POCT method via Z-scheme CuCo 2S 4/Fe 3O 4 for simultaneously detecting co-contamination with microplastics in food and the environment. Food Chem 2024; 452:139430. [PMID: 38713984 DOI: 10.1016/j.foodchem.2024.139430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/09/2024]
Abstract
As emerging contaminants, microplastics threaten food and environmental safety. Dibutyl phthalate (DBP, released from microplastics) and benzo[a]pyrene (BaP, adsorbed on microplastics) coexisted in food and the environment, harming human health, requesting a sensitive and simultaneous testing method to monitor. To address current sensitivity, simultaneousness, and on-site portability challenges during dual targets in complex matrixes, CuCo2S4/Fe3O4 nanoflower was designed to develop a smartphone-assisted photoelectrochemical point-of-care test (PEC POCT). The carrier transfer mechanism in CuCo2S4/Fe3O4 was proven via density functional theory calculation. Under optimal conditions, the PEC POCT showed low detection limits of 0.126, and 0.132 pg/mL, wide linearity of 0.001-500, and 0.0005-50 ng/mL for DBP and BaP, respectively. The smartphone-assisted PEC POCT demonstrated satisfied recoveries (80.00%-119.63%) in real samples. Coherent results were recorded by comparing the PEC POCT to GC-MS (DBP) and HPLC (BaP). This novel method provides a practical platform for simultaneous POCT for food safety and environment monitoring.
Collapse
Affiliation(s)
- Jing Zeng
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, PR China; School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China
| | - Wenqin Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China
| | - Xiao Chen
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Shenling Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China
| | - Huimin Wu
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Ahmed A El-Kady
- Food Toxicology and Contaminants Department, National Research Centre, Giza, Egypt
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | | | - Elena Ibañez
- National Research Council Spain, CSIC, CIAL, Lab Food, Madrid, Spain
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China
| | - Zhaowei Zhang
- School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China.
| |
Collapse
|
6
|
Wei Y, Li W, Han Y, Xiong Y, Kuang Y, Zhang J. CdTe based water-soluble fluorescent probe for rapid detection of zilpaterol in swine urine and pork. Food Chem 2024; 445:138668. [PMID: 38367555 DOI: 10.1016/j.foodchem.2024.138668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Zilpaterol hydrochloride (zilpaterol) is used in animal feed as it can increase the lean meat mass. However, consuming zilpaterol-containing animal products may damage human health. Therefore, rapid detection of zilpaterol is attracting increasing research attention. This study aimed to developed a fast, accurate, and ultrasensitive fluorescence immunoassay based on CdTe quantum dots (QDs). A CdTe QD fluorescence sensor was synthesized from thioglycolic acid using a simple hydrothermal method. The morphology and structure of the CdTe QDs were characterized using transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. The detection limits of our method in swine urine and pork samples were 0.5 μg/L and 1.2 μg/kg, respectively. A wide linear range of 0.1-10000 μg/L (R2 = 0.996) was achieved. Both within-run precision (CVw) and between-run precision (CVb) were ≤ 10 %. The method was then successfully applied for the analysis of zilpaterol contents in swine urine and pork samples.
Collapse
Affiliation(s)
- Yihua Wei
- Institute for Quality & Safety and standards of Agricultural products rearch, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang 330200, China
| | - Weihong Li
- Institute for Quality & Safety and standards of Agricultural products rearch, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang 330200, China
| | - Yan Han
- Institute for Quality & Safety and standards of Agricultural products rearch, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang 330200, China
| | - Yan Xiong
- Institute for Quality & Safety and standards of Agricultural products rearch, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang 330200, China
| | - Yuanying Kuang
- Institute for Quality & Safety and standards of Agricultural products rearch, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang 330200, China
| | - Jinyan Zhang
- Institute for Quality & Safety and standards of Agricultural products rearch, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang 330200, China.
| |
Collapse
|
7
|
Chen X, Zhao C, Zhao Q, Yang Y, Yang S, Zhang R, Wang Y, Wang K, Qian J, Long L. Construction of a Colorimetric and Near-Infrared Ratiometric Fluorescent Sensor and Portable Sensing System for On-Site Quantitative Measurement of Sulfite in Food. Foods 2024; 13:1758. [PMID: 38890986 PMCID: PMC11171829 DOI: 10.3390/foods13111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Sulfites play imperative roles in food crops and food products, serving as sulfur nutrients for food crops and as food additives in various foods. It is necessary to develop an effective method for the on-site quantification of sulfites in food samples. Here, 7-(diethylamino) quinoline is used as a fluorescent group and electron donor, alongside the pyridinium salt group as an electron acceptor and the C=C bond as the sulfite-specific recognition group. We present a novel fluorescent sensor based on a mechanism that modulates the efficiency of intramolecular charge transfer (ICT), CY, for on-site quantitative measurement of sulfite in food. The fluorescent sensor itself exhibited fluorescence in the near-infrared light (NIR) region, effectively minimizing the interference of background fluorescence in food samples. Upon exposure to sulfite, the sensor CY displayed a ratiometric fluorescence response (I447/I692) with a high sensitivity (LOD = 0.061 μM), enabling accurate quantitative measurements in complex food environments. Moreover, sensor CY also displayed a colorimetric response to sulfite, making sensor CY measure sulfite in both fluorescence and colorimetric dual-signal modes. Sensor CY has been utilized for quantitatively measuring sulfite in red wine and sugar with recoveries between 99.65% and 101.90%, and the RSD was below 4.0%. The sulfite concentrations in live cells and zebrafish were also monitored via fluorescence imaging. Moreover, the sulfite assimilated by lettuce leaves was monitored, and the results demonstrated that excessive sulfite in leaf tissue could lead to leaf tissue damage. In addition, the sulfate-transformed sulfite in lettuce stem tissue was tracked, providing valuable insights for evaluating sulfur nutrients in food crops. More importantly, to accomplish the on-site quantitative measurement of sulfite in food samples, a portable sensing system was prepared. Sensor CY and the portable sensing system were successfully used for the on-site quantitative measurement of sulfite in food.
Collapse
Affiliation(s)
- Xiaodong Chen
- Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang 212013, China
| | - Chenglu Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qiwei Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yunfei Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sanxiu Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rumeng Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kun Wang
- Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang 212013, China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Zou Y, Shi Y, Wang T, Ji S, Zhang X, Shen T, Huang X, Xiao J, Farag MA, Shi J, Zou X. Quantum dots as advanced nanomaterials for food quality and safety applications: A comprehensive review and future perspectives. Compr Rev Food Sci Food Saf 2024; 23:e13339. [PMID: 38578165 DOI: 10.1111/1541-4337.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
The importance of food quality and safety lies in ensuring the best product quality to meet consumer demands and public health. Advanced technologies play a crucial role in minimizing the risk of foodborne illnesses, contamination, drug residue, and other potential hazards in food. Significant materials and technological advancements have been made throughout the food supply chain. Among them, quantum dots (QDs), as a class of advanced nanomaterials with unique physicochemical properties, are progressively demonstrating their value in the field of food quality and safety. This review aims to explore cutting-edge research on the different applications of QDs in food quality and safety, including encapsulation of bioactive compounds, detection of food analytes, food preservation and packaging, and intelligent food freshness indicators. Moreover, the modification strategies and potential toxicities of diverse QDs are outlined, which can affect performance and hinder applications in the food industry. The findings suggested that QDs are mainly used in analyte detection and active/intelligent food packaging. Various food analytes can be detected using QD-based sensors, including heavy metal ions, pesticides, antibiotics, microorganisms, additives, and functional components. Moreover, QD incorporation aided in improving the antibacterial and antioxidant activities of film/coatings, resulting in extended shelf life for packaged food. Finally, the perspectives and critical challenges for the productivity, toxicity, and practical application of QDs are also summarized. By consolidating these essential aspects into this review, the way for developing high-performance QD-based nanomaterials is presented for researchers and food technologists to better capitalize upon this technology in food applications.
Collapse
Affiliation(s)
- Yucheng Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Yongqiang Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Tianxing Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Shengyang Ji
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Tingting Shen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Universidade de Vigo, Ourense, Spain
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo P.B., Egypt
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| |
Collapse
|
9
|
Wang T, Zhang M, Lu Y, Liu Q, Niu Q, You T. Metal-organic-framework-confined quantum dots enhance photocurrent signals: A molecularly imprinted photoelectrochemical cathodic sensor for rapid and sensitive tetracycline detection. Anal Chim Acta 2024; 1293:342269. [PMID: 38331550 DOI: 10.1016/j.aca.2024.342269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Tetracycline (TC), a cost-effective broad-spectrum antibacterial drug, has been excessively utilized in the livestock and poultry industry, leading to a serious overabundance of TC in livestock wastewater. However, conventional analytical methods such as liquid chromatography and gas chromatography face challenges in achieving sensitive detection of trace amounts of TC in complex substrates. Therefore, it is imperative to develop a highly sensitive and anti-interference analytical method for the detection of tetracycline in livestock wastewater. RESULTS A porphyrin-based MOF (PCN-224)-confined carbon dots (CDs) material (CDs@PCN-224) was synthesized by a "bottle-around-ship" strategy. The reduced carrier migration distance is conducive to the separation of electron-hole pairs and enhanced the photocurrent signal due to the tight coupling of CDs and PCN-224. Further, molecularly imprinted polymer (MIP) was synthesized by rapid in-situ UV-polymerization and employed as a recognition element. The specific recognition of the target by imprinted cavities blocks electron transfer, resulting in a "turn off" response signal, thus realizing the selective detection of TC. Under optimal conditions, the constructed MIP-PEC cathodic sensor detected 1.00 × 10-12 M to 1.00 × 10-7 M of TC sensitively, with a limit of detection of 3.72 × 10-13 M. In addition, the proposed MIP-PEC sensor demonstrated good TC detection performance in actual livestock wastewater. SIGNIFICANCE The strategy based on MOF pore-confined quantum dots can effectively enhance the photocurrent response of the photosensitive substrate. Simultaneously, the MIP constructed by in-situ rapid UV-polymerization showed excellent anti-interference and reusable properties. This work provides a promising MIP-PEC cathodic sensing method for the rapid and sensitive detection of antibiotics in complex-matrix environmental samples.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mengge Zhang
- Key Laboratory of Modern Agriculture Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yuhao Lu
- Key Laboratory of Modern Agriculture Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Qijian Niu
- Key Laboratory of Modern Agriculture Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agriculture Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
10
|
Fan Y, Li J, Amin K, Yu H, Yang H, Guo Z, Liu J. Advances in aptamers, and application of mycotoxins detection: A review. Food Res Int 2023; 170:113022. [PMID: 37316026 DOI: 10.1016/j.foodres.2023.113022] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Mycotoxin contamination in food products can easily cause serious health hazards and economic losses to human beings. How to accurately detect and effectively control mycotoxin contamination has become a global concern. Mycotoxins conventional detection techniques e.g; ELISA, HPLC, have limitations like, low sensitivity, high cost and time-consuming. Aptamer-based biosensing technology has the advantages of high sensitivity, high specificity, wide linear range, high feasibility, and non-destructiveness, which overcomes the shortcomings of conventional analysis techniques. This review summarizes the sequences of mycotoxin aptamers that have been reported so far. Based on the application of four classic POST-SELEX strategies, it also discusses the bioinformatics-assisted POST-SELEX technology in obtaining optimal aptamers. Furthermore, trends in the study of aptamer sequences and their binding mechanisms to targets is also discussed. The latest examples of aptasensor detection of mycotoxins are classified and summarized in detail. Newly developed dual-signal detection, dual-channel detection, multi-target detection and some types of single-signal detection combined with unique strategies or novel materials in recent years are focused. Finally, the challenges and prospects of aptamer sensors in the detection of mycotoxins are discussed. The development of aptamer biosensing technology provides a new approach with multiple advantages for on-site detection of mycotoxins. Although aptamer biosensing shows great development potential, still some challenges and difficulties are there in practical applications. Future research need high focus on the practical applications of aptasensors and the development of convenient and highly automated aptamers. This may lead to the transition of aptamer biosensing technology from laboratory to commercialization.
Collapse
Affiliation(s)
- Yiting Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain.
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Huanhuan Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; College of Life Science Chang Chun Normal University, Changchun 130032, China.
| | - Zhijun Guo
- College of Agriculture, Yanbian University, Yanji 133002, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
11
|
Fan Y, Yang H, Li J, Amin K, Lyu B, Jing W, Wang S, Fu H, Yu H, Guo Z. Single-Walled Carbon Nanohorn-Based Fluorescence Energy Resonance Transfer Aptasensor Platform for the Detection of Aflatoxin B1. Foods 2023; 12:2880. [PMID: 37569149 PMCID: PMC10417297 DOI: 10.3390/foods12152880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Aflatoxin B1 (AFB1) is one of the most contaminated fungal toxins worldwide and is prone to cause serious economic losses, food insecurity, and health hazards to humans. The rapid, on-site, and economical method for AFB1 detection is need of the day. In this study, an AFB1 aptamer (AFB1-Apt) sensing platform was established for the detection of AFB1. Fluorescent moiety (FAM)-modified aptamers were used for fluorescence response and quenching, based on the adsorption quenching function of single-walled carbon nanohorns (SWCNHs). Basically, in our constructed sensing platform, the AFB1 specifically binds to AFB1-Apt, making a stable complex. This complex with fluorophore resists to be adsorbed by SWCNHs, thus prevent SWCNHs from quenching of fluorscence, resulting in a fluorescence response. This designed sensing strategy was highly selective with a good linear response in the range of 10-100 ng/mL and a low detection limit of 4.1 ng/mL. The practicality of this sensing strategy was verified by using successful spiking experiments on real samples of soybean oil and comparison with the enzyme-linked immunosorbent assay (ELISA) method.
Collapse
Affiliation(s)
- Yiting Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Huanhuan Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China
- College of Life Science, Chang Chun Normal University, Changchun 130032, China
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Wendan Jing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hongling Fu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Zhijun Guo
- College of Agriculture, Yanbian University, Yanji 133002, China
| |
Collapse
|
12
|
Jing C, Lv L, Wang X. Recent advances of ratiometric sensors in food matrices: mycotoxins detection. Crit Rev Food Sci Nutr 2023; 64:10695-10713. [PMID: 37366245 DOI: 10.1080/10408398.2023.2227264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The public health problem caused by mycotoxins contamination has received a great deal of attention worldwide. Mycotoxins produced by filamentous fungi widely distributed in foodstuffs can cause adverse impacts on humans and livestock, posing serious health threats. Particularly worth mentioning is that mycotoxins can accumulate in organisms and be enriched through the food chain. Improving early trace detection and control from the source is a more desirable approach than the contaminated food disposal process to ensure food safety. Conventional sensors are susceptible to interference from various components in intricate food matrices when detecting trace mycotoxins. The application of ratiometric sensors avoids signal fluctuations, and reduce background influences, which casts new light on developing sensors with superior performance. This work is the first to provide an overview of the recent progress of ratiometric sensors in the detection of mycotoxins in intricate food matrices, and highlight the output types of ratiometric signal with respect to accurate quantitative analysis. The prospects of this field are also included in this paper and are intended to have key ramifications on the development of sensing detection conducive to food safety.
Collapse
Affiliation(s)
- Chunyang Jing
- Key Laboratory of the Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Liangrui Lv
- Key Laboratory of the Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaoying Wang
- Key Laboratory of the Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Wang Y, Chen S, Chen W, Wang J, Li K, Hong C, Zhang K, Chen Q. Highly Sensitive β-Lactoglobulin Fluorescent Aptamer Biosensors Based on Tungsten Disulfide Nanosheets and DNase I-Assisted Signal Amplification. Molecules 2023; 28:molecules28083502. [PMID: 37110736 PMCID: PMC10146092 DOI: 10.3390/molecules28083502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
β-lactoglobulin (β-Lg) is a protein found in milk that can cause severe allergic reactions, including rash, vomiting, and diarrhea. Thus, it is crucial to develop a sensitive β-Lg detection method to protect people who are susceptible to allergies. Here, we introduce a novel and highly sensitive fluorescent aptamer biosensor for detecting β-Lg. First, a fluorescein-based dye (FAM)-labeled β-lactoglobulin aptamer (β-Lg aptamer) is adsorbed on the surface of tungsten disulfide (WS2) nanosheets via van der Waals forces, resulting in fluorescence quenching. When β-Lg is present, the β-Lg aptamer selectively binds to β-Lg, causing a conformational change in the β-Lg aptamer and releasing it from the surface of WS2 nanosheets, which restores the fluorescence signal. Simultaneously, DNase I in the system cleaves the aptamer bound to the target, producing a short oligonucleotide fragment and releasing β-Lg. The released β-Lg then binds to another β-Lg aptamer adsorbed on WS2, initiating the next round of cleavage, resulting in significant amplification of the fluorescence signal. This method has a linear detection range of 1-100 ng mL-1, and the limit of detection is 0.344 ng mL-1. Furthermore, this approach has been successfully used for detecting β-Lg in milk samples with satisfactory results, providing new opportunities for food analysis and quality control.
Collapse
Affiliation(s)
- Yuying Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Sisi Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Wanmei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jingjing Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Kun Li
- School of Life Sciences, Longyan University, Longyan 364012, China
| | - Chengyi Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Kailong Zhang
- School of Life Sciences, Longyan University, Longyan 364012, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
- Fujian Province Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Longyan University, Longyan 364012, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
14
|
Shi Y, Kong D, Li W, Wei Y, Wei X, Qu F, Zhang Y, Nie P, Feng X, He Y. A novel ratiometric fluorescent probe for sensitive detection of jasmonic acid in crops. Anal Chim Acta 2023; 1244:340844. [PMID: 36737147 DOI: 10.1016/j.aca.2023.340844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/15/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Herein, a novel ratiometric fluorescent probe was proposed for sensitive detection of jasmonic acid (JA) based on NCQDs@Co-MOFs@MIPs. The prepared NCQDs, with uniquely dual-emissive performance, are insensitive to JA due to electrostatic repulsion. Interestingly, the introduction of Co-MOFs not only avoided the self-aggregation of NCQDs, but changed the surface charge of NCQDs and triggered the response of NCQDs to JA. More importantly, the imprinted recognition sites from MIPs provided "key-lock" structures to specifically capture JA molecules, greatly improving the selectivity of the probe to JA. Under the synergistic actions of Co-MOFs and MIPs, JA can interact with NCQDs through photo-induced electron transfer (PET), resulting in the changes on emission intensity of the probe at Em = 367 nm and 442 nm. Based on the observations, the quantification of JA was realized in the range of 1-800 ng/mL with the limit of detection (LOD) of 0.35 ng/mL. In addition, the probe was used for detecting JA in rice with satisfactory analysis results, indicating the probe holds great potential for monitoring JA levels in crops. Overall, this strategy provides new insights into the construction of practical probes for sensitive detection of plant hormones in crops.
Collapse
Affiliation(s)
- Yongqiang Shi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Dandan Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wenting Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yuzhen Wei
- School of Information Engineering, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Xiao Wei
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Fangfang Qu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yahui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Pengcheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xuping Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Huanan Industrial Technology Research Institute of Zhejiang University, Guangzhou, Guangdong, 510700, China.
| |
Collapse
|
15
|
Efficient detection of formaldehyde by fluorescence switching sensor based on GSH-CdTe. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
16
|
Bi X, Li L, Niu Q, Liu X, Luo L, Jiang H, You T. Highly Fluorescent Magnetic ATT-AuNCs@ZIF-8 for All-in-One Detection and Removal of Hg 2+: An Ultrasensitive Probe to Evaluate Its Removal Efficiency. Inorg Chem 2023; 62:3123-3133. [PMID: 36749708 DOI: 10.1021/acs.inorgchem.2c03994] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of multifunctional materials for the synchronous detection and removal of mercury ions (Hg2+) is in high demand. Although a few multifunctional materials as a fluorescent indicator and adsorbent have achieved this aim, the feedback of their removal efficiency still depends on other methods. Herein, magnetic Fe3O4 nanoparticles (MNPs) and 6-aza-2-thiothymine-protected gold nanoclusters (ATT-AuNCs) were rationally assembled into a zeolitic imidazolate framework 8 (ZIF-8) structure via a one-pot method. The coordination assembly of ATT-AuNCs and ZIF-8 not only strengthened the aurophilic interactions of adjacent ATT-AuNCs but also induced the restriction of intramolecular motion of ATT with a six-membered heterocyclic structure. As a consequence, the fluorescence (FL) quantum yield of MNPs/ATT-AuNCs@ZIF-8 was 12.5-fold higher than that of pristine ATT-AuNCs. Benefiting from the enhanced FL emission, MNPs/ATT-AuNCs@ZIF-8 showed improved sensitivity for Hg2+ detection and therefore could evaluate the removal efficiency via FL detection, without relying on another detection method. Additionally, the nanocomposite also displayed a satisfactory removal capability for Hg2+, including a short capture time (20 min), a high removal efficiency (>96.9%), and excellent reusability (10 cycles). This work provides an approach for customizing functional nanocomposites to concurrently detect and remove Hg2+ with superior performance, especially for high detection sensitivity.
Collapse
Affiliation(s)
- Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qijian Niu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaohong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Huihui Jiang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
17
|
Jiang H, Liu Q, Zhang H, Yang P, You T. A self-powered photoelectrochemical oxytetracycline aptasensor: An integrated heterojunction photoanode of metal-organic framework derived ZnO nanopolyhedra/graphitic carbon nitride with high carrier density. J Colloid Interface Sci 2023; 632:35-43. [PMID: 36403375 DOI: 10.1016/j.jcis.2022.11.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
The development of effective strategies for the detection of oxytetracycline (OTC) in soil is of great importance for preserving agri-environmental safety and human health. Herein, a novel photoactive material of metal-organic framework (MOF) derived ZnO nanopolyhedra/graphitic carbon nitride (ZnO/g-C3N4) heterojunction was designed by mixing calcination of zeolite imidazole framework-8 (ZIF-8) and melamine. A self-powered photoelectrochemical aptasensor for the sensitive and selective detection of OTC in soil was proposed using ZnO/g-C3N4 as the photoanode. The photoactivity of the MOF derived ZnO nanopolyhedra was regulated effectively by the introduction of g-C3N4, which resulted in a 7-fold increase in the photocurrent of the ZnO nanopolyhedra at a bias potential of 0 V. It was assigned to the higher carrier density of ZnO/g-C3N4. By virtue of the amplified photocurrent of ZnO/g-C3N4, the specificity of the OTC aptamer and the anti-interference ability of the self-powered sensing method, the designed aptasensor demonstrated the advantages of a wide linear range (0.005-200 nM), low limit of detection (1.49 × 10-3 nM), good selectivity and good reproducibility. For real soil sample analysis, satisfactory recoveries were obtained and further verified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).
Collapse
Affiliation(s)
- Huihui Jiang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hang Zhang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Peilin Yang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
18
|
Ma L, Zhang X, Xiao Y, Fang H, Zhang G, Yang H, Zhou Y. Fluorescence and colorimetric dual-mode immunoassay based on G-quadruplex/N-methylmesoporphyrin IX and p-nitrophenol for detection of zearalenone. Food Chem 2023; 401:134190. [DOI: 10.1016/j.foodchem.2022.134190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
|